

Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería Química

EVALUACIÓN DEL TRATAMIENTO DE DESACTIVACIÓN OXIDATIVA DEL ALGA VERDE (Chlorella vulgaris; BEYERINCK, M.W.) MEDIANTE LA UTILIZACIÓN DE UN REACTOR ELECTROLÍTICO DE LECHO FIJO

César Daniel Saquec Tzuquen

Asesorado por el Ing. Qco. César Alfonso García Guerra

Guatemala, septiembre de 2018

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

EVALUACIÓN DEL TRATAMIENTO DE DESACTIVACIÓN OXIDATIVA DEL ALGA VERDE (Chlorella vulgaris; BEYERINCK, M.W.) MEDIANTE LA UTILIZACIÓN DE UN REACTOR ELECTROLÍTICO DE LECHO FIJO

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA POR

CÉSAR DANIEL SAQUEC TZUQUEN

ASESORADO POR EL ING. CÉSAR ALFONSO GARCÍA GUERRA

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO QUÍMICO

GUATEMALA, SEPTIEMBRE DE 2018

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO	Ing. Pedro Antonio Aguilar Polanco
VOCAL I	Ing. Angel Roberto Sic García
VOCAL II	Ing. Pablo Christian de León Rodríguez
VOCAL III	Ing. José Milton de León Bran
VOCAL IV	Br. Oscar Humberto Galicia Nuñez
VOCAL V	Br. Carlos Enrique Gomez Donis
SECRETARIA	Inga. Lesbia Magalí Herrera López

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO	Ing. Pedro Antonio Aguilar Polanco
EXAMINADOR	Ing. César Alfonso García Guerra
EXAMINADOR	Ing. Erwin Manuel Ortíz Castillo
EXAMINADOR	Ing. Mario José Mérida Meré
SECRETARIA	Inga. Lesbia Magalí Herrera López

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

EVALUACIÓN DEL TRATAMIENTO DE DESACTIVACIÓN OXIDATIVA DEL ALGA VERDE (Chlorella vulgaris; BEYERINCK, M.W.) MEDIANTE LA UTILIZACIÓN DE UN REACTOR ELECTROLÍTICO DE LECHO FIJO

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Química, con fecha 13 de febrero de 2018.

Daniel Saquec Tzuquen

Guatemala, 25 de abril de 2018

Ingeniero Carlos Salvador Wong Davi Director Escuela de Ingeniería Química Facultad de Ingeniería Universidad San Carlos de Guatemala Presente

Estimado Ing. Carlos Wong

Le deseo muchos éxitos en sus actividades diarias y en cada una de las actividades en que se desempeña.

Por medio de la presente hago de su conocimiento que el informe final de Graduación titulado: "EVALUACIÓN DEL TRATAMIENTO DE DESACTIVACIÓN OXIDATIVA DEL ALGA VERDE (*Chlorella vulgaris;* BEYERINCK, M.W.) MEDIANTE LA UTILIZACIÓN DE UN REACTOR ELECTROLÍTICO DE LECHO FIJO", del estudiante de Ingeniería Química César Daniel Saquec. Tzuquen, identificado con el CUI 2100 74302 0401 y registro académico 201212646, ha sido revisado y aprobado por mi persona bajo los criterios que considero adeptos para el informe final de Graduación según los requerimientos de la Escuela de Ingeniería Química.

Atentamente,

arcía Guerra Ingeniero Glimico Cesaruanonso García Guerra COLEGIADO No.

Edificio T-5, Ciudad Universitaria, Zona 12, Guatemala, Centroamérica EIQD-REG-TG-008

> Guatemala, 09 de agosto de 2018. Ref. EIQ.TG-IF.028.2018.

Ingeniero Carlos Salvador Wong Davi DIRECTOR Escuela de Ingeniería Química Facultad de Ingeniería

Estimado Ingeniero Wong:

Como consta en el registro de evaluación del informe final EIQ-PRO-REG-007 correlativo **025-2017** le informo que reunidos los Miembros de la Terna nombrada por la Escuela de Ingeniería Química, se practicó la revisión del:

INFORME FINAL DE TRABAJO DE GRADUACIÓN -Modalidad Seminario de Investigación-

Solicitado por el estudiante universitario: César Daniel Saquec Tzuquen. Identificado con número de carné: 2100 74302 0401. Identificado con registro académico: 2012-12646. Previo a optar al título de INGENIERO QUÍMICO.

Siguiendo los procedimientos de revisión interna de la Escuela de Ingeniería Química, los Miembros de la Terna han procedido a **APROBARLO** con el siguiente título:

EVALUACIÓN DEL TRATAMIENTO DE DESACTIVACIÓN OXIDATIVA DEL ALGA VERDE (Chlorella vulgaris; BEYERINCK, M.W.) MEDIANTE LA UTILIZACIÓN DE UN REACTOR ELECTROLÍTICO DE LECHO FIJO

El Trabajo de Graduación ha sido asesorado por el Ingeniero Químico: César Alfonso García Guerra.

Habiendo encontrado el referido informe final del trabajo de graduación **SATISFACTORIO**, se autoriza al estudiante, proceder con los trámites requeridos de acuerdo a las normas y procedimientos establecidos por la Facultad para su autorización e impresión.

(ID Y ENSEÑAD A TODOS"

Ing. Mario José Mérida Meré COORDINADOR DE TERNA Tribunal de Revisión Trabajo de Graduación

C.c.: archivo

Edificio T-5, Ciudad Universitaria, Zona 12, Guatemala, Centroamérica EIQD-REG-SG-004

Ref.EIQ.TG.025.2018

El Director de la Escuela de Ingeniería Química de la Universidad de San Carlos de Guatemala, luego de conocer el dictamen del Asesor y de los Miembros del Tribunal nombrado por la Escuela de Ingeniería Química para revisar el Informe del Trabajo de Graduación del (la) estudiante, CÉSAR DANIEL SAQUEC TZUQUEN titulado: "EVALUACIÓN DEL TRATAMIENTO DE DESACTIVACIÓN OXIDATIVA DEL ALGA VERDE (Chlorella vulgaris; BEYERINCK, M.W.) MEDIANTE LA UTILIZACIÓN DE UN REACTOR ELECTROLÍTICO DE LECHO FIJO". Procede a la autorización del mismo, ya que reúne el rigor, la secuencia, la pertinencia y la coherencia metodológica requerida.

"Id y Enseñad a Todos"

Ing. Carlos Sal r Wong Davi Directo

Escuela de Ingeniería Química

Guatemala, septiembre de 20 Scoela de INGENIERIA USAC DIRECTOR

Cc: Archivo CSWD/ale

Universidad de San Carlos De Guatemala

Facultad de Ingeniería Decanato

Ref. DTG.331.2018

ARQUEN El Decano de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por del Director la parte de Escuela de Ingeniería Química, al trabajo de graduación titulado: EVALUACIÓN DEL TRATAMIENTO DE DESACTIVACIÓN OXIDATIVA DEL ALGA VERDE (Chlorella vulgaris; BEYERINCK, M.W.) MEDIANTE LA UTILIZACIÓN DE UN REACTOR ELECTROLÍTICO DE LECHO FIJO, presentado por el estudiante universitario: César Daniel Saquec Tzuquen, y después de haber culminado las revisiones previas bajo la responsabilidad de las instancias correspondientes, se autoriza la impresión del mismo.

IMPRÍMASE.

Ing. Pedro Antonio Aguilar Polanco Decano

Guatemala, Septiembre de 2018

/cc

ACTO QUE DEDICO A:

Mi abuela	Cristina Caal (q. e. p. d.) por haber sido mi segunda madre, mi protectora, un ejemplo de mujer y por todo su amor incondicional. Su recuerdo siempre será una gran motivación para mí. Este acto está dedicado especialmente a ella.
Mi Madre	Olga Marina Tzuquen Caal por su gran amor, paciencia, apoyo moral, económico, dedicación y lucha incansable. Este también es su logro.
Mi padre	Daniel Saquec por brindarme la oportunidad de estudiar, por su apoyo y ánimos para lograr mis metas. Este también es su logro.
Mis hermanos	Oscar, Ana Raquel y Daniel Enrique Saquec Tzuquen, por su apoyo, ánimos y porque sin ellos, mi vida no sería igual.
Mis padrinos	Mario Sincal y Carmela Guoron, por tenerme presente siempre en su vida y por su cariño hacía mí y mi familia.
Mis amigos más cercanos	Por las alegrías, aventuras, ánimos y por todo el apoyo incondicional que me han brindado.

AGRADECIMIENTOS A:

Universidad de San	Por darme la oportunidad de alcanzar la
Carlos de Guatemala	educación superior y por tantas experiencias gratas para mi formación personal y profesional.
Facultad de Ingeniería	Por darme las herramientas necesarias para realizar mis estudios universitarios.
Mi familia	Por creer en mí y por apoyarme desde los inicios de mi vida universitaria. Son mi gran inspiración y motivación.
Mis abuelos	Porque sin su amor, lucha y esfuerzo constante no podría estar culminando mi carrera universitaria.
Mis amigos de la universidad	Marlon Méndez, David Noj, Guillermo Cúmez, Luis Velázquez, Carlos Chicojay, Moisés López, Ivan Chanchavac, Ángel Ajcabul, José Interiano, Estuardo Maczul, Mariano Cap, Byron Carcuz, Edy Méndez, Luis Cruz, Elder Villatoro, Francisco Catalán, Franklin Ajcholon, Rodrigo Arévalo, Angy Yoc, Ingrid y Arlene Leiva por ser parte importante en el desarrollo de mi carrera.

- Mis amigos más Wilson Vicente, Alejandra Sipac, Robinson cercanos Tejaxún, Luisa Castellanos, Aldo Suria, Cecilia Sinaj, Fredy Tol, Glendy Pecher, Franklin Tian, Claudia Chopen, Ivanna Reyes y Juan Miculax por las aventuras, risas, compañía durante los desvelos y apoyo a lo largo de los años.
- Ing. Qco. César AlfonsoPor ser mi asesor y por haber compartido todoGarcía Guerrasu conocimiento y profesionalismo para la
realización de este proyecto.
- Los profesionales Inga. Thelma Cano, Ing. Mario Mérida y Lic. Sandra Velásquez por la formación y apoyo que me brindaron.
- C.E.M.A. Por haber donado la materia prima para la realización de este proyecto. Especialmente al Lic. Josué García.
- Universidad de Cagliari Por haberme permitido obtener los conocimientos necesarios para la realización de este proyecto. Especialmente a Anna Aloi, Fabrizio Lai, Sara Monasterio y Michele Mascia.

ÍNDICE GENERAL

ÍNDIC	CE DE ILU	ISTRACIO	NES		V
LIST	A DE SÍME	30LOS			XIII
GLOS	SARIO				XV
RESI	JMEN				XVII
OBJE	TIVOS				XIX
HIPÓ	TESIS				XXI
INTR	ODUCCIÓ				XXIII
1.	ANTECE	EDENTES.			1
2.	MARCO	TEÓRICO			5
	2.1.	Eutrofizac	ión		5
	2.2.	Algas			9
		2.2.1.	Estructura	del alga Chlorella vulgaris (Be	eyerinck,
			M.W.)		11
			2.2.1.1.	Pared celular	11
			2.2.1.2.	Citoplasma	12
			2.2.1.3.	Mitocondria	12
			2.2.1.4.	Cloroplasto	12
		2.2.2.	Control de	crecimiento de algas	13
	2.3.	Métodos o	de desinfecc	ión	14
	2.4.	Electrólisis	S		21
		2.4.1.	Efecto de la	a corriente eléctrica	25
		2.4.2.	Efecto de le	os oxidantes	27
	2.5.	Modelos c	le oxidación	de la membrana celular	27
		2.5.1.	Desinfecció	ón electroquímica	27
		2.5.2.	Ataque cor	n bromo y cloro	28

3.	DISEÑC	METODO	LÓGICO		. 31
	3.1.	Variables			. 31
		3.1.1.	Descripció	n de variables manipuladas	. 31
	3.2.	Delimitaci	ón del camp	oo de estudio	. 32
	3.3.	Recursos	humanos d	isponibles	. 32
	3.4.	Recursos	materiales	disponibles	. 32
		3.4.1.	Materiales	para la construcción del reactor	. 32
		3.4.2.	Chlorella v	ulgaris	. 33
		3.4.3.	Instrument	os de medición	. 33
		3.4.4.	Cristalería		. 33
		3.4.5.	Equipo aux	kiliar	. 34
	3.5.	Técnica c	uantitativa		. 35
	3.6.	Recolecci	ón y ordena	miento de la información	. 35
	3.7.	Tabulació	n, ordena	miento y procesamiento de la	
		informacio	ón		. 36
		3.7.1.	Variables u	itilizadas para el análisis de resultados.	. 36
		3.7.2.	Tabulación	y ordenamiento de resultados	. 36
		3.7.3.	Plan de an	álisis de los resultados	. 93
			3.7.3.1.	Métodos y modelos de los datos	
				según el tipo de variables	. 93
			3.7.3.2.	Programas por utilizar para análisis	
				de datos	. 94
	3.8.	Análisis e	stadístico		. 94
		3.8.1.	Media aritn	nética	. 94
		3.8.2.	Error de pr	ecisión	. 94
			3.8.2.1.	Desviación estándar	. 94
			3.8.2.2.	Error de precisión	. 95
		3.8.3.	Error de ine	certidumbre	. 95
		3.8.4.	Análisis de	varianzas (ANOVA)	. 95

		3.8.4.1. Varianza de cada muestra95
		3.8.4.2. Estimación interna de varianzas96
		3.8.4.3. Varianza de las medias muestrales96
		3.8.4.4. Parámetro F de Fisher
		3.8.4.5. Grados de libertad96
	3.9.	Diagramas para construcción del reactor electrolítico
		continuo y esquema para fase experimental97
4.	RESULT	ADOS101
	4.1.	Adaptación y construcción del reactor electrolítico de lecho
		fijo101
	4.2.	Efecto de la densidad de corriente en el tratamiento
		electroquímico estudiado105
	4.3.	Efecto sobre el porcentaje de remoción total a diferentes
		condiciones de densidad de corriente y flujo volumétrico109
	4.4.	Efecto de la transmitancia inicial sobre el porcentaje de
		remoción total a diferentes condiciones de densidad de
		corriente y flujo volumétrico113
	4.5.	Comportamiento de la absorbancia respecto a la duración
		del tratamiento aplicado115
5.	INTERP	RETACIÓN DE RESULTADOS117
CONC	CLUSION	ES125
RECC	MENDAG	CIONES
BIBLI	OGRAFÍA	
APÉN	IDICES	
ANEX	OS	

IV

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Ejemplo de lago eutrofizado5
2.	Ejemplo de eutrofización natural y acelerada7
3.	Contaminación de ríos y lagos8
4.	Alga Chlorella vulgaris11
5.	Ultraestructura esquemática de Chlorella v. (Beyerinck, M.W.)
	representando diferentes organelos13
6.	Celda electroquímica, modelo con electrodos de Zn/Zn ²⁺ y
	Fe ²⁺ /Fe ³⁺ 23
7.	Electrolisis de cloruro de sodio24
8.	Reacción redox de NAD (coenzima celular en algas)26
9.	Mecanismo de inactivación de la <i>E. coli</i> 28
10.	Morfología de inactivación de la espora <i>B. subtilis</i> 29
11.	Diagrama del reactor electrolítico y sus componentes97
12.	Diagrama del reactor electrolítico y medidas98
13.	Esquema de fase experimental99
14.	Reactor electrolítico continuo vista frontal101
15.	Reactor electrolítico continuo vista lateral102
16.	Tapones del reactor electrolítico103
17.	Acoplamiento final del tubo, adaptador, tapón del reactor
	electrolítico y conector de bronce a presión104
18.	Remoción total promedio en función del tiempo a flujo volumétrico
	constante (550 mL min ⁻¹) con absorbancia inicial alta (ABS = $0,165$
	– 0,177; λ = 680 nm)

19.	Diagrama de cajas para el tiempo final (100 min) para cada
	densidad de corriente graficada en la Figura 18 106
20.	Remoción total promedio en función del tiempo a flujo volumétrico
	constante (300 mL min ⁻¹) con absorbancia inicial baja (ABS = 0,102
	– 0,119; λ = 680 nm)
21.	Diagrama de cajas para el tiempo final (100 min) para cada
	densidad de corriente graficada en la Figura 20 108
22.	Remoción total promedio para absorbancia inicial alta en función
	del tiempo a diferentes valores de densidad de corriente eléctrica y
	flujo volumétrico
23.	Diagrama de cajas para el tiempo final (100 min) para cada
	densidad de corriente a flujo volumétrico de 300 y 550 mL min-1,
	graficados en la Figura 22 110
24.	Remoción total promedio para absorbancia inicial baja en función
	del tiempo a diferentes valores de densidad de corriente eléctrica y
	flujo volumétrico 111
25.	Diagrama de cajas para el tiempo final (100 min) para cada
	densidad de corriente a flujo volumétrico de 300 y 550 mL min-1,
	graficados en la Figura 24 112
26.	Remoción total promedio en función del tiempo a diferentes valores
	de densidad de corriente eléctrica y absorbancia inicial (λ = 680
	nm), con flujo volumétrico constante (300 mL min ⁻
	¹)113
27.	Diagrama de cajas para el tiempo final (100 min) para cada
	densidad de corriente a Absorbancia Inicial Alta y Baja, graficadas
	en la Figura 26 114
28.	Absorbancia en función del tiempo con absorbancia inicial alta
	(ABS = 0,169; λ = 680 nm; Q = 550 mL min ⁻¹ ; ρ_i = 7,15 A m ⁻
	²)115

29.	Absorbancia en función del tiempo con absorbancia inicial baja (ABS = 0,117; λ = 680 nm; Q = 550 mL min ⁻¹ ; ρ_i = 4,29 A m ⁻²)
30.	Remoción total promedio en función del tiempo a flujo volumétrico constante (550 mL min ⁻¹) con absorbancia inicial alta (ABS = 0,165 $- 0.177$; $\lambda = 680$ nm)
31.	Diagrama de cajas para el tiempo final (100 min) para cada
	densidad de corriente graficada en la Figura 18143
32.	Remoción total promedio en función del tiempo a flujo volumétrico constante (300 mL min ⁻¹) con absorbancia inicial baja (ABS = 0,102 $- 0,119$; $\lambda = 680$ nm)
33.	Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente graficada en la Figura 20148
34.	Remoción total promedio para Absorbancia Inicial Alta en función del tiempo a diferentes valores de densidad de corriente eléctrica y flujo volumétrico
35.	Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente a flujo volumétrico de 300 y 550 mL min ⁻¹ , graficados en la Figura 22
36.	Remoción total promedio para Absorbancia Inicial Baja en función del tiempo a diferentes valores de densidad de corriente eléctrica y flujo volumétrico
37.	Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente a flujo volumétrico de 300 y 550 mL min ⁻¹ , graficados en la Figura 24
38.	Remoción total promedio en función del tiempo a diferentes valores de densidad de corriente eléctrica y absorbancia inicial ($\lambda = 680$ nm), con flujo volumétrico constante (300 mL min ⁻¹)

39.	Diagrama de cajas para el tiempo final (100 min) para cada
	densidad de corriente a Absorbancia Inicial Alta y Baja, graficadas
	en la Figura 26 178
40.	Absorbancia en función del tiempo con absorbancia inicial alta
	(ABS = 0,169; λ = 680 nm; Q = 550 mL min^-1; ρ_i = 7,15 A m^-
	²)183
41.	Absorbancia en función del tiempo con absorbancia inicial alta
	(ABS = 0,117; λ = 680 nm; Q = 550 mL min ⁻¹ ; ρ_i = 4,29 A m ⁻¹
	²)185
42.	Empaques tipo anillos Raschig, vista superior187
43.	Empaques tipo anillos Raschig, vista frontal
44.	Empaques tipo anillos en espiral, vista superior188
45.	Empaques tipo anillos en espiral, vista frontal

TABLAS

. Variables de control31	I.
. Descripción de variables manipuladas	II.
. Prueba No. 1 realizada el 18/10/2017 a baja absorbancia, a caudal	III.
[300 mL min-1] e intensidad de corriente constante [0,29 mA cm	
²]	
. Prueba No. 2 realizada el 18/10/2017 a baja absorbancia, a caudal	IV.
[400 mL min-1] e intensidad de corriente constante [0,29 mA cm	
²]	
. Prueba No. 3 realizada el 19/10/2017 a baja absorbancia, a caudal	V.
[500 mL min-1] e intensidad de corriente constante [0,29 mA cm-	
2]	

VI. Prueba No. 4 realizada el 19/10/2017 a baja absorbancia, a cauda	al
[550 mL min-1] e intensidad de corriente constante [0,29 mA cm	۱
²]4	1
VII. Prueba No. 5 realizada el 19/10/2017 a baja absorbancia, a cauda	al
[300 mL min ⁻¹] e intensidad de corriente [0,57; 0,69 mA cm	1-
2]43	3
VIII. Prueba No. 6 realizada el 23/10/2017 con absorbancia alta, a	а
caudal [300 mL min ⁻¹] e intensidad de corriente constante [0,29 m/	4
cm ⁻²]4	5
IX. Prueba No. 7 realizada el 23/10/2017 con absorbancia alta,	а
caudal [400 mL min-1] e intensidad de corriente constante [0,29 m/	4
cm ⁻²]4	6
X. Prueba No. 8 realizada el 23/10/2017 con absorbancia alta,	а
caudal [500 mL min ⁻¹] e intensidad de corriente constante [0,29 m/	4
cm ⁻²]4	8
XI. Prueba No. 9 realizada el 24/10/2017 con absorbancia alta,	а
caudal [550 mL min ⁻¹] e intensidad de corriente constante [0,29 m/	4
cm ⁻²]5	0
XII. Prueba No. 10 realizada el 24/10/2017 con absorbancia alta,	а
caudal [300 mL min-1] e intensidad de corriente constante [0,43 m/	4
cm ⁻²]5	1
XIII. Prueba No. 11 realizada el 24/10/2017 con absorbancia alta,	а
caudal [400 mL min ⁻¹] e intensidad de corriente constante [0,43 m/	Ą
cm ⁻²]5	3
XIV. Prueba No. 12 realizada el 25/10/2017 con absorbancia alta,	а
caudal [400, 500 mL min-1] e intensidad de corriente [0,43 mA cm	י.
²]	5

Prueba No. 13 realizada el 25/10/2017 con absorbancia alt	a, a
caudal [550 mL min-1] e intensidad de corriente constante [0,43	; mA
cm ⁻²]	57
Prueba No. 14 realizada el 25/10/2017 con absorbancia alt	a, a
caudal [300 mL min-1] e intensidad de corriente constante [0,57	′ mA
cm ⁻²]	59
Prueba No. 15 realizada el 26/10/2017 con absorbancia alt	a, a
caudal [400 mL min-1] e intensidad de corriente constante [0,57	′ mA
cm ⁻²]	61
Prueba No. 16 realizada el 26/10/2017 con absorbancia alt	a, a
caudal [500 mL min-1] e intensidad de corriente constante [0,57	′ mA
cm ⁻²]	63
Prueba No. 17 realizada el 26/10/2017 con absorbancia alt	a, a
caudal [550 mL min-1] e intensidad de corriente constante [0,57	′ mA
cm ⁻²]	65
Prueba No. 18 realizada el 27/10/2017 con absorbancia alt	a, a
caudal [300 mL min-1] e intensidad de corriente constante [0,72	mA
cm ⁻²]	67
Prueba No. 19 realizada el 27/10/2017 con absorbancia alt	a, a
caudal [400 mL min-1] e intensidad de corriente constante [0,72	mA
cm ⁻²]	68
Prueba No. 20 realizada el 27/10/2017 con absorbancia alt	a, a
caudal [400; 500 mL min ⁻¹] e intensidad de corriente [0,72 mA	cm
2]	70
Prueba No. 21 realizada el 27/10/2017 con absorbancia alt	a, a
caudal [550 mL min-1] e intensidad de corriente constante [0,72	mA
cm ⁻²]	72

XXIV. Prueba No. 22 realizada el 30/10/2017 a baja absorbancia, a
caudal [400 mL min ⁻¹] e intensidad de corriente [0,57; 0,69 mA cm ⁻
2]74
XXV. Prueba No. 23 realizada el 30/10/2017 a baja absorbancia, a
caudal [500 mL min ⁻¹] e intensidad de corriente constante [0,57 mA
cm ⁻²]76
XXVI. Prueba No. 24 realizada el 30/10/2017 a baja absorbancia, a
caudal [550 mL min ⁻¹] e intensidad de corriente [0,57; 0,69 mA cm ⁻
2]
XXVII. Prueba No. 25 realizada el 31/10/2017 a baja absorbancia, a
caudal [550 mL min ⁻¹] e intensidad de corriente constante [0,43 mA
cm ⁻²]79
XXVIII. Prueba No. 26 realizada el 31/10/2017 a baja absorbancia, a
caudal [500, 550 mL min ⁻¹] e intensidad de corriente [0,43 mA cm ⁻
2]81
XXIX. Prueba No. 27 realizada el 31/10/2017 a baja absorbancia, a
caudal [400 mL min ⁻¹] e intensidad de corriente constante [0,43 mA
cm ⁻²]83
XXX. Prueba No. 28 realizada el 02/11/2017 a baja absorbancia, a
caudal [300 mL min ⁻¹] e intensidad de corriente constante [0,43 mA
cm ⁻²]84
XXXI. Prueba No. 29 realizada el 02/11/2017 a baja absorbancia, a
caudal [300 mL min ⁻¹] e intensidad de corriente constante [0,72 mA
cm ⁻²]86
XXXII. Prueba No. 30 realizada el 02/11/2017 a baja absorbancia, a
caudal [300, 400 mL min-1] e intensidad de corriente [0,72 mA cm-
2]

XXXIII.	Prueba No. 31 realizada el 03/11/2017 a baja absorbancia, a
	caudal [300, 500 mL min-1] e intensidad de corriente [0,72 mA cm-
	²]90
XXXIV.	Prueba No. 32 realizada el 03/11/2017 a baja absorbancia, a
	caudal [300, 550 mL min ⁻¹] e intensidad de corriente [0,43; 0,57 mA
	cm ⁻²]91
XXXV.	Descripción de cada curva de la Figura 18141
XXXVI.	Condiciones de la experimentación para la Figura 18 141
XXXVII.	Descripción de cada curva de la Figura 20146
XXXVIII.	Condiciones de la experimentación para la Figura 20 146
XXXIX.	Descripción de cada curva de la Figura 22151
XL.	Condiciones de la experimentación para la Figura 22 151
XLI.	Descripción de cada curva de la Figura 24162
XLII.	Condiciones de la experimentación para la Figura 24 162
XLIII.	Descripción de cada curva de la Figura 26
XLIV.	Condiciones de la experimentación para la Figura 26 173
XLV.	Descripción de la curva de la Figura 28184
XLVI.	Condiciones de la experimentación para la Figura 28 184
XLVII.	Descripción de la curva de la Figura 29186
XLVIII.	Condiciones de la experimentación para la Figura 29 186

LISTA DE SÍMBOLOS

Significado

Símbo	ο

ABS	Absorbancia
ABS ₀	Absorbancia inicial
A ₀ A	Absorbancia inicial alta
A ₀ B	Absorbancia inicial baja
Α	Amperio
ANOVA	Análisis de varianza
cm ²	Centímetro cuadrado
dm²	Decímetro cuadrado
ρ _i	Densidad de corriente
F	Factor F de Fisher
Fc	Factor F crítico de Fisher
Q	Flujo volumétrico
°C	Grados centígrados
g	Gramo
Hz	Hertz
H ₀	Hipótesis nula
H ₁	Hipótesis alternativa
I	Intensidad de corriente
Kg	Kilogramo
λ	Longitud de onda
m²	Metros cuadrados
m ³	Metros cúbicos
μm	Micrómetro

Mili amperio
Mililitro
Mili voltio
Minuto
Nanómetro
Policloruro de vinilo
Porcentaje
Potencial de hidrogeno

GLOSARIO

- Absorbancia Medida de la atenuación de una radiación al atravesar una sustancia, se expresa como el logaritmo de la relación entre la intensidad saliente y la entrante.
- **ANOVA** Análisis estadístico de varianzas para las medias.
- Espectrofotometría Medición de la cantidad de energía radiante que absorbe un sistema químico en función de la longitud de onda de la radiación.
- Lecho fijo Se refiere a la sección del reactor que se mantiene inmóvil en el reactor, en este caso se refiere a los electrodos.
- Oxidación Proceso mediante el cual se degrada la materia orgánica e inhibe su crecimiento.
- **pH** En una escala de 1 a 14, indica el grado de acidez del agua a 25°C.
- **Remoción total** Cantidad, en porcentaje, de rendimiento del tratamiento aplicado.

TemperaturaEs una magnitud física que refleja la cantidad de
calor, ya sea de un cuerpo, de un objeto o del
ambiente.

RESUMEN

Para evaluar la efectividad del tratamiento electroquímico para la desactivación biológica del alga *Chlorella vulgaris* se utilizó un reactor electrolítico de lecho fijo adaptado y construido para variaciones de densidad de corriente, flujo volumétrico y absorbancia inicial.

Se construyó y adaptó el reactor utilizando material de PVC, se realizaron pruebas de funcionamiento previo a iniciar la recolección de datos con los diferentes tratamientos propuestos. El reactor trabajó con efectividad y estabilidad durante toda la fase experimental.

Se realizaron 3 repeticiones de los tratamientos aplicados, los cuales incluyeron cuatro variaciones de flujo volumétrico y densidad de corriente, también, dos variaciones de absorbancia inicial (absorbancia inicial alta y baja).

Al finalizar la recolección de datos, se analizaron gráficamente según cada objetivo específico propuesto. Para darle validez estadística se realizaron análisis de varianza de 1 y 2 factores determinando así la existencia o no de diferencia significativa entre los datos.

Se determinó que para una absorbancia inicial alta [0,165; 0,177] se lograron oxidaciones más efectivas cuando la densidad de corriente directa era máxima [7,15 A m⁻²]. Mientras que para los tratamientos para una absorbancia inicial baja [0,102; 0,119] no existe diferencia significativa entre los datos.

XVII

También, se determinó que para una absorbancia inicial alta [0,165; 0,193] se lograron oxidaciones más efectivas cuando el flujo volumétrico era mínimo [300 mL min⁻¹]. Mientras que para los tratamientos para una absorbancia inicial baja [0,102; 0,120] no existe diferencia significativa entre los datos.

Además, se determinó que a las condiciones de flujo volumétrico [300 mL min⁻¹] y densidad de corriente [4,29; 7,15 A m⁻²] trabajadas, se lograron oxidaciones más efectivas cuando la absorbancia inicial era alta [0,177; 0,193].

Finalmente, se comprobó que el mecanismo del tratamiento electrolítico evaluado ocurre en tres etapas, para todos los tratamientos aplicados. Siendo la etapa I, correspondiente a los primeros 20 min, en la que ocurre la oxidación electrolítica más efectiva.

OBJETIVOS

General

Evaluar el tratamiento electroquímico mediante la oxidación constitutiva de los componentes del alga verde *Chlorella vulgaris* (Beyerinck, M.W.) contenida en soluciones acuosas, efectuando la electrolisis en un reactor de lecho fijo con electrodos tridimensionales a nivel laboratorio.

Específicos

- 1. Construir una celda electrolítica continua tipo reactor de lecho fijo (electrodos inoxidables) para evaluar el tratamiento electroquímico.
- Determinar el efecto en la reducción en la transmitancia por efecto de la oxidación electroquímica en función de las variaciones en la densidad de corriente (mA dm⁻²), en base a un flujo volumétrico y transmitancia inicial de las suspensión de alga *Chlorella vulgaris* (Beyerinck, M.W.).
- Determinar el efecto en la reducción en la transmitancia por efecto de la oxidación electroquímica en función de las variaciones en la flujo volumétrico (mL min⁻²), en base a la densidad de corriente y transmitancia inicial de las suspensión de alga *Chlorella vulgaris* (Beyerinck, M.W.).
- 4. Determinar el efecto en la reducción en la transmitancia por efecto de la oxidación electroquímica en función de las variaciones en la

transmitancia inicial de las suspensión de alga *Chlorella vulgaris* (Beyerinck, M.W.), en base a la densidad de corriente y flujo volumétrico.

5. Evaluar la existencia de diferencia significativa entre los datos obtenidos mediante un análisis de varianza simple (ANOVA).

HIPÓTESIS

• Es posible evaluar la oxidación electroquímica del alga verde *Chlorella vulgaris* (Beyerinck, M.W.) en solución acuosa mediante un tratamiento electroquímico.

Hipótesis nulas

- H₀: No existe diferencia significativa entre los tratamientos realizados en función de la variación de la densidad de corriente directa.
- H₀: No existe diferencia significativa entre los tratamientos realizados en función de la variación del flujo volumétrico.
- H₀: No existe diferencia significativa entre los tratamientos realizados en función de la transmitancia inicial de la muestra.

Hipótesis alternativas

- H₁: Existe diferencia significativa entre los tratamientos realizados en función de la variación de la densidad de corriente directa.
- H₁: Existe diferencia significativa entre los tratamientos realizados en función de la variación del flujo volumétrico.
- H₁: Existe diferencia significativa entre los tratamientos realizados en función de la transmitancia inicial de la muestra.

XXII

INTRODUCCIÓN

El alga verde (*Chlorella vulgaris,* Beyerinck, M.W.) es conocida debido a la fácil floración en medios de agua dulce y salada en un gran rango de temperaturas y humedad, es capaz de producir y dispersar toxinas en el agua, lo cual es un problema para la salud y el ambiente.

Estudios para el tratamiento y remoción de algas se han llevado a cabo, por ejemplo: métodos de electrocoagulación, electro-floculación, adición de hormonas y prevención.

Respecto al tratamiento electroquímico, los estudios se han llevado a cabo en diferentes condiciones: modelación de reactores, tipos de electrodos, oxidantes utilizados para la remoción, sistemas continuo y discontinuo, densidades de corriente, etc.

En este trabajo se presenta la investigación de un tratamiento electroquímico para la remoción de alga verde, utilizando el alga verde *Chlorella vulgaris* (Beyerinck, M.W.). Para ello se utilizó un reactor de lecho fijo, equipado con lana de acero inoxidable utilizado como ánodo y cátodo. La electrolisis se llevó a cabo en un sistema por lotes con recirculación. La absorbancia del pigmento clorofila-a de la electrolisis fue medida mediante espectrofotometría visible a 680 nm.

Los resultados experimentales obtenidos fueron interpretados mediante técnica estadística y representación gráfica para determinar: la máxima desactivación oxidativa alcanzada luego del tratamiento electroquímico y bajo

XXIII

condiciones de flujo volumétrico, densidad de corriente y transmitancia inicial en el tratamiento electrolítico estudiado a temperatura ambiente promedio.

1. ANTECEDENTES

Varios estudios se han realizado sobre el tratamiento electroquímico de algas con la finalidad de controlar la calidad y las amenazas en cuerpos de agua. En algunos métodos, la desinfección, inactivación y remoción del alga se realizaron a bajos niveles de concentración de cloro libre, hipoclorito de sodio o ácido hipocloroso producidos en soluciones salinas.

En 2014 la desactivación de la *M. aeruginosa (*KÜTZING, F.T.) por medio del tratamiento electroquímico fue estudiada en sistema continuo utilizando una celda electroquímica cilíndrica de lecho fijo, trabajando en sistema continuo. La celda fue equipada con electrodos tridimensionales de titanio, el cátodo fue recubierto con platino y ánodo fue recubierto con una mezcla de óxidos de lr/Ru. En dicho proyecto los resultados en la reducción de la transmitancia inicial con mayor eficiencia (33.95%) fueron alcanzados a condiciones de alta densidad de corriente (2 mA cm⁻²) y a bajo caudal (0.025 dm³ min⁻¹). Considerando que a la entrada del reactor el flujo volumétrico debe tener por lo menos 400 mg dm⁻³ de iones de cloruro añadidos como NaCl para alcanzar una desactivación apreciable.¹

Otra investigación fue llevada a cabo sobre el tratamiento electroquímico como paso preoxidativo para la remoción del alga *Chlorella vulgaris* (BEYERINCK, M.W.) utilizando como ánodo el BDD (boron doped diamond – diamante dopado con boro) y cátodo de acero inoxidable. La investigación demostró alta eficiencia de remoción de algas, un 80% a alta densidad de

¹ MONASTERIO et al. *Electrochemical removal of Microcystis Aeruginosa in a fixed bed reactor*. Artículo científico. 2014. Italy. Chemical engineering transactions. Vol. 41.
corriente (8A h dm⁻³) y a alto flujo de recirculación, agregando 100 mg dm⁻³ de iones de cloruro a la solución. Utilizando un reactor comercial (Electro MP-Cell)²

También existen investigaciones sobre la prevención de las aglomeraciones de algas y, como consecuencia, la liberación de toxinas.³

Otros métodos para remoción de algas fueron propuestos, por ejemplo flotación⁴, coagulación⁵ y filtración.^{6 7}

La inhibición del crecimiento de la *Microcystis aeruginosa* (KÜTZING, F.T. 1846) por método electroquímico fue investigada, examinando el efecto de las condiciones operativas, diferentes materiales como electrodos, densidad de corriente y agitación. Se obtuvieron resultados alentadores en los cuales la alta densidad de corriente (12 mA cm⁻²) puede ser utilizada para inhibir el crecimiento orgánico debido a la generación de oxidantes activos. Para ello, se utilizó una celda electrolítica en sistema batch equipada con Ti-RuO₂ y grafito como ánodo y cátodo respectivamente.⁸

² MASCIA, M. et al. *Electrochemical treatment as a pre-oxidative step for algae removal using Chlorella vulgaris as a model organism and BDD anodes*. Artículo científico. 2013. Italy. Chemical engineering journal 219, 512 – 519 p.

³ ZHAO, X. & ZHANG, Y. Algae-removing and algicidal efficiencies of poly (diallyldimethylammonium chloride) composite coagulants in enhanced coagulation treatment of algae-containing raw water. Artículo científico. 2011. Chem. Eng. J. 173, 164–170 p.

⁴ CAMPINAS, M. & JOÃO, M. Evaluation of cyanobacterial cells removal and lysis by ultrafiltration. Artículo científico. 2010. Sep. Purif. Technol. 70, 345–353 p.

⁵ GHERNAOUT, B. et al. Algae and cyanotoxins removal by coagulation/flocculation: a review. Artículo científico. 2010. Desalin. Water Treat. 20, 133–143 p.

⁶ PAN, G. et al. Removal of cyanobacterial bloomsin Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Artículo científico. 2006. Environ. Pollut. 141, 195–200 p.

 ²⁰⁰ p.
 ⁷ LAWTON, L.A. et al. Removal of cyanobacterial toxins (microcystins) and cyanobacterial cells from drinking water using domestic water filters. Artículo científico. 1998. Water Res. 32, 633–638 p.

⁸ XU, Y. et al. Study of Microcystis aeruginosa inhibition by electrochemical method. Artículo científico. 2007. Biochem. Eng. J. 36, 215–220 p.

Respecto a la seguridad ambiental del agua electrolizada, se realizó un estudio en el cual se midió la producción de halógenos orgánicos y derivados. La cual resultó en niveles mucho menores respecto a los valores estándares para agua potable.⁹

Existen muchas investigaciones que tratan la posibilidad de controlar el crecimiento de algas en reservorios y lagos mediante la adición de hormonas de plantas, aluminio, sulfato de cobre o permanganato de potasio.^{10 11}

Estudios de 1999 describen la reducción de más del 99% de algas, bacterias y virus en agua por medio de procesos electrolíticos.¹²

Tratamientos electroquímicos para la inhibición de microorganismos fueron estudiados en ambientes médicos y dentales, también en la industria alimentaria.^{13 14}

⁹ KATAYOSE, M. et al. Safety of electrolyzed seawater for use in aquaculture. Artículo científico. 2007. Japan. Aquaculture 264, 119 – 129 p.

¹⁰ MA, J. & LIU, W.; Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation. 2002. Water Res. 36, 871–878 p.

¹¹ BRADLEY, P.M. Plant hormones do have a role in controlling growth and development of algae. Artículo científico. 1991. J. Phycolo. 27, 317–321 p.

¹² TSUZUKI, K. et al. Effects of electrochemical treatment on Microcystis extinction. Artículo científico. 1999. Japan. J. Water Environ. Soc. 22, 228–231 p.

¹³ NIKULIN, V.A. Use of an electrolyzed sodium chloride solution for disinfection in therapeutic and prophylactic institutions. Artículo científico. 1977. Russian. Sov. Med. 12, 105–108 p.

¹⁴ WILK, I.J. et al. Antimicrobial activity of electrolyzed saline solution. Artículo científico. 1987. Sci. Total Environ. 63, 191–197 p.

MARCO TEÓRICO 2.

2.1. Eutrofización

La eutrofización es un proceso de modificación del equilibrio ecológico de un ambiente acuático. El cuerpo de agua atraviesa 2 fases:

- Un lago de formación reciente, caracterizado por una cierta profundidad, es llamado oligotrófico: agua azul y transparente; el oxígeno disuelto está presente en todo el cuerpo del lago y la biomasa no es muy abundante.
- Al pasar el tiempo, el lago se enriquece de materia orgánica como resultado de la producción fotosintética debida a los organismos vegetales y a la contribución natural del exterior; el lago se convierte en mesotrófico y luego en eutrófico.

Ejemplo de lago eutrofizado

Fuente: aspectos medioambientales. http://library.thinkquest.org/...eutrophication.htmL. Consulta: 05 de mayo de 2017.

Cuando el lago es eutrófico surgen los siguientes fenómenos: diminución de la profundidad, agua color verde-marrón, se reduce la transparencia, aumento de biomasa, proliferación de fitoplancton en la superficie, déficit de oxígeno en el fondo del lago, cuerpos de agua ricos en elementos disueltos reducidos (hierro, manganeso, H2S, etc.) La transición de un estado a otro requiere de miles de años.

Entonces la eutrofización es provocada por la presencia de los organismos vegetales que, con el proceso de fotosíntesis, pueden utilizar en presencia de luz la materia inorgánica para formar materia orgánica. El grupo vegetal que desempeña el mayor rol de la producción primaria de sustancia orgánica son las algas microscópicas que se encuentran en suspensión en el agua a la cual pertenecen un número elevado de organismos entre los cuales se puede citar la *Chlorella vulgaris (*BEYERINCK, M.W.).

Para proliferar, las algas necesitan de una cierta cantidad de sales nutritivas, compuestas de carbono, azufre y fosforo (factores tróficos). La producción de biomasa, en condiciones de escaso intercambio hídrico dependerá principalmente de la disponibilidad de estos compuestos minerales. Cuando estos son deficientes, la producción de nueva biomasa disminuye hasta no producir más. Si la disponibilidad de minerales se tiene de manera descontrolada, puede dar lugar a la formación de gran cantidad de material orgánico, cuya presencia genera una serie de fenómenos degenerativos.

El proceso de eutrofización puede efectuarse en tiempos muy largos, debido a fenómenos naturales, pero también puede ser causada por actividad antropogénica, desarrollándose en este caso en tiempos muy reducidos.

Figura 2. Ejemplo de eutrofización natural y acelerada

Fuente: revista Ejemplode.com. http://www.ejemplode.com/58-administracion/4334ejemplo_de_eutrofizacion.htm. Consulta: 04 de abril de 2017.

De los factores tróficos, el fosforo es el factor limitante para el crecimiento de algas en el cuerpo hídrico.

Un aporte notable a la carga total de fosforo en los cuerpos hídricos es causado por la actividad humana. El fosforo está presente en mayor cantidad en los desechos domésticos y desechos industriales. También aportan fosforo los drenajes de suelo cultivado y las áreas urbanizadas.

Cuando el crecimiento de algas no es controlado, da lugar a la formación de cuerpos grandes de biomasa la cual termina siendo degradada por hongos microscópicos y bacterias, que operan en condiciones aeróbicas usando el oxígeno disuelto.

Figura 3. Contaminación de ríos y lagos

Fuente: aspectos ambientales, contaminación de ríos lagos. http://library.thinkquest.org/...eutrophication.htmL. Consulta: 04 de abril de 2017.

Los problemas se manifiestan en el caso en el que los procesos de descomposición de la biomasa que se realizan con consumo excesivo de oxígeno. Si la velocidad de consumo es superior a la cual el oxígeno es regenerado por difusión o por la fotosíntesis de las mismas algas, se tendrá un déficit de oxígeno y se instauran condiciones anaeróbicas. La cantidad excesiva de fitoplancton, también favorece las condiciones anaeróbicas recubriendo la superficie del agua, esto impide la penetración de la luz y la producción fotosintética del oxígeno.

Al llegar a la condición anaeróbica, los organismos aeróbicos se hacen cargo de los organismos anaerobios. Estos realizan el proceso de demolición de la biomasa por la liberación de compuestos que pueden ser tóxicos (especialmente si están presentes cianobacterias) entre los cuales se encuentran el amoníaco, sulfuro de hidrógeno y diversos compuestos orgánicos derivados de la fermentación y los procesos de putrefacción de sustancias proteicas.

Los estudios demuestran la existencia de efectos negativos en la salud humana por contacto o ingestión de células o toxinas de cianobacterias.¹⁵ Estos incluyen irritación de la piel, reacciones alérgicas, dolor en los músculos y las articulaciones, la gastroenteritis, daño al hígado y riñón y varios efectos neurológicos.

Además de la presencia de toxinas peligrosas para la salud humana, la eutrofización tiene serias consecuencias económicas; produce efectos negativos sobre el turismo, aumenta significativamente el costo del tratamiento del agua a causa de los reactivos necesarios para eliminar no sólo los cuerpos, sino también los productos de su metabolismo. Esto causa pérdida de la biodiversidad y tienen efectos negativos sobre la pesca.

2.2. Algas

Son organismos, generalmente, unicelulares que existen en gran variedad de tamaños. Poseen pigmentos como la clorofila, xantofila, etc. Por lo regular, existen sumergidas aunque también viven flotando o creciendo sobre piedras, pantanos o suelo húmedo. Se encuentran en agua dulce y en agua de mar.

¹⁵ CODD, G. A.; Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Artículo científico. Ecological Engineering 16, 2000. 51–60 p.

Abundan en ámbitos con gran cantidad de luz y temperaturas entre 20 y 35°C. En concentraciones abundantes causan problemas en los suministros de agua, como mal olor, obstaculizan filtros, entorpecen la fotosíntesis de otras plantas e impiden la aireación de cuerpos de agua con la consecuente muerte de peces.

Se dividen de acuerdo a los pigmentos que contienen en:

- Mixophytas o cianophytas.
- Chrysophytas
- Phaephytas
- Rhodophytas
- Chllorophytas: son las algas verdes, también se llaman cloromicophytas, la mayoría son de agua dulce, unicelulares, móviles, forman colonias filamentosas o aplanadas de color verde, debido a la clorofila.

La *Chlorella vulgaris* (Beyerinck, M.W.) pertenece al grupo de las algas *Chllorophytas*, esta tiene forma esférica, diámetro entre 2 y 10 µm, no posee flagelo, es unicelular, tiene una densidad de 1070 k m-3, impedancia de -10,0 mV, longitud de onda óptima de 680 nm, pH entre 6,5 y 7 (IVES, 1959) y se encuentra en la mayoría de los cuerpos de agua dulce. Contiene los pigmentos verdes fotosintetizadores, clorofila a y b en su cloroplasto. Mediante la fotosíntesis se multiplica rápidamente, requiriendo solo luz solar, dióxido de carbono, agua y pequeñas cantidades de minerales. Para su cultivo se utiliza además la urea, la cal, el fósforo y las mieles finales del proceso azucarero.¹⁶

Su habilidad para adaptarse a grandes cambios climáticos y su poderosa vitalidad se debe a dos características fundamentales:

¹⁶ Enciclopedia colaborativa en la red cubana. Chlorella Vulgaris. Cuba. [en línea] https://www.ecured.cu/Chlorella_Vulgaris. 2016.

- Pared celular resistente, la cual es capaz de coexistir en lugares con concentraciones altas de pesticidas, toxinas y metales pesados.
- Tasa de reproducción alta, se rejuvenece en nuevas células en un tiempo de 17 a 20 horas.

Figura 4. Alga Chlorella vulgaris

Fuente: beneficios y efectos secundarios del alga *Chlorella vulgaris*. https://www.lasaludvital.com/beneficios-efectos-secundarios-del-alga-chlorella.sdh Consulta: 04 de abril de 2017.

2.2.1. Estructura del alga Chlorella vulgaris (Beyerinck, M.W.)

La célula microscópica de *Chlorella vulgaris* (Beyerinck, M.W.) es esférica con diámetros de 2-10 µm y tiene muchos elementos en su esctructura similares a las plantas.

2.2.1.1. Pared celular

La rigidez de la pared celular preserva la integridad de la célula y es una protección contra los invasores y el entorno. Esto varía conforme cada fase de crecimiento de la célula. Durante el inicio del crecimiento es una pared frágil. Durante el crecimiento el grosor de la pared celular incrementa hasta 17 – 21 nm en la madurez de la célula. En la edad madura de la célula el grosor y la composición no es constante porque cambian según el entorno en el que se encuentren. (SAFI, C., et. Al. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. 2014)

2.2.1.2. Citoplasma

Es el gel confinado dentro de la pared celular, compuesto de agua, proteínas solubles y minerales. Hospeda los organelos internos de la célula como la mitocondria, núcleo, vacuolas y cloroplasto.

2.2.1.3. Mitocondria

Cada mitocondria contiene material genético, el aparato respiratorio y tiene membrana de doble capa.

2.2.1.4. Cloroplasto

La *Chlorella vulgaris* (Beyerinck, M.W.) tiene un único cloroplasto envuelto con doble membrana compuesta de fosfolípidos; la membrana exterior es permeable a metabolitos e iones, pero la membrana interna tiene una función más específica de transportar proteínas.

Los gránulos de almidón, compuestos de amilosa y amilopectina, se pueden formar dentro del cloroplasto, especialmente durante condiciones de crecimiento desfavorables. El pirenoide contiene altos niveles de ribulosa-1,5bisfosfato carboxilasa oxigenasa (RuBisCO) y es el centro de la fijación del

dióxido de carbono. El cloroplasto también almacena un grupo de tilacoides fusionados donde se sintetiza la clorofila-a de pigmento dominante enmascarando el color de otros pigmentos como la luteína.

Figura 5. Ultraestructura esquemática de *Chlorella v.* (Beyerinck, M.W.) representando diferentes organelos

Fuente: SAFI, C., et Al. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. 2014.

2.2.2. Control de crecimiento de algas

- Crecimiento: para el cultivo adecuado del alga, se debe mantener en agitación, expuesta a luz natural o artificial y controlar el pH en torno a la neutralidad. Además debe tener la suficiente cantidad de nutrientes para su crecimiento adecuado.
- Eliminación o prevención: existen varios métodos son utilizados, entre ellos se encuentra la esterilización, desinfección, antisepsia, asepsia, etc.

La antisepsia consta de operaciones o técnicas encaminadas a crear un ambiente que previenen el crecimiento o acción de los microorganismos ya sea destruyéndolos o inhibiendo su crecimiento y actividad. Se refiere a sustancias que se aplican sobre el cuerpo.

2.3. Métodos de desinfección

Los métodos para la desinfección de agua se pueden dividir en los métodos químicos y métodos físicos. La desinfección química implica el uso de un agente desinfectante, cuya acción está directamente vinculada a la naturaleza de los microorganismos y su estructura química.

- Propiedades de los desinfectantes
 - Efecto bactericida: la capacidad desinfectante para destruir los microorganismos durante la etapa de tratamiento específico.
 - Efecto residual: la capacidad del desinfectante a permanecer en el agua en la red de distribución, mantenimiento de la calidad del agua.

La desinfección proporciona una protección contra el recrecimiento bacteriano y un efecto bactericida contra la contaminación ocasional en la red.

Las características principales que definen un buen desinfectante son: alta inactivación de microorganismos, interacción activa con el material orgánico y agentes reductores inorgánicos, solubilidad en medios acuosos, capacidad de penetrar a través de la superficie y de la membrana celular.

- Los mecanismos de inactivación microbianos incluyen
 - En las bacterias, la acción de los oxidantes produce poros en la membrana celular, también modifica la permeabilidad, y tiene efectos sobre el ARN y el ADN, inhibe la síntesis de proteínas y la actividad enzimática.
 - En el caso de los virus, los oxidantes penetran en las proteínas del cápside y cambiar el ADN o ARN.

En el caso de la desinfección física, los microorganismos son removidos a través del uso de la radiación UV, calentamiento a alta temperatura o separaciones entre membranas. La característica principal es la ausencia de residuos.

Existen antisépticos orgánicos como los alcoholes y fenoles, y antisépticos inorgánicos como:

- Metales
- Ácidos y álcalis
- Compuestos inorgánicos oxidantes

Estos actúan oxidando los componentes de la membrana y enzimas. Por ejemplo, el agua oxigenada (H₂O₂) al 6% en volumen se utiliza como antiséptico en pequeñas heridas de la piel.

La interferencia positiva para la remoción es posible en presencia de H_2O_2 y O_3 cuando el método de coloración DPD (N,N-dimethyl-pphenylenediamine) es usado. Sin embargo, la reacción de H_2O_2 con DPD es lenta y requiere peroxidasa para catalizar la reacción, mientras que el ozono puede reaccionar rápidamente con el DPD aun si la respuesta no es estable.

Cloro

Se emplea, principalmente, en los procesos de desinfección y control de desarrollo de varios organismos. Puede oxidar compuestos responsables del sabor y del olor, oxidar el hierro y el manganeso, mover el color y favorecer la coagulación.

Los halógenos especialmente el cloro y el iodo son componentes de muchos antimicrobianos. Los halógenos son agentes oxidantes fuertes por lo que son altamente reactivos y destructivos para los componentes vitales de las células microbianas.

El cloro se puede utilizar como gas o como hipoclorito de sodio o de calcio. La muerte de los microorganismos por acción del cloro se debe, en parte, a la combinación directa del cloro con las proteínas de las membranas celulares y los enzimas.

La presencia de iones cloruro en el agua conduce a la formación de ácido hipocloroso e hipoclorito en el ánodo, en una reacción secundaria con respecto a la evolución de oxígeno. En primer lugar, de los iones cloruro, se forma cloro de acuerdo a la reacción:

$$2Cl \rightarrow Cl_2 + 2e^-$$

El cloro se hidroliza en el agua para formar ácido hipocloroso:

$$Cl_2 + H_2O \rightarrow HClO + HCl$$

El ácido hipocloroso está en equilibrio, dependiendo del pH, con el anión hipoclorito:

$$ClO^- \rightarrow HClO + H^+$$

 $pK_a = 7.49$

La suma de ácido hipocloroso e hipoclorito se denominan "cloro activo"; su poder desinfectante se basa en la liberación de oxígeno atómico, de acuerdo con las reacciones:

$$HClO \rightarrow O + Cl^- + H^+$$

$$Cl0^- \rightarrow 0 + Cl^-$$

El cloro activo formado en el proceso se mantiene dentro del sistema por horas o días, asegurando el efecto residual.

La cloración, sin embargo, puede crear compuestos no deseados como responsables del mal olor/sabor, tóxicos (trihalometanos) o potencialmente cancerígenos (organoclorados). La presencia de estos subproductos depende del pH, la cantidad de cloro y el tiempo de reacción.

Ozono

Tiene una amplia aplicación en los procesos de tratamiento de agua, debido a su alta reactividad. Su presencia en el agua inicia una compleja reacción en cadena, influido por varios solutos que se encuentran en el agua o liberadas durante el tratamiento. El ozono puede reaccionar directamente en forma molecular o se puede producir con una serie de mecanismos que conducen a la formación de radical hidroxilo OH*, que tiene un mayor poder oxidante del ozono. Se utiliza en las diversas etapas de tratamiento de agua.

En la preoxidación, el ozono se utiliza para destruir la estructura de las partículas coloidales y de las macromoléculas mejorando el rendimiento de la coagulación-floculación y la sedimentación.

En la fase oxidativa su propósito es la oxidación de la materia biológica. Actúa sobre los componentes orgánicos responsables del olor y sabor, sobre plaguicidas, en fenoles, sobre pesticidas, toxinas producidas por algas y productos químicos de los productos farmacéuticos.

En la desinfección el ozono es capaz de destruir los patógenos más comunes. Su acción depende de las condiciones del medio, como el pH, la temperatura, la presencia de otros compuestos oxidables y la concentración de sólidos en suspensión.

 Un aumento en el pH tiene el efecto de reducir la concentración de ozono disuelto, por lo tanto la eficiencia de la desinfección.

- La eficacia del proceso aumenta con la temperatura, aunque tiene un efecto opuesto sobre la solubilidad del ozono y la velocidad de inactivación.
- La materia orgánica contribuye a la demanda de ozono y compite con los microorganismos.
- Los sólidos suspendidos pueden proteger a los microorganismos para hacer más difícil la desinfección.

En el proceso de desinfección con ozono puede haber formación de bromatos debido a la oxidación de los iones bromuro en un mecanismo de reacción compleja que incluye ozono y radicales hidroxilo.

Rayos UV

Como un método físico para la remoción de microorganismos del agua, un método importante del proceso que conlleva la utilización de los rayos UV.

Los rayos UV – ultra violeta que se utilizan para la desinfección tienen una longitud de onda comprendida en el rango en el cual se tiene absorción de parte de las células, especialmente los ácidos nucleicos.

El mecanismo está basado en la absorción de los fotones de parte de los componentes que contienen el ADN. La radiación aplicada induce a modificaciones a partir de los componentes afectados, destruyendo las cadenas del ADN de modo que la replicación sea inhibida.

La eficacia de la radiación UV se da en un gran número de microorganismos, como bacterias, rotovirus y cepas protozoicas. Además el tiempo para que el tratamiento sea eficaz es muy breve.

La calidad de la desinfección puede ser limitada por algunos microorganismos, el problema surge debido al desarrollo de mecanismos que son capaces de regenerar la estructura del ADN, como la fotoreactivación.

Los rayos UV aplicados a la desinfección del agua no producen subproducto pero los compuestos químicos presentes en el agua que absorben la misma longitud de onda que se aplicó a los microorganismos si pueden generar subproductos.

Electro-coagulación y electro-floculación

Estos métodos combinados son eficaces en el tratamiento de agua, en muchos casos, como agua con alto contenido de metales pesados, colorantes, etc.

Los electrodos comúnmente utilizados son de aluminio o hierro, estos son disueltos por medio de electrolisis formando una especie de coagulantes e hidróxidos de metales que desestabilizan las partículas suspendidas formando suspensiones de mayor tamaño.

Se han realizado algunos estudios en relación a la remoción de microorganismos aplicando electro-coagulación, los resultados de mayor porcentaje de remoción (90%) con un gasto de consumo eléctrico relativamente bajo.

Como desventaja principal de este método se tiene la sustitución regular del ánodo de sacrificio para evitar el aumento del consumo de corriente eléctrica y la disminución de eficacia del proceso.

2.4. Electrólisis

La desinfección electroquímica de agua es un método conveniente y de alta eficiencia, utilizado desde hace pocos años para la eliminación de microorganismos del agua sin la adición de compuestos químicos. Su uso en los procesos de tratamiento de agua es una alternativa viable respecto a la desinfección con compuestos de cloro, ya que puede garantizar, además de un buen rendimiento en la desinfección primaria, también un efecto residual.

El uso de sistemas electroquímicos se ha discutido desde los años 50, pero la madurez técnica del método llegó en los últimos años debido a varios factores.

En primer lugar, solo recientemente se han desarrollado materiales suficientemente estables y eficientes para la construcción de los electrodos, como los electrodos de titanio recubiertos con óxidos mixtos o electrodos de diamante dopado con boro.

Hasta hace pocos años han sido estudiados en detalle los parámetros, como la relación entre la corriente aplicada, el material del electrodo, la composición del agua y la producción electroquímica de oxidantes, que permiten reconocer los mecanismos de remoción de los microorganismos. El método electroquímico se basa en el paso de corriente eléctrica que causa la electrólisis del agua, a través del uso de electrodos apropiados, insertados directamente en el volumen de agua a tratar.

La imposición de un potencial a los electrodos hace que las moléculas de agua se electrolicen, de acuerdo con la reacción general:

$$H_2 O_{(l)} \to H_{2(g)} + \frac{1}{2} O_{2(g)} \qquad E^\circ = -2,42$$

En el ánodo, el cual es el terminal positiva, se tiene la oxidación con la producción de oxígeno:

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^- \qquad E^\circ = -1,23$$

En el cátodo, que actúa como un polo negativo, se tiene la reducción con desprendimiento de hidrógeno

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^- \quad E^\circ = -0,83V$$

El tratamiento de agua por electrólisis se lleva a cabo a través de dos mecanismos principales que actúan en sinergia:

- El campo eléctrico creado por el paso de la corriente.
- La producción de oxidantes, que actúan como agentes desinfectantes.

El proceso utiliza energía eléctrica (corriente directa) para causar una reacción no espontánea y consiste en dos electrodos separados por una fase

electrolítica (Fig. 1). En dicha separación existe una diferencia de potencial medible entre los dos electrodos. Al existir un campo eléctrico en la interfaz, se espera que produzca efectos sobre el comportamiento cinético de los portadores de carga (electrones y/o iones) en la región intermedia.

Figura 6. Celda electroquímica, modelo con electrodos de Zn/Zn²⁺ y

Fuente: VANTE, Nicolás. A. Electroquímica y electrocatálisis. 2013.

La fuente de corriente conectada al reactor actúa transfiriendo los electrones hacia un electrodo y expulsándolos del otro electrodo.

Para la reacción no espontánea del NaCl, los iones Na⁺ atraen electrones y son reducidos a Na en el cátodo. Mientras que existe un movimiento de iones Cl⁻ hacia el ánodo donde son oxidados:

Figura 7. Electrolisis de cloruro de sodio

Fuente: BROWN, T.L. Chemistry: the central science. 2009.

Usar una fuente de energía externa (E_{ext}) para producir la reacción no espontanea da como resultado un cambio de energía libre de Gibbs positiva y una diferencia de potencial negativa. Mediante la ecuación 1, se calcula el trabajo realizado, este será positivo ya que los alrededores realizan trabajo sobre el sistema.

$$w = nFE_{ext}$$

Ecuación 1

Donde n es el número de moles de electrones forzados en el sistema por el potencial externo y F es la constante de Faraday (96 485 C). El trabajo eléctrico obtenido de la ecuación 1 está dado en unidades de watt (W) = 1 J s⁻¹. Por lo general, se realiza la conversión y el trabajo eléctrico (normalizado por el volumen de trabajo) es expresado en unidades de kilowatt por hora por metro cúbico (kWh m⁻³).

2.4.1. Efecto de la corriente eléctrica

Estudios de 2003 revelaron la acción de daño de las células debido a la aplicación de un campo eléctrico.¹⁷ Este efecto es causado, principalmente, por la permeabilización de las membranas celulares.

Los experimentos realizados en membranas lipídicas artificiales han demostrado que una membrana que se somete a un campo eléctrico externo acumula la carga de manera similar a un condensador e induce un potencial transmembrana. Se establece una corriente transitoria a través de la membrana, induciendo la permeabilidad de la misma a moléculas hidrófilas.

Este fenómeno se puede explicar utilizando un modelo que prevé la formación temporal de poros en la membrana por la exposición al campo eléctrico.

Dos parámetros afectan la reversibilidad de este fenómeno, la magnitud del potencial transmembrana y la duración de la exposición al campo eléctrico externo. Potenciales de más de 1 V y largos tiempos de exposición conducen a la permeabilización irreversible de la membrana, lo que provoca la muerte de la célula.

El potencial transmembrana depende del radio de la membrana de la célula (1 a 5 µm para la *Chlorella vulgaris,* Beyerinck, M.W.); las células más grandes son afectadas proporcionalmente con respecto a la magnitud del campo eléctrico inducido.

¹⁷ DREES, K.P.; ABBASZADEGAN, M.; MAIER, R.M. Comparative electrochemical inactivation of bacteria and bacteriophage. Artículo científico. 2003. Water Res. 37, 2291–2300 p.

La muerte de la célula se puede producir por dos razones principales, debido a la formación de poros permanentes y la desestabilización de la membrana, o por la pérdida de componentes importantes de la célula y la alteración de los gradientes químicos debido a los poros temporales.

Además, como se discute en el apartado 2.4.2., si hay oxidantes generados electroquímicamente, los poros garantizan acceso al interior de la célula, lo que favorece el proceso de inactivación.

Los campos eléctricos son capaces de destruir las células sin dañar su membrana. Los estudios han demostrado la capacidad de matar las células sin ruptura de la membrana, debido a la oxidación electroquímica de las coenzimas presentes en el interior, lo que demuestra que los campos eléctricos pueden oxidar directamente los constituyentes de las células, causando la muerte de la célula.

Figura 8. Reacción redox de NAD (coenzima celular en algas)

Fuente: Nicotinamide adenine dinucleotide – NAD. https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide. Consulta: 04 de abril de 2017.

2.4.2. Efecto de los oxidantes

Los oxidantes generados por la corriente eléctrica que circulan en el agua en la que están inmersos los electrodos representan la principal causa de la eficacia del proceso de electrólisis para la eliminación de microorganismos.

En la interfaz entre el agua y los electrodos se tiene una generación de especies oxidantes que surgen de la propia agua, tales como el ozono, o de especies disueltas en ella, como los cloruros. Estos oxidantes actúan de forma sinérgica con la corriente, penetran la célula después de la ruptura de la membrana y reaccionan con los componentes, interrumpiendo las funciones celulares.

En el agua sin cloruros la generación de oxidantes, tales como radicales OH, ozono y peróxido de hidrógeno, se lleva a cabo a partir de la propia agua; estos oxidantes pueden formarse en mayor cantidad con ánodos de Pt, PtO2, DSA o BDD, como desinfectantes permanecen en el agua durante un tiempo más corto en comparación con los oxidantes derivados de cloruros.

2.5. Modelos de oxidación de la membrana celular

2.5.1. Desinfección electroquímica

Aunque la identificación de especies oxidantes efectivas ha sido ampliamente estudiada, el mecanismo subcelular de inactivación bacteriana nunca se ha dilucidado claramente en los procesos de desinfección electroquímica. Durante un estudio, el mecanismo subcelular de la inactivación de *Escherichia coli* durante la desinfección electroquímica se reveló en términos de factores integrales como morfología celular, componentes orgánicos totales,

permeabilidad de la membrana, peroxidación lipídica, potencial de membrana, proteínas de membrana, enzima intracelular, nivel celular de ATP y NDA. La electrólisis se realizó con un ánodo de diamante dopado con boro en tres electrolitos que incluyen cloruro, sulfato y fosfato.

Los resultados demostraron que la inactivación celular se atribuyó principalmente al daño a los sistemas enzimáticos intracelulares en la solución de cloruro. Este estudio proporcionó una visión completa del mecanismo de inactivación bacteriana a nivel subcelular.

Fuente: LONG, Y.; NI, J.; WANG, Z. Subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection with boron-doped diamond anode: A comparative study of three electrolytes. Water Research. 84, 2015. 198 – 206 p.

2.5.2. Ataque con bromo y cloro

Para investigar el mecanismo de inactivación con bromo y cloro (Youmi, J, et al.), se utilizó como modelo las esporas de *B. subtilis* se expusieron a bromo y cloro, respectivamente, y la morfología de las especies expuestas se analizó mediante TEM (microscopio electrónico de transmisión). Las Fig. B y C

en la Fig. 9 muestran los cambios en las esporas de *B. subtilis* expuestas al bromo (200 mg/L-min) y cloro (1200 mg/L-min), respectivamente. Tanto el proceso de bromación como el de cloración muestran dos imágenes idénticas representadas por una pared celular corrugada (B-1, C-1) y una capa celular destruida (B-2, C-2).

La célula de *B. subtilis* está cubierta con un recubrimiento de células gruesas (figura 9A) que inhibe la invasión del desinfectante halógeno a través de la presión osmótica (Young y Setlow, 2003). Vale la pena observar que el grado de destrucción celular fue similar entre los dos procesos de inactivación, lo que implica una destrucción celular más clara con bromación sabiendo que la concentración de cloro fue seis veces mayor que la del bromo. La forma de la espora corrugada (B-1, C-1) podría representar un cambio morfológico que puede aparecer durante la fase de retraso de la inactivación.

Figura 10. Morfología de inactivación de la espora *B. subtilis*

Fuente: JUNG, Y.; YOON Y.; HONG, E.; KWON, M.; KANG, J. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe. Marine Pollution Bulletin. V. 72, Issue 1. 2013. 71 – 79 p.

3. DISEÑO METODOLÓGICO

3.1. Variables

A continuación, se denotan las variables independiente y dependientes que fueron trabajadas en la experimentación:

Tabla I. Va	riables de control				
Variable dependiente	Variables independientes				
 Transmitancia de la muestra durante y al final de la prueba (ABS-absorbancia). 	 Transmitancia inicial de la muestra (ABS-absorbancia) Densidad de corriente directa aplicada (ρ_i) Flujo volumétrico aplicado (Q) 				

Fuente: elaboración propia.

3.1.1. Descripción de variables manipuladas

Variables manipuladas y rangos en los que fueron variados para evidenciar su efecto en los resultados obtenidos.

	•	•		
Variable	Dimensional	Rango de variación		
Absorbancia inicial	Adimensional	[0,79; 1,98]		
Densidad de corriente directa aplicada	A m ⁻²	[2,86; 7,15]		
Flujo volumétrico aplicado	mL min ⁻¹	[300, 500]		

Tabla II.Descripción de variables manipuladas

Fuente: elaboración propia.

3.2. Delimitación del campo de estudio

Evaluación del efecto de las variables: densidad de corriente, flujo volumétrico y absorbancia inicial de la muestra sobre la reducción en la absorbancia durante el tratamiento electroquímico para la desactivación oxidativa del alga *Chlorella vulgaris* (Beyerinck, M.W.).

3.3. Recursos humanos disponibles

- Investigador: Per. Inform. César Daniel Saquec Tzuquen
- Asesor: Ing. Qco. César Alfonso García Guerra

3.4. Recursos materiales disponibles

3.4.1. Materiales para la construcción del reactor

- Tubo de PVC de 2" de diámetro para agua fría.
- Adaptadores con rosca de PVC de 2".
- Tapones con rosca de PVC de 2".
- Lana de acero inoxidable.
- Anillos de plástico tipo Raschig de pared sólida 1,2 cm y en espiral 1,1 cm; de 6 y 3 vueltas.
- Hilos de acero inoxidable.
- Cinta de teflón TRUPER de ½", para ajuste de accesorios en tubo.
- Gel de silicón LOCTITE, SI 595 transparente.
- Pegamento para PVC TANGIT, para toda presión.
- Conectores de bronce a presión de ¼".

3.4.2. Chlorella vulgaris

• Alga *Chlorella vulgaris* (Beyerinck, M.W.) proporcionada por el Centro de estudios del mar y acuicultura –CEMA-

3.4.3. Instrumentos de medición

- Pipeta de 1 mL, escala en 0,01 mL.
- Termómetro de mercurio: escala en °C en 0,1°C, rango de 0 a 100.
- pH-metro digital.
- Espectrofotómetro Spectroquant Pharo 300, UV visible, lectura de porcentaje de transmitancia (%T) y absobancia.
- Potenciostato / Galvanostato Eventek KPS305D, capacidad hasta 30 volts y 5 amperios.
- Bomba peristáltica Thomas scientific Mini-pump variable flow, 120 V, 50/60 Hz, 80 a 600 mL min⁻¹.
- Balanza analítica BOECO, presición de 0,0001 g.
- Cronómetro, precisión de 0,01 seg.

3.4.4. Cristalería

- Probetas
 - 10 mL, escala en 0,1 mL
 - o 25 mL, escala en 1 mL
 - 1 000 mL, escala en 1 mL
- Embudos de 5 cm de diámetro.
- Beakers
 - 1 000 mL de capacidad
 - 2 000 mL de capacidad

- Matraz Erlenmeyer
 - 25 mL de capacidad
 - 500 mL de capacidad
- Cubetas de plástico y de cuarzo de 1,5 mL

3.4.5. Equipo auxiliar

- Manguera flexible AIRFIT de poliuretano de ¼" para conexión entre componentes.
- Manguera flexible CONTROL COMPANY de silicona de ¼" para bomba peristáltica.
- Agitador magnético de teflón.
- Plancha de calentamiento con agitación Fisher Scientific isotemp pyroceramic.
- Propipeta.
- Soporte universal.
- Papel filtro Wathman de 5 cm de diámetro.
- Bomba de vacío.
- Pinzas.
- Parafilm.
- Lámpara fluorescente 1x13 T5 Tipo gabinete LUXLITE, 120 V.
- Mufla Thermolyne 1 400, 120 V y 60 Hz.
- Piedra difusora para peceras.
- Bomba de aire Elite 799, 120 V.
- Pipeta de plástico de 1mL sin graduación.
- Laptop Toshiba Satellite P755-SP5101L.
- Multímetro digital Truper, CA 200 500 V, CD 200 mV 500 V, CA 2 000µA – 10 A, 200 Ohm – 20 MOhm.

3.5. Técnica cuantitativa

La técnica utilizada para la medición de la efectividad del tratamiento electroquímico en la desactivación oxidativa del alga "*Chlorella vulgaris,* (Beyerinck, M.W.)" se basa en la medición del pigmento "clorofila-a" mediante la absorbancia, con la metodología siguiente:

- Utilizado el espectrofotómetro Spectroquant Pharo 300 se fijara el blanco con agua destilada.
- Se medirá la absorbancia inicial de la muestra.
- Al iniciar la prueba se medirá el tiempo con un cronómetro.
- A ciertos intervalos de tiempo se medirá la absorbancia de la muestra.
- A cada medición de absorbancia también se anotaran los siguientes datos:
 - Tiempo (s).
 - Absorbancia (ABS).
 - Intensidad de corriente (I), que se ajuste para valores definidos de 0,15; 0,20; 0,25 y 0,30 amperios.
 - Voltaje (V).
 - pH inicial y final de la muestra.
- Dicha metodología se repetirá modificando las variables de control (variables independientes), según el objetivo específico que se desee cumplir.

3.6. Recolección y ordenamiento de la información

De la experimentación se recolectaron datos de corriente eléctrica (luego convertida a densidad de corriente eléctrica), rpm (luego convertido a flujo volumétrico), tiempo, absorbancia, pH y voltaje; los cuales se presentan en el

apéndice con base en el diseño de recolección y ordenamiento de la información presentado en el diseño de investigación aprobado. Ver Anexos, informe de resultados emitido Laboratorio de Análisis Fisicoquímico –LAFIQ– Sección de Química Industrial del Centro de Investigación de Ingeniería.

3.7. Tabulación, ordenamiento y procesamiento de la información

3.7.1. Variables utilizadas para el análisis de resultados

Se presentan figuras de Absorbancia (ABS) en función del tiempo y de Remoción total (%) en función del tiempo.

La remoción total se define como:

Remoción total =
$$100 * \left(1 - \frac{ABS}{ABS_0}\right)$$

Ecuación 2

3.7.2. Tabulación y ordenamiento de resultados

Tabla III.Prueba No. 1 realizada el 18/10/2017 a baja absorbancia, acaudal [300 mL min⁻¹] e intensidad de corriente constante [0,29 mA cm⁻²]

Descripción de la	orueba	ABSo= 0,102; 300 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	44		Flujo volumétrico		mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,1		pHf	7,09	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
C	0,102	15,5	0,00		1
5	0,087	15,5	14,71		I

Continuación Tabla III

10	0,085	15,5	16,67
15	0,083	15,9	18,63
30	0,075	15,9	26,47
45	0,069	15,9	32,35
60	0,066	15,9	35,29
75	0,061	15,9	40,20
100	0,06	15,9	41,18

Descripción de la p	cripción de la prueba AB		3So= 0,098; 300 mL min ⁻¹ , 0,29 mA cm ⁻²		
RPM	44		Flujo volumétrico	300	mL/min
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,05		pHf	7,11	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,098	15,5	0,00		
5	0,085	15,5	13,27		
10	0,082	15,5	16,33		
15	0,079	15,5	19,39	2	
30	0,074	15,5	24,49		
45	0,064	15,5	34,69		
60	0,062	15,5	36,73		
75	0,057	15,5	41,84		
100	0,058	15,5	40,82		

Descripción de la p	scripción de la prueba		ABSo= 0,100; 300 mL min ⁻¹ , 0,29 m/			
RPM	44		Flujo volumétrico		mL/min	
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,1	А	
рНо	7,2		pHf	7,09		
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición		
0	0,1	15,9	0,00			
5	0,083	15,9	17,00			
10	0,081	15,9	19,00			
15	0,08	15,9	20,00			
30	0,072	15,9	28,00	3		
45	0,068	15,9	32,00			
60	0,063	15,9	37,00			
75	0,059	15,9	41,00			
100	0,057	15,9	43,00			

Fuente: elaboración propia.
Tabla IV.Prueba No. 2 realizada el 18/10/2017 a baja absorbancia, acaudal [400 mL min⁻¹] e intensidad de corriente constante [0,29 mA cm⁻²]

Descripción de la prueba		ABSo=0,110; 400 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,25	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,11	15,9	0,00		
5	0,099	15,9	10,00		
10	0,093	15,9	15,45		
15	0,088	15,9	20,00		
30	0,081	16	26,36		1
45	0,08	16	27,27		1
60	0,079	16	28,18		
75	0,076	16	30,91		
100	0,074	16	32,73		
120	0,074	16	32,73		

Descripción de la pr	ueba	ABSo=0,113; 400 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,25	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,113	15,9	0,00		
5	0,102	15,9	9,73		
10	0,1	15,9	11,50		
15	0,092	15,9	18,58		
30	0,087	15,9	23,01		2
45	0,083	15,9	26,55		2
60	0,075	15,9	33,63		
75	0,072	15,9	36,28		
100	0,07	15,9	38,05		
120	0,069	15,9	38,94		

Descripción de la prueba		ABSo=0,106; 400 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,25	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,106	16	0,00		
5	0,095	16	10,38		
10	0,092	16	13,21		
15	0,091	16	14,15		
30	0,085	16	19,81		3
45	0,078	16	26,42		5
60	0,076	16	28,30		
75	0,075	16	29,25		
100	0,073	16	31,13		
120	0,072	16	32,08		

Tabla V.Prueba No. 3 realizada el 19/10/2017 a baja absorbancia, acaudal [500 mL min⁻¹] e intensidad de corriente constante [0,29 mA cm⁻²]

Descripción de la p	rueba	ABSo = 0,112; 500 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,25	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,112	15,9	0,00		
2,5	0,108	15,9	3,57		
5	0,104	15,9	7,14		
7,5	0,101	15,9	9,82		
10	0,0985	16	12,05		
12,5	0,097	16	13,39		1
15	0,095	16	15,18		1
20	0,091	16	18,75		
25	0,089	16	20,54		
30	0,0875	16	21,88		
40	0,087	16	22,32		
50	0,086	16	23,21		

Continuación Tabla V

60	0,085	16	24,11
75	0,083	16	25,89
100	0,0815	16	27,23
120	0,081	16	27,68

Descripción de la p	rueba	ABSo=0,111; 500 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,25	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,111	15,8	0,00		
2,5	0,107	15,8	3,60		
5	0,103	15,8	7,21		
7,5	0,1	15,8	9,91		
10	0,098	15,8	12,16		
12,5	0,096	15,8	13,51		
15	0,094	15,8	15,32		
20	0,09	15,8	18,92		2
25	0,088	15,8	20,72		2
30	0,087	15,8	22,07		
40	0,086	15,8	22,52		
50	0,085	15,8	23,42		
60	0,084	15,8	24,32		
75	0,082	15,8	26,13		
100	0,081	15,8	27,48		
120	0,08	15,8	27,93		

Descripción de la	prueba	ABSo=0,116; 500 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,25	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,116	16,1	0,00		
2,5	0,112	16,1	3,45		
5	0,108	16,1	6,90		2
7,5	0,105	16,1	9,48		3
10	0,103	16,1	11,64		
12,5	0,101	16,1	12,93		

Continuación T	abla V			
15	0,099	16,1	14,66	
20	0,095	16,1	18,10	
25	0,093	16,1	19,83	
30	0,092	16,1	21,12	
40	0,091	16,1	21,55	
50	0,09	16,1	22,41	
60	0,089	16,1	23,28	
75	0,087	16,1	25,00	
100	0,086	16,1	26,29	
120	0,085	16,1	26,72	

Tabla VI.Prueba No. 4 realizada el 19/10/2017 a baja absorbancia, acaudal [550 mL min⁻¹] e intensidad de corriente constante [0,29 mA cm⁻²]

Descripción de la p	escripción de la prueba		ABSo = 0,114; 550 mL min ⁻¹ , 0,29 mA cm ⁻²		
RPM	91		Flujo volumétrico	550	mL/min
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,114	18,5	0,00		
2,5	0,111	18,5	2,63		
5	0,109	18,5	4,39		
7,5	0,105	18,5	7,89		
10	0,104	18,5	8,77		
12,5	0,103	18,5	9,65		
15	0,102	19,1	10,53		
20	0,101	19,1	11,40		1
25	0,098	19,5	14,04		
30	0,094	19,5	17,54		
40	0,094	19,5	17,54		
50	0,092	19,5	19,30		
60	0,091	19,5	20,18		
75	0,09	19,5	21,05		
100	0,089	19,5	21,93		
120	0,088	19,5	22,81		

Descripción de la prueba		ABSo = 0,114; 550 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,111	18,5	0,00		
3	0,108	18,5	2,70		
6	0,106	18,5	4,50		
9	0,102	18,5	8,11		
12	0,101	18,5	9,01		
15	0,099	18,5	10,81		
20	0,099	18,5	10,81		
25	0,094	18,5	15,32		2
30	0,092	18,5	17,12		
40	0,091	18,5	18,02		
50	0,089	18,5	19,82		
60	0,087	18,5	21,62		
75	0,086	18,5	22,52		
100	0,085	18,5	23,42		
120	0,085	18,5	23,42		

Descripción de la p	rueba	ABSo = 0,114; 550 mL min ⁻¹ , 0,29 mA cm ⁻²			1
RPM	91		Flujo volumétrico	550	mL/min
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,119	19,1	0,00		
3	0,115	19,1	3,36		
6	0,114	19,1	4,20		
9	0,111	19,1	6,72		
12	0,108	19,1	9,24		
15	0,107	19,1	10,08		
20	0,105	19,1	11,76		3
25	0,103	19,1	13,45		
30	0,100	19,1	15,97		
40	0,099	19,1	16,81		
50	0,097	19,1	18,49		
60	0,095	19,1	20,17		
75	0,094	19,1	21,01		

Continuación Tabla VI

120 0,092 19,1 22,69	100	0,092	19,1	22,69
	120	0,092	19,1	22,69

Fuente: elaboración propia.

Tabla VII. Prueba No. 5 realizada el 19/10/2017 a baja absorbancia, a caudal [300 mL min⁻¹] e intensidad de corriente [0,57; 0,69 mA cm⁻²]

Descripción de la prueba		ABSo = 0,119; 300 mL min⁻¹, 0,57 mA cm⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,119	31,5	0,00		
2,5	0,117	31,5	1,68		
5	0,116	31,5	2,52		
7,5	0,115	31,5	3,36		
10	0,115	31,6	3,36		
12	0,114	31,6	4,20		
15	0,111	31,6	6,72		
20	0,109	31,6	8,40		1
25	0,107	31,6	10,08		1
30	0,107	31,6	10,08		
40	0,102	31,6	14,29		
50	0,1	31,6	15,97		
60	0,098	31,6	17,65		
75	0,096	31,6	19,33		
90	0,095	31,6	20,17		
100	0,095	31,6	20,17		

Descripción de la p	orueba	ABSo = 0,119; 300 mL min ⁻¹ , 0,69 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,22	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,111	31,5	0,00	2	
3	0,110	31,5	0,90		Z

Continuación Tabla VII

6	0,109	31,5	1,80
9	0,108	31,5	2,70
12	0,106	31,5	4,50
15	0,105	31,5	5,41
20	0,103	31,5	7,21
25	0,100	31,5	9,91
30	0,100	31,5	9,91
40	0,098	31,5	11,71
50	0,097	31,5	12,61
60	0,095	31,5	14,41
75	0,090	31,5	18,92
90	0,088	31,5	20,72
100	0,087	31,5	21,62

Descripción de la p	ipción de la prueba		a ABSo = 0,119; 300 mL min ⁻¹ , 0,69 mA		
RPM	44		Flujo volumétrico	300	mL/min
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,22	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,120	31,6	0,00		
3	0,119	31,6	0,83		
6	0,117	31,6	2,50		
9	0,117	31,6	2,50		
12	0,116	31,6	3,33		
15	0,114	31,6	5,00		
20	0,111	31,6	7,50		
25	0,110	31,6	8,33		3
30	0,109	31,6	9,17		0
40	0,105	31,6	12,50		
50	0,103	31,6	14,17		
60	0,100	31,6	16,67		
75	0,099	31,6	17,50		
90	0,097	31,6	19,17		
100	0,096	31,6	20,00		
120	0,095	31,6	20,83		

Tabla VIII.Prueba No. 6 realizada el 23/10/2017 con absorbancia alta, acaudal [300 mL min⁻¹] e intensidad de corriente constante [0,29 mA cm⁻²]

Descripción de la prueba		ABSo=0,176; 300 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,23	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,176	15,9	0,00		
5	0,165	15,9	6,25		
10	0,159	15,9	9,66		
15	0,144	16,4	18,18		
30	0,136	16,4	22,73		1
45	0,130	16,4	26,14		
60	0,120	16,4	31,82		
75	0,116	16,4	34,09		
100	0,109	16,5	38,07		

Descripción de la prueba ABSo=0,173;			So=0,173; 300 mL min ⁻¹ , 0,29 mA	A cm ⁻²	
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,23	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,173	16,3	0,00		
5	0,164	16,3	5,20		
10	0,163	16,3	5,78		
15	0,158	16,3	8,67		
30	0,148	16,3	14,45		2
45	0,139	16,3	19,65		
60	0,135	16,3	21,97		
75	0,123	16,3	28,90		
100	0,120	16,3	30,64		

Descripción de la p	rueba	AB	So=0,170; 300 mL min ⁻¹ , 0,29 mA	A cm ⁻²	
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,11		pHf	7,23	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,170	15,9	0,00		
3	0,162	15,9	4,71		
6	0,155	15,9	8,82		
9	0,151	16,4	11,18		
12	0,151	16,4	11,18		
15	0,149	16,4	12,35		
20	0,139	16,4	18,24		3
25	0,132	16,4	22,35		5
30	0,128	16,4	24,71		
40	0,119	16,4	30,00		
50	0,111	16,4	34,71		
60	0,104	16,4	38,82		
75	0,103	16,4	39,41		
100	0,1	16,4	41,18		

Tabla IX.Prueba No. 7 realizada el 23/10/2017 con absorbancia alta, acaudal [400 mL min⁻¹] e intensidad de corriente constante [0,29 mA cm⁻²]

Descripción de la prueba		ABSo=0,173; 400 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,09		pHf	7,13	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,173	15,9	0,00		
5	0,162	16	6,36		
15	0,141	16,3	18,50		
30	0,126	16,5	27,17		1
45	0,117	16,5	32,37		1
60	0,111	16,5	35,84		
80	0,109	16,9	36,99		
100	0,109	16,9	36,99		

Descripción de la prueba		ABS	ABSo=0,165; 400 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min	
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,1	А	
рНо	7,09		pHf	7,13		
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición	
0	0,165	15,9	0,00			
5	0,154	15,9	6,67			
15	0,140	15,9	15,15			
30	0,129	15,9	21,82		2	
45	0,125	15,9	24,24		2	
60	0,118	15,9	28,48			
80	0,111	15,9	32,73			
100	0,106	15,9	35,76			

Descripción de la prueba ABSc			So=0,170; 400 mL min ⁻¹ , 0,29 mA	A cm ⁻²	
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,09		pHf	7,13	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,170	15,9	0,00		
3	0,163	16	4,12		
6	0,152	16	10,59		
9	0,141	16	17,06		
12	0,138	16	18,82		
15	0,137	16	19,41		
20	0,131	16	22,94		3
25	0,129	16	24,12		5
30	0,120	16	29,41		
40	0,118	16	30,59		
50	0,111	16	34,71		
60	0,106	16	37,65		
80	0,101	16	40,59		
100	0,095	16	44,12		

Tabla X.Prueba No. 8 realizada el 23/10/2017 con absorbancia alta, acaudal [500 mL min⁻¹] e intensidad de corriente constante [0,29 mA cm⁻²]

Descripción de la prueba			So=0,174; 500 mL min ⁻¹ , 0,29 mA	A cm ⁻²	
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,09		pHf	7,13	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,174	15,9	0,00		
2,5	0,169	16	2,87		
5	0,167	16,3	4,02		
7,5	0,164	16,5	5,75		
10	0,163	16,5	6,32		
12,5	0,156	16,5	10,34		
15	0,152	16,9	12,64		
20	0,149	16,9	14,37		
25	0,145	16,9	16,67		1
30	0,143	16,9	17,82		
40	0,14	16,9	19,54		
50	0,136	16,9	21,84		
60	0,131	16,9	24,71		
75	0,125	16,9	28,16		
90	0,122	16,9	29,89		
100	0,119	16,9	31,61		
120	0,118	16,9	32,18		

Descripción de la prueba		ABSo=0,169; 500 mL min ⁻¹ , 0,29 mA cm ⁻²				
RPM	82		Flujo volumétrico	500	mL/min	
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А	
рНо	7,09		pHf	7,13		
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición	
0	0,169	15,9	0,00			
2,5	0,164	15,9	2,96			
5	0,162	15,9	4,14			
7,5	0,159	15,9	5,92		2	
10	0,158	15,9	6,51			
12,5	0,151	15,9	10,65			
15	0,147	15,9	13,02			

Continuación Tabla X

20	0,144	15,9	14,79	
25	0,140	15,9	17,16	
30	0,138	15,9	18,34	
40	0,135	15,9	20,12	
50	0,131	15,9	22,49	
60	0,126	15,9	25,44	
75	0,120	15,9	28,99	
90	0,117	15,9	30,77	
100	0,114	15,9	32,54	
120	0,113	15,9	33,14	

Descripción de la prueba		ABSo=0,177; 500 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,09		pHf	7,13	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,177	16,1	0,00		
2,5	0,172	16,1	2,82		
5	0,170	16,1	3,95		
7,5	0,167	16,1	5,65		
10	0,166	16,1	6,21		
12,5	0,159	16,1	10,17		
15	0,155	16,1	12,43		
20	0,152	16,1	14,12		
25	0,148	16,1	16,38		3
30	0,146	16,1	17,51		
40	0,143	16,1	19,21		
50	0,139	16,1	21,47		
60	0,134	16,1	24,29		
75	0,128	16,1	27,68		
90	0,125	16,1	29,38		
100	0,122	16,1	31,07		
120	0,121	16,1	31,64		

Tabla XI.Prueba No. 9 realizada el 24/10/2017 con absorbancia alta, acaudal [550 mL min⁻¹] e intensidad de corriente constante [0,29 mA cm⁻²]

Descripción de la prueba		ABSo=0,177; 550 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,1		pHf	7,18	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,177	16,2	0,00		
5	0,163	16,2	7,91		
10	0,154	16,5	12,99		
15	0,152	16,5	14,12		
30	0,147	16,8	16,95		1
45	0,139	17,2	21,47		
60	0,139	17,3	21,47		
75	0,134	17,3	24,29		
100	0,128	17,3	27,68		

Descripción de la prueba		ABSo=0,181; 550 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,1		pHf	7,18	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,181	16,8	0,00		
5	0,167	16,8	7,73		
10	0,158	16,8	12,71		
15	0,156	16,8	13,81		
30	0,151	16,8	16,57		2
45	0,143	16,8	20,99		
60	0,143	16,8	20,99		
75	0,138	16,8	23,76		
100	0,138	16,8	23,76		

Descripción de la prueba		ABSo=0,175; 550 mL min ⁻¹ , 0,29 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,1	А
рНо	7,1		pHf	7,18	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repo	etición
0	0,175	16,9	0,00		
2	0,17	16,9	2,86		
4	0,161	16,9	8,00		
6	0,161	16,9	8,00		
8	0,159	16,9	9,14		
10	0,159	16,9	9,14		
12	0,158	16,9	9,71		
15	0,151	16,9	13,71		
20	0,151	16,9	13,71		3
25	0,148	16,9	15,43		
30	0,145	16,9	17,14		
40	0,139	16,9	20,57		
50	0,134	16,9	23,43		
60	0,127	16,9	27,43		
75	0,126	16,9	28,00		
90	0,123	16,9	29,71		
100	0,121	16,9	30,86		

Tabla XII.Prueba No. 10 realizada el 24/10/2017 con absorbancia alta, acaudal [300 mL min⁻¹] e intensidad de corriente constante [0,43 mA cm⁻²]

Descripción de la prueba		ABSo=0,193; 300 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	A
рНо	7,11		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,193	22,2	0,00		
5	0,177	22,2	8,29		
10	0,168	22,2	12,95		1
15	0,152	22,2	21,24		
30	0,139	23	27,98		

Continuación Tabla XII

45	0,125	24,1	35,23
60	0,119	23,2	38,34
75	0,115	23,2	40,41
100	0,105	22,9	45,60
120	0,101	22,9	47,67

Descripción de la prueba		ABSo=0,192; 300 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,11		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,192	23	0,00		
5	0,173	23	9,90		
10	0,165	23	14,06		
15	0,160	23	16,67		
30	0,135	23	29,69		2
45	0,122	23	36,46		2
60	0,111	23	42,19		
75	0,109	23	43,23		
100	0,102	23	46,88		
120	0,099	23	48,44		

Descripción de la prueba		ABSo=0,195; 300 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,11		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,195	22,6	0,00		
2	0,192	22,6	1,54		
4	0,185	22,6	5,13		
6	0,179	22,6	8,21		
8	0,175	22,6	10,26		
10	0,174	22,6	10,77		3
12	0,174	22,6	10,77		
15	0,164	22,6	15,90		
20	0,158	22,6	18,97		
25	0,149	22,6	23,59		
30	0,141	22,6	27,69		

Continuación Tabla XII

40	0,135	22,6	30,77
50	0,127	22,6	34,87
60	0,121	22,6	37,95
75	0,117	22,6	40,00
100	0,111	22,6	43,08
120	0,105	22,6	46,15

Fuente: elaboración propia.

Tabla XIII.Prueba No. 11 realizada el 24/10/2017 con absorbancia alta, acaudal [400 mL min⁻¹] e intensidad de corriente constante [0,43 mA cm⁻²]

Descripción de la p	rueba	ABS	ABSo = 0,168; 400 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min	
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А	
рНо	7,1		pHf	7,2		
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición	
0	0,168	22,6	0,00			
2	0,159	22,7	5,36			
4	0,155	22,7	7,74			
6	0,153	22,7	8,93			
8	0,151	22,7	10,12			
10	0,150	22,7	10,71			
12	0,141	22,7	16,07			
15	0,138	22,7	17,86			
20	0,135	23	19,64		1	
25	0,131	23	22,02			
30	0,129	23,6	23,21			
40	0,122	23,1	27,38			
50	0,119	23,1	29,17			
70	0,111	23,3	33,93			
80	0,11	23,8	34,52			
100	0,101	24,4	39,88			
120	0,098	24,1	41,67			

Descripción de la prueba		ABSo = 0,170; 400 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,170	22,7	0,00		
2	0,168	22,7	1,18		
4	0,166	22,7	2,35		
6	0,160	22,7	5,88		
8	0,155	22,7	8,82		
10	0,154	22,7	9,41		
12	0,152	22,7	10,59		
15	0,150	22,7	11,76		
20	0,145	22,7	14,71		2
25	0,139	22,7	18,24		2
30	0,135	22,7	20,59		
40	0,126	22,7	25,88		
50	0,125	22,7	26,47		
70	0,120	22,7	29,41		
80	0,114	22,7	32,94		
100	0,108	22,7	36,47		
120	0,103	22,7	39,41		
130	0,099	22,7	41,76		

Descripción de la p	ABSo = 0,165; 400 mL min ⁻¹ , 0,43 mA cm ⁻²				
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,165	23,1	0,00		
2	0,156	23,1	5,45		
4	0,150	23,1	9,09		
6	0,150	23,1	9,09		
8	0,147	23,1	10,91		3
10	0,147	23,1	10,91		5
12	0,138	23,1	16,36		
15	0,134	23,1	18,79		
20	0,130	23,1	21,21		
25	0,126	23,1	23,64		

Continuación Tabla XIII					
30	0,126	23,1	23,64		
40	0,118	23,1	28,48		
50	0,114	23,1	30,91		
60	0,109	23,1	33,94		
70	0,106	23,1	35,76		
80	0,103	23,1	37,58		
90	0,098	23,1	40,61		
100	0,095	23,1	42,42		
120	0,093	23,1	43,64		
130	0.090	23.1	45.45		

Tabla XIV. Prueba No. 12 realizada el 25/10/2017 con absorbancia alta, a caudal [400, 500 mL min⁻¹] e intensidad de corriente [0,43 mA cm⁻²]

Descripción de la p	ABSo = 0,169; 500 mL min ⁻¹ , 0,43 mA cm ⁻²			A cm ⁻²	
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,15		pHf	7,21	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,169	22,6	0,00		
2,5	0,161	22,7	4,73		
5	0,156	22,7	7,69		
7,5	0,15	22,7	11,24		
10	0,147	22,7	13,02		
12,5	0,145	22,7	14,20		
15	0,131	22,7	22,49		
20	0,127	22,7	24,85		1
25	0,125	23	26,04		I
30	0,12	23	28,99		
40	0,117	23,6	30,77		
50	0,115	23,1	31,95		
60	0,111	23,1	34,32		
75	0,109	23,3	35,50		
90	0,107	23,8	36,69		
100	0,104	24,4	38,46		

Continuación Tabla XIV

|--|

Descripción de la p	escripción de la prueba ABSo = 0,170; 400 mL min ⁻¹ , 0,43 mA cm ⁻²				
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,15		pHf	7,21	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,168	22,6	0,00		
2,5	0,160	22,6	4,76		
5	0,155	22,6	7,74		
7,5	0,149	22,6	11,31		
10	0,146	22,6	13,10		
12,5	0,144	22,6	14,29		
15	0,130	22,6	22,62		
20	0,126	22,6	25,00		
25	0,124	22,6	26,19		2
30	0,119	22,6	29,17		
40	0,116	22,6	30,95		
50	0,114	22,6	32,14		
60	0,110	22,6	34,52		
75	0,108	22,6	35,71		
90	0,106	22,6	36,90		
100	0,103	22,6	38,69		
120	0,102	22,6	39,29		

Descripción de la prueba		ABSo = 0,165; 400 mL min ⁻¹ , 0,43 mA cm			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,15		pHf	7,21	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,172	23,1	0,00		
2,5	0,164	23,1	4,65		
5	0,159	23,1	7,56		
7,5	0,153	23,1	11,05		2
10	0,150	23,1	12,79		3
12,5	0,148	23,1	13,95		
15	0,134	23,1	22,09		
20	0,130	23,1	24,42		

Continu	ación	Tabla	XIV
COntinua	autori	i abia	711 8

25	0,128	23,1	25,58	
30	0,123	23,1	28,49	
40	0,120	23,1	30,23	
50	0,118	23,1	31,40	
60	0,114	23,1	33,72	
75	0,112	23,1	34,88	
90	0,110	23,1	36,05	
100	0,107	23,1	37,79	
120	0,106	23,1	38,37	

Tabla XV. Prueba No. 13 realizada el 25/10/2017 con absorbancia alta, a caudal [550 mL min⁻¹] e intensidad de corriente constante [0,43 mA cm⁻²]

Descripción de la p	ión de la prueba ABSo = 0,165; 550 mL min ⁻¹ , 0,43 mA cm ⁻²				
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,3		pHf	7,22	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,165	21,8	0,00		
2	0,159	21,8	3,64		
4	0,157	21,8	4,85		
6	0,154	21,8	6,67		
8	0,151	21,8	8,48		
10	0,149	22,2	9,70		
12	0,146	22,6	11,52		
17	0,142	23,1	13,94		
20	0,138	23,1	16,36		1
25	0,137	23,7	16,97		
30	0,135	23,8	18,18		
35	0,133	23,8	19,39		
40	0,129	23,8	21,82		
50	0,128	24,6	22,42		
60	0,124	25	24,85		
70	0,118	25,3	28,48		
80	0,115	25,3	30,30		

Continuación Tabla XV

100	0,113	25,3	31,52
120	0,112	25,3	32,12

Descripción de la p	rueba	ABS	ABSo = 0,136; 550 mL min ⁻¹ , 0,43 mA cm ⁻²		
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,3		pHf	7,22	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,175	22,6	0,00		
2	0,171	22,6	2,29		
4	0,168	22,6	4,00		
6	0,165	22,6	5,71		
8	0,160	22,6	8,57		
10	0,159	22,6	9,14		
12	0,158	22,6	9,71		
15	0,152	22,6	13,14		
20	0,148	22,6	15,43		
25	0,146	22,6	16,57		2
30	0,144	22,6	17,71		
35	0,141	22,6	19,43		
40	0,139	22,6	20,57		
50	0,136	22,6	22,29		
60	0,133	22,6	24,00		
70	0,130	22,6	25,71		
80	0,126	22,6	28,00		
100	0,123	22,6	29,71		
120	0,123	22,6	29,71		

Descripción de la p	rueba	ABSo = 0,136; 550 mL min ⁻¹ , 0,43 mA			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,3		pHf	7,22	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,172	23,1	0,00		
2	0,165	23,1	4,07		
4	0,160	23,1	6,98		3
6	0,159	23,1	7,56		
8	0,158	23,1	8,14		

Continuación Tabla XV					
10	0,158	23,1	8,14		
12	0,155	23,1	9,88		
17	0,147	23,1	14,53		
20	0,144	23,1	16,28		
25	0,141	23,1	18,02		
30	0,138	23,1	19,77		
35	0,136	23,1	20,93		
40	0,134	23,1	22,09		
50	0,134	23,1	22,09		
60	0,129	23,1	25,00		
70	0,126	23,1	26,74		
80	0,125	23,1	27,33		
100	0,118	23,1	31,40		
120	0,117	23,1	31,98		

Tabla XVI.	Prueba No. 14 realizada el 25/10/2017 con absorbancia alta, a
caudal [300) mL min ⁻¹] e intensidad de corriente constante [0,57 mA cm ⁻²]

Descripción de la prueba		ABSo=0,164; 300 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,09		pHf	7,11	
Tiempo (min)	ABS	Voltaje (V) Remoción total (%)		Rep	etición
0	0,164	29,9	0,00		
5	0,140	30,6	14,63		
10	0,133	30,9	18,90		
15	0,131	31,5	20,12		
30	0,113	31,3	31,10		1
45	0,102	31	37,80		1
60	0,094	31	42,68		
80	0,085	30,4	48,17		
100	0,08	30,3	51,22		
120	0,077	30,3	53,05		

Descripción de la p	rueba	a ABSo=0,170; 300 mL min ⁻¹ , 0,57 mA cm ⁻²		A cm ⁻²	
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,09		pHf	7,11	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,170	30,6	0,00		
5	0,149	30,6	12,35		
10	0,143	30,6	15,88		
15	0,140	30,6	17,65		
30	0,137	30,6	19,41		2
45	0,121	30,6	28,82		2
60	0,105	30,6	38,24		
80	0,098	30,6	42,35		
100	0,086	30,6	49,41		
120	0,084	30,6	50,59		

Descripción de la p	rueba	ABSo=0,172; 300 mL min ⁻¹ , 0,57 mA cm ⁻¹			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,09		pHf	7,11	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,172	31,5	0,00		
2	0,169	31,5	1,74		
4	0,158	31,5	8,14		
6	0,150	31,5	12,79		
8	0,145	31,5	15,70		
10	0,140	31,5	18,60		
12	0,140	31,5	18,60		
15	0,139	31,5	19,19		
20	0,131	31,5	23,84		3
25	0,128	31,5	25,58		
30	0,121	31,5	29,65		
40	0,110	31,5	36,05		
50	0,108	31,5	37,21		
60	0,102	31,5	40,70		
75	0,093	31,5	45,93		
100	0,088	31,5	48,84		
120	0,074	31,5	56,98		

Tabla XVII. Prueba No. 15 realizada el 26/10/2017 con absorbancia alta, a caudal [400 mL min⁻¹] e intensidad de corriente constante [0,57 mA cm⁻²]

Descripción de la p	rueba	ABSo=0,160; 400 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,161	30,1	0,00		
2	0,142	30,1	11,80		
4	0,129	30,1	19,88		
6	0,121	30,9	24,84		
8	0,120	30,8	25,47		
10	0,108	30,8	32,92		
12	0,106	31,3	34,16		
15	0,105	31,3	34,78		
20	0,098	31,3	39,13		1
25	0,096	30,9	40,37		
30	0,095	31,1	40,99		
40	0,09	31,4	44,10		
50	0,084	31,6	47,83		
60	0,081	31,3	49,69		
75	0,072	31,6	55,28		
85	0,071	31,4	55,90		
100	0,068	31,1	57,76		

Descripción de la prueba		ABSo=0,165; 400 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,165	30,1	0,00		
2	0,149	30,1	9,70		
4	0,136	30,1	17,58		
6	0,130	30,1	21,21		2
8	0,124	30,1	24,85		
10	0,121	30,1	26,67		
12	0,115	30,1	30,30		

Continuación Tabla XVII

15	0,111	30,1	32,73
20	0,106	30,1	35,76
25	0,100	30,1	39,39
30	0,099	30,1	40,00
40	0,095	30,1	42,42
50	0,088	30,1	46,67
60	0,080	30,1	51,52
75	0,076	30,1	53,94
85	0,075	30,1	54,55
100	0,074	30,1	55,15

Descripción de la p	rueba	a ABSo=0,168; 400 mL min ⁻¹ , 0,57 mA cm ⁻²			-
RPM	63		Flujo volumétrico	400	mL/min
Vol, Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,168	30,8	0,00		
2	0,162	30,8	3,57		
4	0,151	30,8	10,12		
6	0,142	30,8	15,48		
8	0,131	30,8	22,02		
10	0,123	30,8	26,79		
12	0,121	30,8	27,98		
15	0,120	30,8	28,57		
20	0,118	30,8	29,76		3
25	0,112	30,8	33,33		
30	0,110	30,8	34,52		
40	0,097	30,8	42,26		
50	0,095	30,8	43,45		
60	0,089	30,8	47,02		
75	0,085	30,8	49,40		
85	0,078	30,8	53,57		
100	0,078	30,8	53,57		

Tabla XVIII. Prueba No. 16 realizada el 26/10/2017 con absorbancia alta, a caudal [500 mL min⁻¹] e intensidad de corriente constante [0,57 mA cm⁻²]

Descripción de la p	rueba	a ABSo=0,165; 500 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,05		pHf	7,16	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,165	30,1	0,00		
2,5	0,161	30,1	2,42		
5	0,155	30,1	6,06		
7,5	0,15	30,9	9,09		
10	0,148	30,8	10,30		
12,5	0,143	30,8	13,33		
15	0,136	31,3	17,58		
20	0,13	31,3	21,21		
25	0,127	31,3	23,03		1
30	0,125	30,9	24,24		
40	0,123	31,1	25,45		
50	0,119	31,4	27,88		
60	0,117	31,6	29,09		
75	0,109	31,3	33,94		
90	0,101	31,6	38,79		
100	0,097	31,4	41,21		
120	0,095	31,1	42,42		

Descripción de la p	Descripción de la prueba		ABSo=0,163; 500 mL min ⁻¹ , 0,57 mA cm ⁻²		
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,05		pHf	7,16	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,163	30,1	0,00		
2,5	0,159	30,1	2,45		
5	0,153	30,1	6,13		
7,5	0,148	30,1	9,20		2
10	0,146	30,1	10,43		
12,5	0,141	30,1	13,50		
15	0,134	30,1	17,79		

Continuación Tabla XVIII

20	0,128	30,1	21,47
25	0,125	30,1	23,31
30	0,123	30,1	24,54
40	0,121	30,1	25,77
50	0,117	30,1	28,22
60	0,115	30,1	29,45
75	0,107	30,1	34,36
90	0,099	30,1	39,26
100	0,095	30,1	41,72
120	0,093	30,1	42,94

Descripción de la p	rueba	ABSo=0,170; 500 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,05		pHf	7,16	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,17	30,1	0,00		
2,5	0,166	30,1	2,35		
5	0,16	30,1	5,88		
7,5	0,155	30,1	8,82		
10	0,153	30,1	10,00		
12,5	0,148	30,1	12,94		
15	0,141	30,1	17,06		
20	0,135	30,1	20,59		
25	0,132	30,1	22,35		3
30	0,13	30,1	23,53		
40	0,128	30,1	24,71		
50	0,124	30,1	27,06		
60	0,122	30,1	28,24		
75	0,114	30,1	32,94		
90	0,106	30,1	37,65		
100	0,102	30,1	40,00		
120	0,1	30,1	41,18		

Tabla XIX. Prueba No. 17 realizada el 26/10/2017 con absorbancia alta, a caudal [550 mL min⁻¹] e intensidad de corriente constante [0,57 mA cm⁻²]

Descripción de la prueba		ABSo = 0,168; 550 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,168	30	0,00		
2,5	0,156	30,2	7,14		
5	0,151	30,9	10,12		
7,5	0,149	31,6	11,31		
10	0,147	31,6	12,50		
12,5	0,143	31,6	14,88		
15	0,140	31,6	16,67		
20	0,139	31,6	17,26		
25	0,136	31,6	19,05		1
30	0,131	31,6	22,02		
40	0,127	31,6	24,40		
50	0,123	31,6	26,79		
60	0,121	31,6	27,98		
75	0,113	31,6	32,74		
90	0,11	31,6	34,52		
100	0,108	31,6	35,71		
120	0,106	31,6	36,90		

Descripción de la prueba		ABSo = 0,168; 550 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,176	30,2	0,00		
2	0,166	30,2	5,68		
6	0,162	30,2	7,95		
8	0,157	30,2	10,80		2
10	0,156	30,2	11,36		
12	0,151	30,2	14,20		
15	0,149	30,2	15,34		

Continuación Tabla XIX

20	0,146	30,2	17,05
25	0,144	30,2	18,18
30	0,140	30,2	20,45
40	0,136	30,2	22,73
50	0,130	30,2	26,14
60	0,129	30,2	26,70
75	0,123	30,2	30,11
90	0,120	30,2	31,82
100	0,117	30,2	33,52
120	0,116	30,2	34,09

Descripción de la prueba		ABSo = 0,155; 550 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,171	30	0,00		
2,5	0,161	30	5,85		
5	0,155	30	9,36		
7,5	0,154	30	9,94		
10	0,152	30	11,11		
12,5	0,147	30	14,04		
15	0,144	30	15,79		
20	0,142	30	16,96		
25	0,140	30	18,13		3
30	0,135	30	21,05		
40	0,133	30	22,22		
50	0,128	30	25,15		
60	0,125	30	26,90		
75	0,119	30	30,41		
90	0,116	30	32,16		
100	0,112	30	34,50		
120	0,111	30	35,09		

Tabla XX.Prueba No. 18 realizada el 27/10/2017 con absorbancia alta, acaudal [300 mL min⁻¹] e intensidad de corriente constante [0,72 mA cm⁻²]

Descripción de la prueba		ABSo=0,177; 300 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,09		pHf	7,11	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,177	32	0,00		
5	0,169	32	4,52		
10	0,156	32	11,86		
15	0,141	32	20,34		
30	0,130	32	26,55		1
45	0,117	32	33,90		1
60	0,105	32	40,68		
80	0,095	32	46,33		
100	0,086	32	51,41		
120	0,073	32	58,76		

Descripción de la prueba		ABSo=0,175; 300 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,09		pHf	7,11	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,175	32,5	0,00		
5	0,167	32,5	4,57		
10	0,154	32,5	12,00		
15	0,139	32,5	20,57		
30	0,128	32,5	26,86		2
45	0,115	32,5	34,29		2
60	0,103	32,5	41,14		
80	0,093	32,5	46,86		
100	0,084	32,5	52,00		
120	0,071	32,5	59,43		

Descripción de la prueba		ABSo=0,179; 300 mL min ⁻¹ , 0,72 mA			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,09		pHf	7,11	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,179	33	0,00		
5	0,171	33	4,47		
10	0,158	33	11,73		
15	0,143	33	20,11		
30	0,132	33	26,26		з
45	0,119	33	33,52		5
60	0,107	33	40,22		
80	0,097	33	45,81		
100	0,088	33	50,84		
120	0,075	33	58,10		

Tabla XXI. Prueba No. 19 realizada el 27/10/2017 con absorbancia alta, a caudal [400 mL min⁻¹] e intensidad de corriente constante [0,72 mA cm⁻²]

Descripción de la prueba		ABSo=0,165; 400 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,165	32,6	0,00		
2	0,153	32,6	7,27		
4	0,139	32,6	15,76		
6	0,12	32,6	27,27		
8	0,113	32,6	31,52		
10	0,101	32,6	38,79		1
12	0,098	32,6	40,61		·
15	0,091	32,6	44,85		
20	0,087	32,6	47,27		
25	0,086	32,6	47,88		
30	0,084	32,6	49,09		
40	0,079	32,6	52,12		

Continuación Tabla XXI

50	0,076	32,6	53,94
60	0,069	32,6	58,18
75	0,068	32,6	58,79
85	0,066	32,6	60,00
100	0,064	32,6	61,21

Descripción de la p	rueba	ABSo=0,163; 400 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,163	33,1	0,00		
2	0,151	33,1	7,36		
4	0,137	33,1	15,95		
6	0,118	33,1	27,61		
8	0,111	33,1	31,90		
10	0,099	33,1	39,26		
12	0,096	33,1	41,10		
15	0,089	33,1	45,40		
20	0,085	33,1	47,85		2
25	0,084	33,1	48,47		
30	0,082	33,1	49,69		
40	0,077	33,1	52,76		
50	0,074	33,1	54,60		
60	0,067	33,1	58,90		
75	0,066	33,1	59,51		
85	0,064	33,1	60,74		
100	0,062	33,1	61,96		

Descripción de la p	rueba	ABS	So=0,169; 400 mL min ⁻¹ , 0,72 mA	A cm ⁻²	
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,169	33,3	0,00		
2	0,157	33,3	7,10		2
4	0,143	33,3	15,38		5
6	0,124	33,3	26,63		

Continuación Tabla XXI				
8	0,117	33,3	30,77	
10	0,105	33,3	37,87	
12	0,102	33,3	39,64	
15	0,095	33,3	43,79	
20	0,091	33,3	46,15	
25	0,090	33,3	46,75	
30	0,088	33,3	47,93	
40	0,083	33,3	50,89	
50	0,080	33,3	52,66	
60	0,073	33,3	56,80	
75	0,072	33,3	57,40	
85	0,070	33,3	58,58	
100	0,068	33,3	59,76	

Fuente: elaboración propia.

Tabla XXII. Prueba No. 20 realizada el 27/10/2017 con absorbancia alta, a caudal [400; 500 mL min⁻¹] e intensidad de corriente [0,72 mA cm⁻²]

Descripción de la p	rueba	ABSo=0,166; 500 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	63		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,166	33,1	0,00		
2,5	0,161	33,1	3,01		
5	0,156	33,1	6,02		
7,5	0,146	33,1	12,05		
10	0,144	33,1	13,25		
12,5	0,141	33,1	15,06		
15	0,132	33,1	20,48		1
20	0,124	33,1	25,30		
25	0,119	33,1	28,31		
30	0,115	33,1	30,72		
40	0,111	33,1	33,13		
50	0,107	33,1	35,54		
60	0,105	33,1	36,75		

Continuación Tabla XXII

75	0,103	33,1	37,95
90	0,101	33,1	39,16
100	0,096	33,1	42,17
120	0,095	33,1	42,77

Descripción de la p	rueba	ABSo=0,168; 400 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,168	32,7	0,00		
2,5	0,163	32,7	2,98		
5	0,158	32,7	5,95		
7,5	0,148	32,7	11,90		
10	0,146	32,7	13,10		
12,5	0,143	32,7	14,88		
15	0,134	32,7	20,24		
20	0,126	32,7	25,00		
25	0,121	32,7	27,98		2
30	0,117	32,7	30,36		
40	0,113	32,7	32,74		
50	0,109	32,7	35,12		
60	0,107	32,7	36,31		
75	0,105	32,7	37,50		
90	0,103	32,7	38,69		
100	0,098	32,7	41,67		
120	0,097	32,7	42,26		

Descripción de la p	Descripción de la prueba		ABSo=0,164; 400 mL min ⁻¹ , 0,72 mA cm ⁻²		
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,08		pHf	7,12	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,164	33,6	0,00		
2,5	0,159	33,6	3,05		2
5	0,154	33,6	6,10	3	
7,5	0,144	33,6	12,20		

Continuación Tabla XXII				
10	0,142	33,6	13,41	
12,5	0,139	33,6	15,24	
15	0,13	33,6	20,73	
20	0,122	33,6	25,61	
25	0,117	33,6	28,66	
30	0,113	33,6	31,10	
40	0,109	33,6	33,54	
50	0,105	33,6	35,98	
60	0,103	33,6	37,20	
75	0,101	33,6	38,41	
90	0,099	33,6	39,63	
100	0,094	33,6	42,68	
120	0,093	33,6	43,29	

Tabla XXIII. Prueba No. 21 realizada el 27/10/2017 con absorbancia alta, a caudal [550 mL min⁻¹] e intensidad de corriente constante [0,72 mA cm⁻²]

Descripción de la p	rueba ABSo = 0,169; 550 mL min ⁻¹ , 0,72 mA			A cm ⁻²	
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,169	33,4	0,00		
2,5	0,161	33,4	4,73		
5	0,156	33,4	7,69		
7,5	0,15	33,4	11,24		
10	0,147	33,4	13,02		
12,5	0,145	33,4	14,20		
15	0,131	33,4	22,49		1
20	0,127	33,4	24,85		
25	0,125	33,4	26,04		
30	0,12	33,4	28,99		
40	0,117	33,4	30,77		
50	0,115	33,4	31,95		
60	0,111	33,4	34,32		

Continuación Tabla XXIII

75	0,109	33,4	35,50
90	0,107	33,4	36,69
100	0,104	33,4	38,46
120	0,103	33,4	39,05

Descripción de la p	rueba	ABSo = 0,171; 550 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,171	33,5	0,00		
2,5	0,163	33,5	4,68		
5	0,158	33,5	7,60		
7,5	0,152	33,5	11,11		
10	0,149	33,5	12,87		
12,5	0,147	33,5	14,04		
15	0,133	33,5	22,22		
20	0,129	33,5	24,56		
25	0,127	33,5	25,73		2
30	0,122	33,5	28,65		
40	0,119	33,5	30,41		
50	0,117	33,5	31,58		
60	0,113	33,5	33,92		
75	0,111	33,5	35,09		
90	0,109	33,5	36,26		
100	0,106	33,5	38,01		
120	0,105	33,5	38,60		

Descripción de la p	Descripción de la prueba ABSo = 0,167; 550 mL min ⁻¹ , 0,72 n			A cm ⁻²	
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,167	33	0,00		
2,5	0,159	33	4,79		2
5	0,154	33	7,78	3	
7,5	0,148	33	11,38		
Continuación T	abla X	XIII			
----------------	--------	------	-------	--	
10	0,145	33	13,17		
12,5	0,143	33	14,37		
15	0,129	33	22,75		
20	0,125	33	25,15		
25	0,123	33	26,35		
30	0,118	33	29,34		
40	0,115	33	31,14		
50	0,113	33	32,34		
60	0,109	33	34,73		
75	0,107	33	35,93		
90	0,105	33	37,13		
100	0,102	33	38,92		
120	0,101	33	39,52		

Tabla XXIV. Prueba No. 22 realizada el 30/10/2017 a baja absorbancia, a caudal [400 mL min⁻¹] e intensidad de corriente [0,57; 0,69 mA cm⁻²]

Descripción de la p	rueba	ABS	so = 0,112; 400 mL min ⁻¹ , 0,57 m.	A cm ⁻²	
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,112	31,5	0,00		
2,5	0,111	31,5	0,89		
5	0,110	31,5	1,79		
7,5	0,110	31,6	1,79		
10	0,110	31,6	1,79		
12,5	0,108	31,6	3,57		
15	0,107	31,6	4,46		1
20	0,105	31,6	6,25		
30	0,101	31,6	9,82		
40	0,097	31,6	13,39		
50	0,097	31,6	13,39		
60	0,092	31,6	17,86		
75	0,089	31,6	20,54		

Continuación Tabla XXIV

90 0,088 31,6 21,43

Descripción de la p	rueba	ABS	60 = 0,112; 400 mL min ⁻¹ , 0,69 m.	A cm ⁻²	
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,22	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,110	31,5	0,00		
2,5	0,108	31,5	1,82		
5	0,108	31,5	1,82		
7,5	0,107	31,5	2,73		
10	0,107	31,5	2,73		
12,5	0,106	31,5	3,64		
15	0,104	31,5	5,45		
20	0,102	31,5	7,27		2
30	0,098	31,5	10,91		2
40	0,096	31,5	12,73		
50	0,093	31,5	15,18		
60	0,090	31,5	18,18		
75	0,088	31,5	20,00		
90	0,086	31,5	21,82		
100	0,085	31,5	22,73		
120	0,085	31,5	22,73		

Descripción de la p	rueba	ABS	60 = 0,112; 400 mL min ⁻¹ , 0,69 m.	A cm ⁻²	
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,22	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,115	31,6	0,00		
3	0,114	31,6	0,87		
6	0,113	31,6	1,74		
9	0,113	31,6	1,74		
10	0,112	31,6	2,61		3
12	0,111	31,6	3,48		
15	0,110	31,6	4,35		
20	0,109	31,6	5,22		
30	0,106	31,6	7,83		

Continuación Tabla XXIV

40	0,104	31,6	9,57
50	0,100	31,6	13,04
60	0,097	31,6	15,65
75	0,094	31,6	18,26
90	0,091	31,6	20,87
100	0,091	31,6	20,87

Fuente: elaboración propia.

Tabla XXV. Prueba No. 23 realizada el 30/10/2017 a baja absorbancia, a caudal [500 mL min⁻¹] e intensidad de corriente constante [0,57 mA cm⁻²]

Descripción de la p	rueba	ABS	o = 0,112; 500 mL min ⁻¹ , 0,57 m/	A cm ⁻²	
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,112	31,5	0,00		
3	0,1095	31,5	2,23		
6	0,107	31,5	4,46		
12	0,1055	31,6	5,80		
15	0,105	31,6	6,25		
20	0,102	31,6	8,93		
25	0,1	31,6	10,71		1
30	0,0985	31,6	12,05		1
40	0,0955	31,6	14,73		
50	0,0945	31,6	15,63		
60	0,0915	31,6	18,30		
75	0,089	31,6	20,54		
90	0,0885	31,6	20,98		
100	0,088	31,6	21,43		

Descripción de la p	rueba	ABS	o = 0,110; 500 mL min ⁻¹ , 0,57mA	A cm ⁻²	
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,110	31,3	0,00		
2,5	0,108	31,3	2,27		
5	0,105	31,3	4,55		
7,5	0,104	31,3	5,91		
10	0,103	31,3	6,36		
15	0,098	31,3	10,91		
20	0,097	31,3	12,27		2
30	0,094	31,3	15,00		
40	0,093	31,3	15,91		
50	0,090	31,3	18,64		
60	0,087	31,3	20,91		
75	0,087	31,3	21,36		
90	0,086	31,3	21,82		

Descripción de la p	orueba	ABS	o = 0,115; 500 mL min ⁻¹ , 0,57 m/	A cm ⁻²	
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,115	31,2	0,00		
3	0,113	31,2	2,17		
6	0,110	31,2	4,35		
9	0,109	31,2	5,65		
10	0,108	31,2	6,09		
12	0,105	31,2	8,70		
15	0,103	31,2	10,43		3
20	0,102	31,2	11,74		5
30	0,099	31,2	14,35		
40	0,098	31,2	15,22		
50	0,095	31,2	17,83		
60	0,092	31,2	20,00		
75	0,092	31,2	20,43		
90	0,091	31,2	20,87		

Tabla XXVI. Prueba No. 24 realizada el 30/10/2017 a baja absorbancia, a caudal [550 mL min⁻¹] e intensidad de corriente [0,57; 0,69 mA cm⁻²]

Descripción de la p	rueba	ABS	50 = 0,120; 550 mL min ⁻¹ , 0,57 m.	A cm ⁻²	
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,120	31,5	0,00		
3	0,113	31,6	5,83		
6	0,112	31,6	6,67		
12	0,111	31,6	7,50		
15	0,111	31,6	7,50		
20	0,109	31,6	9,17		
25	0,105	31,6	12,50		1
30	0,104	31,6	13,33		
40	0,103	31,6	14,17		
50	0,103	31,6	14,17		
60	0,099	31,6	17,50		
75	0,097	31,6	19,17		
90	0,096	31,6	20,00		

Descripción de la p	rueba	ABS	so = 0,120; 550 mL min ⁻¹ , 0,69 m.	A cm ⁻²	
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,22	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,116	31,5	0,00		
3	0,111	31,5	4,31		
6	0,109	31,5	6,03		
12	0,107	31,5	7,76		
15	0,106	31,5	8,62		
20	0,102	31,5	12,07		2
25	0,101	31,5	12,93		
30	0,100	31,5	13,79		
40	0,099	31,5	14,66		
50	0,097	31,5	16,38		
60	0,095	31,5	18,10		

Continuación Tabla XXVI

75	0,093	31,5	19,83		
90	0,092	31,5	20,69		
100	0,092	31,5	20,69		

Descripción de la p	rueba	ABSo = 0,120; 550 mL min ⁻¹ , 0,57 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,2	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,112	31,6	0,00		
3	0,108	31,6	3,57		
6	0,104	31,6	7,14		
12	0,103	31,6	8,04		
15	0,103	31,6	8,04		
20	0,099	31,6	11,61		
25	0,097	31,6	13,39		3
30	0,096	31,6	14,29		5
40	0,094	31,6	16,07		
50	0,092	31,6	17,86		
60	0,091	31,6	18,75		
75	0,089	31,6	20,54		
90	0,089	31,6	20,54		
100	0,088	31,6	21,43		

Fuente: elaboración propia.

Tabla XXVII. Prueba No. 25 realizada el 31/10/2017 a baja absorbancia, a caudal [550 mL min⁻¹] e intensidad de corriente constante [0,43 mA cm⁻²]

Descripción de la p	rueba	ABS	So = 0,117; 550 mL min ⁻¹ , 0,43 mA cm ⁻²		
RPM	91		Flujo volumétrico		mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,117	29,4	0,00		
3	0,114	28,9	2,56	1	
6	0,110	29,6	5,98		

Continuación Tabla XXVII

9	0,105	29,6	10,26
12	0,102	29,6	12,82
15	0,097	30,5	17,09
20	0,097	30,6	17,09
25	0,095	30,7	18,80
30	0,093	30,7	20,51
40	0,091	30,7	22,22
50	0,091	30,6	22,22
60	0,090	30	23,08

Descripción de la prueba		ABSo = 0,117; 550 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,120	29,4	0,00		
3	0,118	29,4	1,67		
6	0,115	29,4	4,17		
9	0,111	29,4	7,50		
12	0,110	29,4	8,33		
15	0,105	29,4	12,50		
20	0,101	29,4	15,83		2
25	0,099	29,4	17,50		
30	0,097	29,4	19,17		
40	0,096	29,4	20,00		
50	0,094	29,4	21,67		
60	0,093	29,4	22,50		
75	0,093	29,4	22,50		

Descripción de la p	rueba	ABS	o = 0,117; 550 mL min ⁻¹ , 0,43 mA cm ⁻²		
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,112	29,6	0,00		
3	0,107	29,6	4,46		2
6	0,104	29,6	7,14		3
9	0,102	29,6	8,93		

Continuación Tabla XXVII

12	0,100	29,6	10,71
15	0,095	29,6	15,18
20	0,093	29,6	16,96
25	0,090	29,6	19,64
30	0,089	29,6	20,54
40	0,087	29,6	22,32
50	0,086	29,6	23,21
60	0,085	29,6	24,11
75	0,085	29,6	24,11

Fuente: elaboración propia.

Tabla XXVIII. Prueba No. 26 realizada el 31/10/2017 a baja absorbancia, a caudal [500, 550 mL min⁻¹] e intensidad de corriente [0,43 mA cm⁻²]

Descripción de la p	rueba	ABSo = 0,114; 500 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	91		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,114	26,5	0,00		
3	0,110	26,5	3,52		
6	0,107	26,5	6,17		
9	0,104	26,5	8,37		
12	0,102	26,5	10,13		
15	0,099	26,5	12,78		
20	0,096	26,5	15,42		1
25	0,094	26,5	17,18		
30	0,093	26,5	18,50		
40	0,091	26,5	20,26		
50	0,089	26,5	21,59		
60	0,089	26,5	22,03		
75	0,088	26,5	22,47		

Descripción de la prueba		ABSo = 0,117; 550 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,117	26,3	0,00		
3	0,113	26,3	3,42		
6	0,110	26,3	5,98		
9	0,108	26,3	8,12		
12	0,106	26,3	9,83		
15	0,103	26,3	12,39		
20	0,100	26,3	14,96		2
25	0,098	26,3	16,67		
30	0,096	26,3	17,95		
40	0,094	26,3	19,66		
50	0,093	26,3	20,94		
60	0,092	26,3	21,37		
75	0,092	26,3	21,79		

Descripción de la prueba		ABSo = 0,111; 550 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	91		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,111	26,2	0,00		
3	0,107	26,2	3,60		
6	0,104	26,2	6,31		
9	0,102	26,2	8,56		
12	0,100	26,2	10,36		
15	0,097	26,2	13,06		
20	0,094	26,2	15,77		3
25	0,092	26,2	17,57		
30	0,090	26,2	18,92		
40	0,088	26,2	20,72		
50	0,087	26,2	22,07		
60	0,086	26,2	22,52		
75	0,086	26,2	22,97		

Tabla XXIX. Prueba No. 27 realizada el 31/10/2017 a baja absorbancia, a caudal [400 mL min⁻¹] e intensidad de corriente constante [0,43 mA cm⁻²]

Descripción de la p	rueba	ABSo = 0,100; 400 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,100	25,8	0,00		
3	0,099	25,8	1,00		
6	0,098	25,3	2,00		
12	0,098	25	2,00		
15	0,093	25,4	7,00		
20	0,072	25,4	28,00		
25	0,046	25,7	54,00		1
30	0,030	25,7	70,00		
42	0,015	25,1	85,00		
50	0,011	24,8	89,00		
60	0,009	24,8	91,00		
75	0,008	24,8	92,00		
90	0,008	24,8	92,00		

Descripción de la p	Descripción de la prueba		so = 0,100; 400 mL min ⁻¹ , 0,43 m.	A cm ⁻²	
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,110	25,8	0,00		
3	0,105	25,8	4,55		
6	0,103	25,8	6,36		
12	0,102	25,8	7,27		
15	0,101	25,8	8,18		
20	0,095	25,8	13,64		2
25	0,093	25,8	15,45		
30	0,092	25,8	16,36		
40	0,090	25,8	18,18		
50	0,087	25,8	20,91		
60	0,087	25,8	20,91		

	Continu	Jación	Tabla	XXIX
--	---------	--------	-------	------

75	0,086	25,8	21,82	
90	0,086	25,8	21,82	
100	0,085	25,8	22,73	

Descripción de la p	rueba	ABSo = 0,100; 400 mL min ⁻¹ , 0,43 mA cm ⁻²				
RPM	63		Flujo volumétrico	400	mL/min	
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А	
рНо	7,1		pHf	7,2		
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición	
0	0,106	25,3	0,00			
3	0,104	25,3	1,89			
6	0,102	25,3	3,77			
12	0,098	25,3	7,55			
15	0,097	25,3	8,49			
20	0,096	25,3	9,43			
25	0,094	25,3	11,32		2	
30	0,091	25,3	14,15		5	
40	0,088	25,3	16,98			
50	0,086	25,3	18,87			
60	0,084	25,3	20,75			
75	0,083	25,3	21,70			
90	0,082	25,3	22,64			
100	0,082	25,3	22,64			

Tabla XXX. Prueba No. 28 realizada el 02/11/2017 a baja absorbancia, a caudal [300 mL min⁻¹] e intensidad de corriente constante [0,43 mA cm⁻²]

Descripción de la	a prueba	ABSo = 0,113; 300 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,113	26	0,00		
3	0,111	26	1,77		1
6	0,109	26,1	3,54		

Continuación Tabla XXX

	1		
12	0,108	26,1	4,42
15	0,108	26,1	4,42
21	0,104	26,5	7,96
25	0,102	26,8	9,73
30	0,102	26,5	9,73
40	0,102	26,5	9,73
50	0,097	26,3	14,16
60	0,095	26,1	15,93

Descripción de la	a prueba	ABSo = 0,113; 300 mL min ⁻¹ , 0,43 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,117	26	0,00		
2,5	0,115	26	1,71		
5	0,114	26	2,56		
7,5	0,113	26	3,42		
10	0,113	26	3,42		
12	0,112	26	4,27		
15	0,112	26	4,27		2
20	0,109	26	6,84		
25	0,107	26	8,55		
30	0,106	26	9,40		
40	0,103	26	11,97		
50	0,101	26	13,68		
60	0.099	26	15.38		

Descripción de la	Descripción de la prueba		ABSo = 0,113; 300 mL min ⁻¹ , 0,43 mA cm		
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,110	26,1	0,00		
3	0,107	26,1	2,73		
6	0,106	26,1	3,64		3
9	0,105	26,1	4,55		
12	0,104	26,1	5,45		

Continuación Tabla XXX

15	0,103	26,1	6,36
21	0,100	26,1	9,09
25	0,099	26,1	10,00
30	0,097	26,1	11,82
40	0,095	26,1	13,64
50	0,093	26,1	15,45
60	0,092	26,1	16,36

Fuente: elaboración propia.

Tabla XXXI. Prueba No. 29 realizada el 02/11/2017 a baja absorbancia, a caudal [300 mL min⁻¹] e intensidad de corriente constante [0,72 mA cm⁻²]

Descripción de la	a prueba	ABSo = 0,119; 300 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,119	33,1	0,00		
2,5	0,118	33,1	0,84		
5	0,117	33,1	1,68		
7,5	0,115	33,1	3,36		
10	0,115	33,1	3,36		
12	0,114	33,1	4,20		
15	0,112	33,1	5,88		
20	0,111	33,1	6,72		1
25	0,11	33,1	7,56		•
30	0,108	33,1	9,24		
40	0,105	33,1	11,76		
50	0,104	33,1	12,61		
60	0,102	33,1	14,29		
75	0,101	33,1	15,13		
90	0,099	33,1	16,81		
100	0,099	33,1	16,81		

Descripción de la	n prueba	ABSo = 0,115; 300 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,115	33,5	0,00		
2,5	0,114	33,5	0,87		
5	0,113	33,5	1,74		
7,5	0,111	33,5	3,48		
10	0,111	33,5	3,48		
12	0,110	33,5	4,35		
15	0,108	33,5	6,09		
20	0,107	33,5	6,96		2
25	0,106	33,5	7,83		
30	0,104	33,5	9,57		
40	0,101	33,5	12,17		
50	0,100	33,5	13,04		
60	0,098	33,5	14,78		
100	0,097	33,5	15,65		
120	0,095	33,5	17,39		

Descripción de la prueba		ABSo = 0,120; 300 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,120	33,2	0,00		
3	0,119	33,2	0,83		
6	0,118	33,2	1,67		
9	0,116	33,2	3,33		
12	0,116	33,2	3,33		
15	0,115	33,2	4,17		
21	0,113	33,2	5,83		3
25	0,112	33,2	6,67		
30	0,111	33,2	7,50		
40	0,109	33,2	9,17		
50	0,106	33,2	11,67		
60	0,105	33,2	12,50		
90	0,103	33,2	14,17		

Continuación Tabla XXXI

Fuente: elaboración propia.

Tabla XXXII. Prueba No. 30 realizada el 02/11/2017 a baja absorbancia, a caudal [300, 400 mL min⁻¹] e intensidad de corriente [0,72 mA cm⁻²]

Descripción de	la prueba	ABSo = 0,112; 400 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,112	33	0,00		
2,5	0,111	33	0,89		
5	0,106	33	5,36		
7,5	0,105	33	6,25		
10	0,104	33	7,14		
12,5	0,102	33	8,93		
15	0,102	33	8,93		
20	0,1	33	10,71		1
30	0,098	33	12,50		
40	0,096	33	14,29		
50	0,095	33	15,18		
60	0,094	33	16,07		
75	0,093	33	16,96		
90	0,093	33	16,96		
100	0,092	33	17,86		

Descripción de	la prueba	ABSo = 0,115; 300 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,115	33,6	0,00		
0 2,5	0,115 0,114	33,6 33,6	0,00		2

Continuación Tabla XXXII

6,09	33,6	0,108	7,5
6,96	33,6	0,107	10
8,70	33,6	0,105	12
8,70	33,6	0,105	15
10,43	33,6	0,103	20
12,17	33,6	0,101	25
13,91	33,6	0,099	30
14,78	33,6	0,098	40
15,65	33,6	0,097	50
16,52	33,6	0,096	60
16,52	33,6	0,096	100
17,39	33,6	0,095	120

Descripción de la prueba ABSo = 0,110; 300 mL min ⁻¹ , 0			So = 0,110; 300 mL min ⁻¹ , 0,72 m.	A cm ⁻²	
RPM	63		Flujo volumétrico	400	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,110	33,1	0,00		
3	0,109	33,1	0,91		
6	0,104	33,1	5,45		
9	0,103	33,1	6,36		
12	0,102	33,1	7,27		
15	0,100	33,1	9,09		
21	0,100	33,1	9,09		
25	0,098	33,1	10,91		3
30	0,096	33,1	12,73		
40	0,094	33,1	14,55		
50	0,093	33,1	15,45		
60	0,092	33,1	16,36		
90	0,091	33,1	17,27		
100	0,091	33,1	17,27		
120	0,090	33,1	18,18		

Fuente: elaboración propia.

Tabla XXXIII.Prueba No. 31 realizada el 03/11/2017 a baja absorbancia, a caudal [300, 500 mL min⁻¹] e intensidad de corriente [0,72 mA cm⁻²]

Descripción de la p	orueba	ABSo = 0,113; 500 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,113	33,7	0,00		
3	0,111	33,7	1,77		
6	0,11	33,7	2,65		
12	0,109	33,7	3,54		
15	0,105	33,7	7,08		
20	0,103	33,7	8,85		
25	0,102	33,7	9,73		1
30	0,1	33,7	11,50		1
40	0,098	33,7	13,27		
50	0,097	33,7	14,16		
60	0,095	33,7	15,93		
75	0,094	33,7	16,81		
90	0,093	33,7	17,70		
100	0,091	33,7	19,47		

Descripción de la p	orueba	ABSo = 0,116; 300 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	82		Flujo volumétrico	500	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición
0	0,116	32,9	0,00		
2,5	0,114	32,9	1,72		
5	0,113	32,9	2,59		
7,5	0,112	32,9	3,45		
10	0,108	32,9	6,90		2
12	0,106	32,9	8,62		2
15	0,105	32,9	9,48		
20	0,103	32,9	11,21		
25	0,101	32,9	12,93		
30	0,100	32,9	13,79		

Continuación Tabla XXXIII

40	0,098	32,9	15,52
50	0,097	32,9	16,38
60	0,096	32,9	17,24
100	0,094	32,9	18,97

Descripción de la p	orueba	ABSo = 0,110; 300 mL min ⁻¹ , 0,72 mA cm ⁻²					
RPM	82		Flujo volumétrico	500	mL/min		
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А		
рНо	7,1		pHf	7,2			
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	etición		
0	0,110	33,4	0,00				
3	0,108	33,4	1,82				
6	0,107	33,4	2,73				
9	0,106	33,4	3,64				
12	0,102	33,4	7,27				
15	0,100	33,4	9,09				
21	0,099	33,4	10,00		3		
25	0,097	33,4	11,82		5		
30	0,095	33,4	13,64				
40	0,094	33,4	14,55				
50	0,092	33,4	16,36				
60	0,091	33,4	17,27				
90	0,090	33,4	18,18				
100	0,088	33,4	20,00				

Fuente: elaboración propia.

Tabla XXXIV. Prueba No. 32 realizada el 03/11/2017 a baja absorbancia, a caudal [300, 550 mL min⁻¹] e intensidad de corriente [0,43; 0,57 mA cm⁻²]

Descripción de la	orueba	ABSo = 0,112; 550 mL min ⁻¹ , 0,72 mA cm ⁻²			
RPM	44		Flujo volumétrico	550	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,25	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Repetición	
0	0,112	33,4	0,00		1
3	0,11	33,4	1,79		I

Continuación Tabla XXXIV

6	0,109	33,4	2,68
12	0,107	33,4	4,46
15	0,105	33,4	6,25
20	0,105	33,4	6,25
25	0,103	33,4	8,04
30	0,1	33,4	10,71
40	0,099	33,4	11,61
50	0,096	33,4	14,29
60	0,096	33,4	14,29
75	0,095	33,4	15,18
90	0,092	33,4	17,86
100	0,09	33,4	19,64

Descripción de la p	Descripción de la prueba ABSo = 0,117; 300 mL min ⁻¹ , 0,2			nA cm- ²	2
RPM	44		Flujo volumétrico	300	mL/min
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	А
рНо	7,1		pHf	7,2	
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	petición
0	0,117	33,5	0,00		
3	0,115	33,5	1,71		
6	0,114	33,5	2,56		
12	0,112	33,5	4,27		
15	0,110	33,5	5,98		
20	0,110	33,5	5,98		
25	0,108	33,5	7,69		2
30	0,105	33,5	10,26		2
40	0,104	33,5	11,11		
50	0,101	33,5	13,68		
60	0,101	33,5	13,68		
75	0,100	33,5	14,53		
90	0,097	33,5	17,09		
100	0,095	33,5	18,80		

Descripción de la p	orueba	ABSo = 0,110; 300 mL min ⁻¹ , 0,43 mA cm ⁻²				
RPM	44		Flujo volumétrico	300	mL/min	
Vol. Inicial	800	mL	Corriente eléctrica aplicada	0,15	A	
рНо	7,1		pHf	7,2		
Tiempo (min)	ABS	Voltaje (V)	Remoción total (%)	Rep	petición	
0	0,110	33,8	0,00			
3	0,108	33,8	1,82			
6	0,107	33,8	2,73			
12	0,105	33,8	4,55			
15	0,103	33,8	6,36			
20	0,103	33,8	6,36			
25	0,101	33,8	8,18		3	
30	0,098	33,8	10,91		5	
40	0,097	33,8	11,82			
50	0,094	33,8	14,55			
60	0,094	33,8	14,55			
75	0,093	33,8	15,45			
90	0,090	33,8	18,18			
100	0,088	33,8	20,00			

3.7.3. Plan de análisis de los resultados

3.7.3.1. Métodos y modelos de los datos según el tipo de variables

El análisis de los resultados se realizará a partir de un análisis de varianza (ANOVA) y la normalización de gráficas creadas con datos de absorbancia en función del tiempo y la comparación de dichas gráficas según los valores elegidos para las variables de control.

También se usarán los datos experimentales obtenidos para calcular los valores estadísticos para dar validez a los resultados.

3.7.3.2. Programas por utilizar para análisis de datos

- Microsoft Word 2017: utilizado para procesamiento de texto.
- Microsoft Excel 2017: utilizado para el procesamiento de datos, realización de gráficas, obtención de modelos matemáticos y análisis estadístico.

3.8. Análisis estadístico

3.8.1. Media aritmética

Para calcular los datos promedio y para calcular la desviación estándar se utilizará la media aritmética.

$$\tilde{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Ecuación 3

3.8.2. Error de precisión

3.8.2.1. Desviación estándar

$$\sigma_{EST} = \sqrt{\sum_{i=1}^{n} \frac{(\tilde{x} - x_i)^2}{n - 1}}$$

Ecuación 4

3.8.2.2. Error de precisión

$$CV = \frac{\sigma_{EST}}{\tilde{x}} * 100 \%$$

Ecuación 5

3.8.3. Error de incertidumbre

Partiendo de diferenciales, se estimará el error de incertidumbre de la siguiente manera:

$$\varepsilon_{INC} = \frac{\Delta f(x_1, x_2, x_3 \dots x_n)}{f(x_1, x_2, x_3 \dots x_n)} * 100 \% = \left(\frac{1}{f} * \sum_{i=1}^n \left|\frac{\partial f}{\partial x_i}\right| \Delta x_i\right) * 100 \%$$

Ecuación 6

3.8.4. Análisis de varianzas (ANOVA)

Para verificar si existe variación entre los datos recabados al variar densidad de corriente, flujo volumétrico y transmitancia inicial, se utilizará un análisis de varianzas (ANOVA).

3.8.4.1. Varianza de cada muestra

$$S^{2} = \sum_{i=1}^{n} \frac{(\tilde{x} - x_{i})^{2}}{n-1}$$

Ecuación 7

3.8.4.2. Estimación interna de varianzas

$$S_w^2 = \frac{S_1 + S_2 + \dots + S_k}{k}$$

Ecuación 8

3.8.4.3. Varianza de las medias muestrales

$$S_x^2 = \sum_{j=1}^k \frac{(\tilde{x} - x_i)^2}{k - 1}$$

Ecuación 9

3.8.4.4. Parámetro F de Fisher

$$F = \frac{n * S_x^2}{S_w^2}$$

Ecuación 10

3.8.4.5. Grados de libertad

$$v_1 = k - 1$$

Ecuación 11

$$v_2 = k(n-1)$$

Ecuación 12

Suponiendo que los datos se distribuyen en forma normal y con base en el nivel de confianza del estudio, se determina el valor crítico de F. Si el valor calculado de F es mayor que el valor crítico de F, se rechaza la hipótesis nula.

La hipótesis nula, en este caso, sugiere que la variación de las medias entre un nivel y otro no son significativas; por otra parte, la hipótesis alternativa sugiera que la variación de las medias entre un nivel y otro son significativas.

3.9. Diagramas para construcción del reactor electrolítico continuo y esquema para fase experimental

Fuente: elaboración propia.

Esquema de fase experimental

- 1. Potenciostato/Galvanostato
- 2. Bomba peristáltica
- 3. Reactor
- 4. Reservorio
- 5. Plancha de calentamiento con agitación
- 6. Cátodo
- 7. Espacio entre electrodos
- 8. Ánodo

4. **RESULTADOS**

A continuación, se presentan los resultados de la experimentación realizada para definir los efectos que se observan de la transmitancia inicial, la densidad de corriente y el flujo volumétrico sobre el tratamiento para la desactivación oxidativa y eliminación de alga *Chlorella vulgaris* en el reactor construido.

4.1. Adaptación y construcción del reactor electrolítico de lecho fijo

Figura 14. Reactor electrolítico continuo vista frontal

Fuente: elaboración propia.

Figura 15. Reactor electrolítico continuo vista lateral

Fuente: elaboración propia.

Figura 16. Tapones del reactor electrolítico

Fuente: elaboración propia.

Figura 17. Acoplamiento final del tubo, adaptador, tapón del reactor electrolítico y conector de bronce a presión

Fuente: elaboración propia.

4.2. Efecto de la densidad de corriente en el tratamiento electroquímico estudiado

Figura 18. Remoción total promedio en función del tiempo a flujo volumétrico constante (550 mL min⁻¹) con absorbancia inicial alta (ABS = 0,165 – 0,177; λ = 680 nm)

Fuente: elaboración propia, ver tabla de datos en apéndice 3.

Figura 19. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente graficada en la Figura 18

Fuente: elaboración propia, ver tabla de datos en apéndice 4.

Figura 20. Remoción total promedio en función del tiempo a flujo volumétrico constante (300 mL min⁻¹) con absorbancia inicial baja (ABS = $0,102 - 0,119; \lambda = 680$ nm)

44.00

Fuente: elaboración propia, ver tabla de datos en apéndice 5.

Figura 21. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente graficada en la Figura 20

4.3. Efecto sobre el porcentaje de remoción total a diferentes condiciones de densidad de corriente y flujo volumétrico

Figura 22. Remoción total promedio para absorbancia inicial alta en función del tiempo a diferentes valores de densidad de corriente eléctrica y flujo volumétrico

Fuente: elaboración propia, ver tabla de datos en apéndice 7.

Figura 24. Remoción total promedio para absorbancia inicial baja en función del tiempo a diferentes valores de densidad de corriente eléctrica y flujo volumétrico

Fuente: elaboración propia, ver tabla de datos en apéndice 9.

Figura 25. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente a flujo volumétrico de 300 y 550 mL min⁻¹, graficados en la Figura 24

4.4. Efecto de la transmitancia inicial sobre el porcentaje de remoción total a diferentes condiciones de densidad de corriente y flujo volumétrico

Figura 26. Remoción total promedio en función del tiempo a diferentes valores de densidad de corriente eléctrica y absorbancia inicial (λ = 680 nm), con flujo volumétrico constante (300 mL min⁻¹)

Fuente: elaboración propia, ver tabla de datos en apéndice 11.

Figura 27. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente a Absorbancia Inicial Alta y Baja, graficadas en la Figura 26

4.5. Comportamiento de la absorbancia respecto a la duración del tratamiento aplicado

Fuente: elaboración propia, ver tabla de datos en apéndice 13.

Figura 29. Absorbancia en función del tiempo con absorbancia inicial baja

5. INTERPRETACIÓN DE RESULTADOS

De acuerdo con el objetivo general, se logró alcanzar la oxidación constitutiva de los componentes del alga C. vulgaris mediante la utilización efectiva del reactor electrolítico de lecho fijo adaptado y construido.

En relación con el objetivo específico 1, la adaptación y construcción del reactor electrolítico continuo logró llevarse a cabo para ejecutar el proyecto como se observa en las Figuras 14 a 17 y Diagramas 11 a 13. Para ello, primero, se procedió a barrenar el tubo y los tapones de PVC; al tubo de PVC se le hicieron dos orificios a lo largo del tubo a cada 5 cm para la salida de los hilos de acero inoxidable, a cada tapón horadado por el centro se le acoplaron los conectores de bronce a presión y se agregó suficiente gel de silicón para descartar fugas (Figura 16). Los adaptadores fueron pegados al tubo, en la rosca se colocó cinta de teflón y se colocó el tapón inferior del reactor (Figuras 15 y 17).

Se colocó aleatoriamente empaques de tipo anillos Raschig (Ver anexos, Figuras 30 y 31) hasta alcanzar una altura de 5 cm. Luego, se colocó el ánodo de lana de acero inoxidable previamente pesado (7,935 g; 0,035 m²) sacando el hilo de acero inoxidable por el orificio ubicado a 5 cm de altura del tubo PVC. A cada electrodo se le amarró un hilo de acero inoxidable trenzado y se verificó mediante el multímetro Truper que toda la superficie de los electrodos tuviera contacto con el extremo libre del hilo al cual se le conectarían los lagartos provenientes de la fuente de poder (Eventek KPS305). Sobre el ánodo se colocó una capa al azar de empaques tipo anillos en espiral (Ver anexos, Figuras 32 y 33) de aproximadamente 0,5 cm de altura (3 vueltas) para la separación de electrodos. Luego, se colocó el cátodo de lana de acero inoxidable (7,904 g; 0,035 m²) y se sacó el hilo de acero inoxidable amarrado a él, por el orificio ubicado a 10 cm de altura del tubo PVC.

Se verificó, mediante el uso del multímetro Truper, que no existiera contacto entre los dos electrodos, para evitar un corto circuito al pasar corriente eléctrica a los electrodos.

Se colocaron empaques tipo anillos Raschig por encima del cátodo hasta llenar todo el reactor y se colocó el tapón superior.

Finalmente, para asegurar que el reactor no tuviera fugas se conectó todo el sistema (Ver Figura 13. Esquema de fase experimental), sin encender la fuente de poder, colocando agua destilada en el reservorio, se encendió la bomba peristáltica haciendo fluir agua continuamente. Al observar fugas se agregó gel de silicón el cual se dejó secar y endurecer durante 24 horas. Se volvió a realizar la prueba con agua destilada hasta determinar la inexistencia de fugas.

Antes de iniciar cada prueba experimental se comprobó que no existiera contacto entre los electrodos ni taponamiento en las mangueras ni en el reactor.

Además, el reactor trabajó con estabilidad durante los 17 días de experimentación.

Para determinar el efecto que tienen las variables de transmitancia inicial, densidad de corriente y flujo volumétrico sobre el tratamiento de electrolisis que

se le aplicó al electrolito, los resultados se analizaron gráficamente y se comprobaron de manera estadística.

En relación al objetivo específico 2, para analizar el efecto de la densidad de corriente sobre el tratamiento electroquímico se caracterizó la remoción total, expresada como porcentaje, en función del tiempo a flujo volumétrico constante (550 mL min⁻¹). Se obtuvieron dos gráficas, una para la transmitancia inicial alta (T₀A) y otra para la transmitancia inicial baja (T₀B) (Figuras 18 y 20 respectivamente). El porcentaje de remoción total se utiliza como variable de caracterización debido a que permite cuantificar en porcentajes el rendimiento del tratamiento aplicado.

De la figura 18 se puede constatar que la remoción máxima alcanzada por las 4 densidades de corriente es superior al 26%, notando que la curva con la máxima densidad de corriente aplicada (7,15 A m⁻², curva amarilla), al final del tratamiento (tiempo de remoción máxima, 100 min) alcanza un porcentaje máximo de remoción del 38,46 %. No así para la curva con la menor densidad de corriente (2,86 A m⁻², curva azul) que, al final del tratamiento, alcanza un porcentaje máximo de remoción del 27,68%. El análisis de varianza (ANOVA) de 1 factor realizado (Apéndice 3) demuestra que **existe diferencia significativa entre los tratamientos aplicados**.

También se realizó un diagrama de cajas (Figura 19). Para ello, se tomaron en cuenta los valores de las 3 repeticiones realizadas para cada tratamiento en el tiempo de remoción máxima (100 min) a cada densidad de corriente graficada en la Figura 18. El ANOVA de 1 factor realizado para dichos datos demuestra que **no existe diferencia significativa entre las 3 repeticiones de los tratamientos realizados a ese tiempo**.

Por lo tanto la remoción total, para las condiciones de la Figura 18, es directamente proporcional a la densidad de corriente aplicada al sistema electroquímico utilizado, en el rango de [2,86; 7,15] A m⁻².

En las pruebas realizadas con una transmitancia inicial baja (Figura 20) el comportamiento es inverso al de la Figura 18, ya que la curva con la menor densidad de corriente (2,86 A m⁻², curva azul) es la que alcanza el mayor porcentaje de remoción total (41,18 %), teniendo en cuenta que esta fue la primera prueba realizada (día 1) en la fase experimental, la cual duró un aproximado de 17 días. Las demás curvas que alcanzan un porcentaje máximo de remoción entre el 16,80 y 21,24 % se realizaron en los días 16 y 17 por lo cual el comportamiento observado en la Figura 20 se atribuye a la perdida de efectividad de los electrodos de acero inoxidable utilizados. La pérdida de efectividad sucede por la ruptura de los electrodos, al ensuciamiento o deposición de alga observada en los electrodos al finalizar la experimentación y a la perdida de los electrodos (oxidación de electrodos).

El ANOVA de un 1 factor realizado para la Figura 20 (Apéndice 5) muestra que **existe diferencia significativa entre los tratamientos realizados**.

El diagrama de cajas (Figura 21) y el ANOVA de 1 factor (Apéndice 6) realizado para las repeticiones a un tiempo de 100 min de los tratamientos representados en la Figura 20 muestran que **no existe diferencia significativa** entre los datos obtenidos en las tres repeticiones realizadas de cada tratamiento a dicho tiempo.

Para el objetivo específico 3, sobre el efecto del flujo volumétrico en el porcentaje de remoción total a absorbancia inicial alta, se obtuvo la Figura 22. En ella se muestran 2 grupos de curvas a 3 diferentes densidades de corriente

(2,86; 4,29 y 5,72 A m⁻²) para 2 flujos volumétricos seleccionados (300 y 550 mL min⁻¹).

La Figura 22 caracteriza el porcentaje de remoción en función del tiempo. Al analizar los datos se observa que la curvas con el flujo volumétrico menor (300 mL min⁻¹) alcanzan mayores porcentajes de remoción total (entre 38,07 y 51,22%), que aquellas que se realizaron con el flujo volumétrico máximo trabajado de 550 mL min⁻¹, 27,68 a 35,71 %. Esto lo confirman los ANOVA de 1 y 2 factores realizados (Apéndice 7). Estos demuestran que **existe diferencia significativa entre los datos a 300 y 550 mL min⁻¹**.

Un diagrama de cajas (Figura 23) y ANOVA de 1 y 2 factores realizados para los datos de las 3 repeticiones realizadas de los tratamientos en el tiempo 100 min reafirman que existe diferencia significativa entre los datos a 300 y 550 mL min⁻¹.

En relación al efecto del flujo volumétrico en el porcentaje de remoción total para tratamientos con absorbancia inicial baja, la Figura 24 muestra que **no diferencia significativa entre los datos** (Apéndice 9). Se observa que el tratamiento a 300 mL min-1 y 2,86 A m-2 que se desvía de todos los demás tratamientos. De esta manera se afirma lo discutido respecto a la Figura 20, en la cual, al inicio de la experimentación, el sistema logró una mayor remoción a dichas condiciones y conforme se realizaron los tratamientos, los electrodos fueron perdiendo su capacidad de remoción.

Al realizar un diagrama de cajas (Figura 25) sobre los datos a 100 min de las 3 repeticiones de los tratamientos graficados en la Figura 24 se obtuvieron valores estadísticos que indican que **no existe diferencia significativa entre dichos datos** (Apéndice 10). La mayor remoción a menor flujo volumétrico se debe a que permite un mayor tiempo de contacto entre el electrodo y el electrolito, haciendo más efectiva la acción del flujo eléctrico aplicado. La efectividad de la remoción total es entonces inversamente proporcional al flujo volumétrico aplicado.

Respecto al objetivo específico 4, para analizar el efecto de la transmitancia inicial en el tratamiento electroquímico estudiado, se caracterizaron curvas a caudal constante (300 mL min⁻¹) con variación de transmitancia inicial y densidad de corriente (Figura 26).

Analizando dicha gráfica se aprecia que las curvas correspondientes a las pruebas realizadas con transmitancia inicial alta (Absorbancia [0,193; 0,177]) logran un mayor porcentaje de remoción total (45,60 a 51,41 %) que aquellas que se realizaron con transmitancia inicial baja (16,81 a 21,24 %, absorbancia [0,113; 0,119]). Confirmado por los ANOVA de 1 y 2 factores (Apéndice 11) que demuestran que **la absorbancia inicial y la densidad de corriente tienen efecto significativo en el porcentaje de remoción total alcanzado**.

Para el diagrama de cajas realizado (Figura 27) y las 3 repeticiones de los tratamientos aplicados al minuto 100, los ANOVA de 1 y 2 factores (Apéndice 12) demuestran que a ese tiempo solo **la absorbancia inicial tiene efecto significativo en el porcentaje de remoción total**.

Durante la caracterización de los resultados se observó un comportamiento en común entre todos los tratamientos realizados al graficar la absorbancia respecto al tiempo, por ello se describe a continuación el mecanismo mediante el cual se cree que el tratamiento electroquímico procede para la oxidación constitutiva de alga.

Para ello se caracterizaron las Figuras 28 y 29, una para transmitancia inicial alta y otra para transmitancia inicial baja. En ambas figuras se muestran las 3 etapas del perfil de decaimiento de absorbancia a través del tiempo.

En la primera etapa la célula de *Chlorella vulgaris* (Beyerinck, M.W.) se encuentra completa por lo que será más fácil de agrietar. Al comenzar el tratamiento y aplicar la densidad de corriente, la célula comienza a destruirse y a colapsar dejando escapar los cloroplastos que contienen la clorofila-a. Dado que el núcleo de la clorofila es tetraciclica y tiene muchos enlaces dobles, se sospecha que es ahí donde inciden los electrones excitados por la energía aplicada para la destrucción de la misma. La ubicación de los cloroplastos en la célula del alga también es un factor importante ya que se encuentran alrededor de la membrana celular por lo que están más expuestos a la destrucción al aplicar el tratamiento. Esta etapa dura de 15 a 20 minutos y se caracteriza por ser una etapa de velocidad constante durante la cual ocurre la destrucción más efectiva. La velocidad de remoción para las Figuras 28 y 29 durante esta etapa fue de 2,4E-03 y 1,3E-03 % min⁻¹ respectivamente.

Durante la segunda etapa la velocidad de remoción disminuye, se cree que es debido a que los cloroplastos fragmentados enmascaran células de *Chlorella vulgaris* (Beyerinck, M.W.) y esta no se encuentra en una posición efectiva para la remoción. Además, es posible que se traslapen entre ellas con lo cual disminuye la efectividad del tratamiento. Esta etapa es de transición y dura alrededor de 40 minutos. La velocidad de remoción para las Figuras 28 y 29 durante esta etapa fue de 0,4E-03 y 0,2E-03 % min⁻¹ respectivamente.

La tercera etapa se caracteriza por alcanzar la remoción máxima posible del tratamiento donde la de velocidad de remoción tenderá a 0, por lo que no se recomienda continuar con el tratamiento porque deja de ser efectivo. Ya que las

mediciones se realizaron mediante espectrofotometría, la absorbancia es un reflejo del color del cloroplasto y en esta etapa ya no cambia porque la clorofila ha sido destruida hasta partículas diminutas. El electrolito contendrá algún porcentaje de cloroplastos sin destruir por lo que se considera al tratamiento estudiado como un pre-tratamiento efectivo y no un tratamiento total.

La velocidad de remoción para las Figuras 28 y 29, durante esta etapa fue de 0,2E-03 y 2,0E-05 % min⁻¹ respectivamente. Aproximadamente esta etapa inicia luego de 60 minutos de tratamiento.

La marcada disminución de velocidad de remoción durante el tratamiento demuestra la existencia de las 3 etapas del tratamiento, siendo la etapa I, durante los primeros 20 min del tratamiento de oxidación electrolítica, la más efectiva.

.

CONCLUSIONES

1. La construcción y adaptación del reactor electrolítico de lecho fijo para la oxidación constitutiva del alga *Chlorella vulgaris* logró realizarse con efectividad.

El tratamiento electrolítico para una transmitancia inicial alta [0,165; 0,177], se logró, dentro del rango de flujo volumétrico [300, 550 mL min⁻¹], en forma positiva, logrando oxidaciones más efectivas cuando la densidad de corriente directa era máxima en el rango de [2,86; 7,15 A m⁻²]. Se encontró, inclusive, diferencia significativa en las variaciones de datos.

3. El tratamiento electrolítico para una transmitancia inicial baja [0,102; 0,119], se logró, dentro del rango de flujo volumétrico [300, 550 mL min⁻¹] y densidad de corriente directa [2,86; 7,15 A m⁻²], en forma positiva. Se encontró que no existe diferencia significativa en las variaciones de datos.

4. El tratamiento electrolítico para una transmitancia inicial alta [0,165; 0,193], se logró, dentro del rango de densidad de corriente directa [2,86; 7,15 A m⁻²], en forma positiva, logrando oxidaciones más efectivas cuando el flujo volumétrico era mínimo en el rango de [300, 550 mL min⁻¹]. Se encontró, inclusive, diferencia significativa en las variaciones de datos.

5. El tratamiento electrolítico para una transmitancia inicial baja [0,102; 0,120], se logró, dentro del rango de flujo volumétrico [300, 550 mL min⁻¹] y densidad de corriente directa [2,86; 7,15 A m⁻²], en forma positiva.

Encontrándose que no existe diferencia significativa en las variaciones de datos.

6. Para las condiciones de operación del reactor electrolítico, flujo volumétrico [300 mL min⁻¹] y densidad de corriente directa [4,29; 7,15 A m⁻²], se lograron oxidaciones más efectivas cuando la transmitancia inicial era alta [0,177; 0,193]. Se encontró, inclusive, diferencia significativa en las variaciones de datos.

7. Se comprobó que el mecanismo del tratamiento electrolítico de oxidación constitutiva del alga *Chlorella vulgaris* ocurre en tres etapas, durante los tratamientos aplicados a absorbancia inicial alta y baja.

8. Se comprobó que la oxidación electrolítica más efectiva ocurre durante la etapa I, en los primeros 20 min del tratamiento aplicado.

RECOMENDACIONES

1. Construir un reactor de material transparente o cámara visible de electrodos para verificar la evolución del proceso oxidativo.

2. Utilizar electrodos de acero inoxidable de mejor calidad y resistencia.

3. Sustituir la lana utilizada por lana de acero inoxidable de cedula mayor a 304 como electrodos de un material de mejor calidad por el carbono aleante.

4. Mejorar la geometría de los electrodos utilizados.

5. Verificar, paralelamente a la medición de la absorbancia, la destrucción de células del alga por microscopía.

6. Realizar el estudio del tratamiento electroquímico de oxidación constitutiva aplicado a la planta *Hydrilla Verticillata* (L.F.) Royle.

BIBLIOGRAFÍA

- BERGMANN, M.E.H.; ROLLIN, J. Product and by-product formation in laboratorystudies on disinfection electrolysis of water using borondoped diamondanodes. Artículo científico. Catal. Today 124. 2007. 198–203 p.
- BRADLEY, P.M. Plant hormones do have a role in controlling growth and development of algae. Artículo científico. J. Phycolo. 27, 1991. 317–321 p.
- 3. BROWN, T. L.; LEMAY; BURSTEN. *Chemistry: the central science*. United States of America. 11^{th.} edition. Pearson education. 2009.
- CAMPINAS, M.; JOÃO, M. Evaluation of cyanobacterial cells removal and lysis by ultrafiltration. Artículo científico. Sep. Purif. Technol. 70, 2010. 345–353 p.
- CAÑIZARES, P.; SÁEZ, C.; LOBATO, J.; RODRIGO, M.A. Electrochemical treatment of 2, 4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Artículo científico. Electrochim Acta 49, 2004. 4641–4650 p.
- CARMICHAEL, W.W.; BOYER, G. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Artículo científico. United States. Harmful Algae 54, 2016. 194 – 212 p.

- CHANDRA, S.; DIX, M.; REJMÁNKOVÁ, E.; MOSQUERA, V.; GIRÓN, N.; HEYVAERT, A. *El estado ecológico actual del lago atitlán y el impacto de las entradas de aguas residuales: recomendación para exportación de las aguas residuales de la cuenca para restaurar el lago.* Artículo científico. USAID. University of Nevada. UVG. URL. DRI. 2013.
- CHORUS, I.; BARTRAM, J. (Eds.). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. World Health Organization, EandFN Spon, Routledge, London. 1999.
- CODD, G. A.; Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Artículo científico. Ecological Engineering 16, 2000. 51–60 p.
- DIX, M.; MEDINILLA, O. y CASTELLANOS, E. Diagnóstico Ecológico-Social en la Cuenca de Atitlán. Artículo científico. Publicado por Universidad del Valle de Guatemala/The Nature Conservancy, Guatemala. 2003.
- DIX, M.; OCHAETA, G.; TOLEDO, A.; DIX, M.; GARCÍA, O.; BOCEL, E.; JAVIER, P. *Florecimiento de cianobacteria en el lago Atitlán: cambios en composición y consecuencias potenciales.* Artículo científico. Asociación de amigos del lago de Atitlán. University of Nevada. UVG. URL. DRI. 2015.

- DREES, K.P.; ABBASZADEGAN, M.; MAIER, R.M. Comparative electrochemical inactivation of bacteria and bacteriophage. Artículo científico. Water Res. 37, 2003. 2291–2300 p.
- Enciclopedia colaborativa en la red cubana. Chlorella Vulgaris. Cuba.
 [en línea] https://www.ecured.cu/Chlorella_Vulgaris>. 2016.
- 14. FUNARI, E.; TESTAI, E. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38 (2), 2008. 97–125 p.
- GHERNAOUT, B.; GHERNAOUT, D.; SAIBA, A.; Algae and cyanotoxins removal by coagulation/flocculation: a review. Artículo científico. Desalin. Water Treat. 20, 2010. 133–143 p.
- JOCHIMSEN, E.M.; CARMICHAEL, W.W.; AN, J.S.; CARDO, D.M.; COOKSON, S.T.; HOLMES, C.E.M.; ANTUNES, M.B.; FILHO, D.A.; DE MELO, L.; BURRETO, V.S.T.; AZEVEDO, S.M.F.O.; JARVIS, W.R. *Liver failure and death following exposure to microcystins at a hemodialysis center in Brazil.* Artículo científico. N. Eng. J. Med. 338 (13). 1998. 873 – 878 p.
- JOQUERA, M. A.; VALENCIA, G.; EGUCHI, M.; KATAYOSE, M.; RIQUELME, C. Desinfection of seawater for hatchery aquaculture systems using electrolytic water treatment. Artículo científico. Japan. Aquaculture 207, 2002. 213 – 224 p.
- 18. JUNG, Y.; YOON, Y.; HONG, E.; KWON, M.; KANG, J. Inactivation characteristics of ozone and electrolysis process for ballast water

treatment using B. subtilis spores as a probe. Artículo científico. Marine Pollution Bulletin. V. 72, Issue 1, 2013. 71-79 p.

- KATAYOSE, M.; YOSHIDA, K.; ACHIWA, N.; EGUCHI, M. Safety of electrolyzed seawater for use in aquaculture. Artículo científico. Japan. Aquaculture 264, 2007. 119 – 129 p.
- KUHL, A. & LORENZEN, H. Handling and culturing of Chlorella. London. Preston, D.M. (ed.): Methods of cell physiology, 1964. Vol. 1: 159-187 p. Academic Press.
- LAWTON, L.A.; CORNISH, B.J.P.A.; MACDONALD, A.W.R. Removal of cyanobacterial toxins (microcystins) and cyanobacterial cells from drinking water using domestic water filters. Artículo científico. Water Res. 32, 1998. 633–638 p.
- LONG, Y.; NI, J.; WANG, Z. Subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection with boron-doped diamond anode: A comparative study of three electrolytes. Artículo científico. Water Research. 84, 2015. 198–206 p.
- LORIGA, Sonia. "Rimozione elettrochimica della Chlorella vulgaris con anodi di diamante conducente". Tesis de "Ingegneria chimica e dei processi biotecnologici". En: Universita' Degli Studi Di Cagliari. Italia. 2015/2016.
- MA, J.; LIU, W.; Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation. Water Res. 36, 2002. 871–878 p.

- MARSELLI, B.; GARCÍA, J.; MICHAUD, P.A.; RODRIGO, M.A.; COMNINELLIS, C.; *Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes.* Artículo científico. J. Electrochem. Soc. 150, 2003. D79–D83 p.
- MASCIA, M.; VACCA, A.; PALMAS, S.; POLCARO, A.M. Kinetics of the electrochemicaloxidation of organic compounds at BDD anodes: modeling of surfacereactions. Artículo científico. J. Appl. Electrochem. 37, 2007. 71–76 p.
- MASCIA, M.; VACCA, A.; PALMAS, S. Fixed bed reactors with threedimensional electrodes for electrochemical treatment of waters for disinfection. Artículo científico. Italy. Chem.Eng. J. 211–212, 2012. 479–487 p.
- MASCIA, M.; VACCA, A.; PALMAS, S. Electrochemical treatment as a pre-oxidative step for algae removal using Chlorella vulgaris as a model organism and BDD anodes. Artículo científico. Italy. Chemical engineering journal 219, 2013. 512 – 519 p.
- MASCIA, M.; MONASTERIO, S.; VACCA, A.; PALMAS, S. 2016. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes. Artículo científico. In: Univesita' degli studi di Cagliari. Publication: Journal of Hazardous Materials. 2016.
- 30. MONASTERIO, S.; DESSI, F.; MASCIA, M.; VACCA, A.; PALMAS, S. Electrochemical removal of Microcystis Aeruginosa in a fixed bed

reactor. Artículo científico. Italy. Chemical engineering transactions. Vol. 41. 2014.

- NAGHAVI, B.; MALONE, R.F.; *Algae removal by fine sand/silt filtration.* Artículo científico. Water Res.20, 1986. 377–383 p.
- NIKULIN, V.A. Use of an electrolyzed sodium chloride solution for disinfection in therapeutic and prophylactic institutions. Artículo científico. Russian. Sov. Med. 12, 1977. 105–108 p.
- 33. OLIVA, B.; PÉREZ, J.; DEL CID, M.; GAITÁN, I. Estudio de contaminantes ecotóxicos en agua y organismos acuáticos del Lago de Atitlán. Facultad de Ciencias Químicas y Farmacia, USAC. AMSCLAE. DIGI. 2010.
- 34. ORSINI, Alessandro. "Biodegradazione di composti fenolici presenti nelle acque di scarico industriali mediante colture batteriche miste". Tesis de: "Dottorato di ricerca in ingegneria industriale". En: Universita' Degli Studi Di Cagliari. Italia. XVIIIº Ciclo.
- 35. PAN, G.; ZHANG, M.M.; CHEN, H.; ZOU, H.; YAN, H. Removal of cyanobacterial bloomsin Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Artículo científico. Environ. Pollut. 141, 2006. 195–200 p.
- 36. POLCARO, A. M.; VACCA, A.; MASCIA, M.; FERRARA, S.; *Product* and by-productformation in electrolysis of dilute chloride solutions.

Artículo científico. Italia. J. Appl. Electrochem. 38, 2008. 979–984 p.

- POURIA, S.; ANDRADE, A.; BARBOSA, J.; CAVALCANTI, R.L.; BARRETO, V.S.T.; WARD, C.J.; PREISER, W.; POON, G.K.; NEILD, G.H.; CODD, G.A. *Fatal microcystin intoxication in haemodialysis unit in Caruaru*. Artículo científico. Brazil. Lancet 352, 1998. 21–26 p.
- SERRANO, K.; MICHAUD, P.A.; COMNINELLIS, C.; SAVALL, A. *Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin filmelectrodes*. Artículo científico. Electrochim. Acta 48, 2002. 431–436 p.
- TAAMA, W.M.; PLIMEY, E.R.; SCOTT, K. Influence of supporting electrolyte on ferricyanide reduction at a rotating disc electrode. Artículo científico. Electrochim. Acta 41, 1996. 549–551 p.
- TSUZUKI, K.; TANAKA, T.; TAKAGI, T.; SHIMOMURA, M. Effects of electrochemical treatment on Microcystis extinction. Artículo científico. Japan. J. Water Environ. Soc. 22, 1999. 228–231 p.
- 41. VANTE, Nicolás Alonso. *Electroquímica y electrocatálisis*. Argentina. Primera edición. 2003.
- WILK, I.J.; ALTMANN, R.S.; BERG, J.D. Antimicrobial activity of electrolyzed saline solution. Artículo científico. Sci. Total Environ.
 63, 1987. 191–197 p.

- XU, Y.; YANG, J.; OU, M.; WANG, Y.; JIA, J. Study of Microcystis aeruginosa inhibition by electrochemical method. Artículo científico. Biochem. Eng. J. 36, 2007. 215–220 p.
- ZHAO, X.; ZHANG, Y. Algae-removing and algicidal efficiencies of poly (diallyldimethylammonium chloride) composite coagulants in enhanced coagulation treatment of algae-containing raw water. Artículo científico. Chem. Eng. J. 173, 2011. 164–170 p.

APÉNDICES

	Tópicos	 Densidad 	 Propiedades de 	disoluciones	 Öxido reducción 	 Fundamento y 	características de los	potenciales normales	 Potencial redox con la 	concentración	 Solución saturada 	 Solución insaturada 	 Solución 	sobresaturada	 Relación entre el 	agente reductor y	agente oxidante	 Efectos ambientales 	 Eutrofización 	 Microbiota 	Algas	 Factores bióticos y 	abióticos
	Tema		Reacciones	quimicas			Equilibrio en	solución	acuosa.		Equilibrio do	solubilidad	solucinada	andinio	Cietomae rodov	denendiantee	neperiore	Contaminación	ambiental	Característinas	biológicas	Recursos	naturales de Guatemala
cadémicos	Unidad		Estecuiometria				Electroquímica	equilibrio	redox			Equilibrio	heterogéneo		Equilibrio	iónico en un	sistema redox	Saneamiento	ambiental	Medidas de	control	Concentos de	ecología
de requisitos a	Curso		Química 3					Química 4				Análisis	cualitativo		Análicie	cuantitativo	cualificativo	Química	ambiental	Control de	contaminantes industriales		Ecología
dice 1. Tabla	Area						Area de	química															
Apén	Carrera														Inneniería	cultimica							

Flujo másico Flujo volumétrico

• •

Caudal

principios fundamentales

Flujo de fluidos IQ-2

Area de operaciones unitarias

Conceptos y

Celdas electroquímicas

•

Sistemas

Electroquímica

Fisicoquímica 2

Area de fisicoquímica

electroquímicos

Continuación Apéndice 1.

Г

 Celdas galvánicas 	 Conceptos generales Clasificación 	 Análisis de un varianza de un factor 	 Corriente Voltaje Resistencia
Sistemas electroquímicos	Algas	Análisis de datos	Mediciones
Práctica 6	Microbiología fundamental	Experimentos generales	Conceptos fundamentales
Laboratorio de fisicoquímica 2	Microbiología	Estadística 2	Ingeniería eléctrica 1
		Àrea complementa ria	

Apéhdice 2. Diagrama de Ishikawa

USAC

César Daniel Saquec Tzuquen

Apéndice 3.

Figura 18. Remoción total promedio en función del tiempo a flujo volumétrico constante (550 mL min⁻¹) con absorbancia inicial alta (ABS = 0,165 – 0,177; λ = 680 nm)

Símbolo de curva	ABS	Q [mL min ⁻¹]	ρ _ι [A m ⁻²]	R ²	Error estándar
	0,177	550	2,86	0,91	6,96E-05
-	0,165	550	4,29	0,95	5,90E-05
	0,168	550	5,72	0,94	7,33E-05
	0,169	550	7,15	0,88	1,17E-04

Descripción de cada curva de la Figura 18

Fuente: elaboración propia.

Condiciones de la experimentación para la Figura 18

Tipo de curvas	Isolíneas de densidad de corriente diferente al mismo flujo volumétrico.
Flujo volumétrico	550 mL min ⁻¹
Longitud de onda	680 nm
Temperatura	24 °C
Rango de densidad de corriente	[2,86; 7,15] A m ⁻²
Transmitancia inicial	Alta
Rango de ABS iniciales	[0,165; 0,177]

Fuente: elaboración propia.

Tabla de datos de la Figura 18

Tiempo	Densidad de corriente [A m ⁻²]						
[min]	2,86	4,29	5,72	7,15			
2,5	3,9548	3,9394	7,1429	4,7337			
5	7,9096	5,7576	10,1190	7,6923			
7,5	10,4520	8,0303	11,3095	11,2426			
10	12,9944	9,6970	12,5000	13,0178			
15	14,1243	12,9697	16,6667	22,4852			
20	15,0659	16,3636	17,2619	24,8521			
25	16,0075	16,9697	19,0476	26,0355			
30	16,9492	18,1818	22,0238	27,6134			
40	19,9623	21,8182	24,4048	30,7692			
50	21,4689	22,4242	26,7857	31,9527			

Continuación de la Tabla de datos de la figura 18

60	21,4689	24,8485	27,9762	34,3195						
75	24,2938	29,3939	32,7381	35,5030						
90	26,3277	30,9091	34,5238	36,6864						
100	27,6836	31,5152	35,7143	38,4615						

Fuente: elaboración propia.

Análisis de varianza de un factor para los datos de la Figura 18

RESUMEN				
Grupos	Cuenta	Suma	Promedio	Varianza
2,5	4	19,7708	4,9427	2,2890
5	4	31,4785	7,8696	3,1846
7,5	4	41,0344	10,2586	2,3585
10	4	48,2091	12,0523	2,5225
15	4	66,2459	16,5615	17,9808
20	4	73,5435	18,3859	19,3955
25	4	78,0604	19,5151	20,5054
30	4	84,7682	21,1920	22,9965
40	4	96,9545	24,2386	22,2739
50	4	102,6315	25,6579	22,9667
60	4	108,6131	27,1533	29,8854
75	4	121,9288	30,4822	23,2593
90	4	128,4470	32,1117	20,5491
100	4	133,3746	33,3436	22,3974

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	4331,0909	13	333,1608	20,0557	6,2934E-14	1,9612
grupos	697,6933	42	16,6117			
Total	5028,7841	55				
		Fuente	u alabaraaián prani			

Apéndice 4.

Figura 19. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente graficada en la Figura 18

Tiempo	Popotición	Densidad de corriente [A m ⁻²]						
[min]	Repeticion	2,86	4,29	5,72	7,15			
	1	27,6836	31,5152	35,7143	38,4615			
100	2	23,7569	29,7143	33,5227	38,0117			
	3	30,8571	31,3953	34,5029	38,9222			

Análisis de varianza de un factor para los datos de la Figura 19

RESUM	ИEN
-------	-----

Grupos	Cuenta	Suma	Promedio	Varianza
1	4	133,3746	33,3436	22,3974
2	4	125,0056	31,2514	36,4636
3	4	135,6776	33,9194	13,7054

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	15,7695	2	7,8848	0,3260	0,7300	4,2565
grupos	217,6991	9	24,1888			
Total	233,4686	11				
Euente: elaboración propia						

Apéndice 5.

Figura 20. Remoción total promedio en función del tiempo a flujo volumétrico constante

(300 mL min⁻¹) con absorbancia inicial baja (ABS = 0,102 – 0,119; λ = 680 nm)
Símbolo	APC	Q	ρΙ	D 2	Error
de curva	ADS	[mL min ⁻¹]	[A m ⁻²]	Π-	estándar
	0,102		2,86	0,92	5,90E-05
	0,113	200	4,29	0,99	1,46E-05
	0,119	300	5,72	0,96	2,90E-05
	0,119		7,15	0,95	2,45E-05

Descripción de cada curva de la Figura 20

Fuente: elaboración propia.

Condiciones de la experimentación para la Figura 20

Tipo de curvas	Isolíneas de densidad de corriente
	diferente al mismo flujo volumétrico,
Flujo volumétrico	300 mL min ⁻¹
Longitud de onda	680 nm
Temperatura	24 °C
Rango de densidad de	[2,86; 7,15] A m ⁻²
corriente	
Transmitancia inicial	Baja
Rango de ABS iniciales	[0,102; 0,119]

Fuente: elaboración propia.

Tabla de datos de la Figura 20

Tiempo	Densidad de corriente [A m ⁻²]						
[min]	2,86	4,29	5,72	7,15			
2,5	7,3529	1,4749	1,6807	0,8403			
5	14,7059	2,9499	2,5210	1,6807			
7,5	15,6863	3,7611	3,3613	3,3613			
10	16,6667	4,1298	3,3613	3,3613			
15	18,6275	4,4248	6,7227	5,8824			
20	23,2026	7,0796	8,4034	6,7227			
25	27,7778	9,7345	10,0840	7,5630			
30	32,3529	9,7345	10,0840	9,2437			
40	33,3333	9,7345	14,2857	11,7647			
50	34,3137	14,1593	15,9664	12,6050			
60	35,2941	15,9292	17,6471	14,2857			
75	40,1961	17,6991	19,3277	15,1261			
90	40,7843	19,4690	20,1681	16,8067			

Continuación Tabla de datos de la Figura 20							
100 41,1765 21,2389 20,1681 16,8067							
Fuente: elaboración propia.							

Análisis de varianza de un factor para los datos de la Figura 20

RESUMEN					
Grupos	Cuenta		Suma	Promedio	Varianza
2,5	4	4	11,3489	2,8372	9,1909
5	4	4	21,8574	5,4644	38,2360
7,5	4	4	26,1700	6,5425	37,1948
10	4	4	27,5191	6,8798	42,7015
15	4	4	35,6573	8,9143	42,8323
20	4	4	45,4083	11,3521	62,9384
25	4	4	55,1593	13,7898	88,2048
30	4	4	61,4152	15,3538	128,5503
40	4	4	69,1183	17,2796	118,0094
50	4	4	77,0444	19,2611	102,5894
60	4	4	83,1561	20,7890	95,3935
75	4	4	92,3490	23,0872	133,0862
90	4	4	97,2281	24,3070	122,7643
100	4	4	99,3902	24,8475	122,0694

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F					
Entre					_						
grupos	2 911,8224	13	223,9863	2,7417	6,71E-03	1,9612					
Dentro de											
los grupos	3 431,2835	42	81,6972								
Total	6 343,1060	55									
		Euonto	Fuente, eleberación prenie								

Apéndice 6.

Figura 21. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente graficada en la Figura 20

Tiempo	Tiempo [min] Repetición		Densidad de corriente [A m ⁻²]					
[min]			4,29	5,72	7,15			
	1	41,1765	21,2389	20,1681	16,8067			
100	2	40,0000	22,0720	20,0000	15,6522			
	3	40,8163	21,4207	21,6216	16,6667			

Tabla de datos de la Figura 21

Fuente: elaboración propia.

Análisis de varianza de un factor para los datos de la Figura 21

RESUMEN						
Grupos	Cuenta	Suma	Promedio	Varianza		
1	4	99,3902	24,8475	122,0694		
2	4	97,7241	24,4310	114,8868		
3	4	100,5253	25,1313	114,5855		
ANÁLISIS DE	VARIANZA					
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de	0,9926	2	0,4963	0,0042	0,9958	4,2565
los grupos	1 054,6249	9	117,1805			
Total	1 055,6175	11				

Apéndice 7.

Figura 22. Remoción total promedio para Absorbancia Inicial Alta en función del tiempo a diferentes valores de densidad de corriente eléctrica y flujo volumétrico

Símbolo	ABS	Q	ρΙ	R ²	Error
de curva	7.DO	[mL min ⁻¹]	[A m ⁻²]		estándar
	0,176		2,86	0,94	8,49E-05
-	0,193	300	4,29	0,93	1,20E-04
	0,164		5,72	0,94	1,02E-04
	0,177		2,86	0,91	6,96E-05
-	0,165	550	4,29	0,95	5,90E-05
-	0,168		5,72	0,94	7,34E-05

Descripción de cada curva de la Figura 22

Fuente: elaboración propia.

Condiciones de la experimentación para la Figura 22

Tipo de curvas	Isolíneas de densidad de corriente
	diferente a dos flujos volumétricos.
Flujo volumétrico	300 y 550 mL min ⁻¹
Longitud de onda	680 nm
Temperatura	24 °C
Rango de densidad de	[2,86; 5,72] A m ⁻²
corriente	
Transmitancia inicial	Alta
Rango de ABS iniciales	[0,164; 0,193]

Fuente: elaboración propia.

Tabla de datos de la Figura 22

	Flujo volumétrico [mL min ⁻¹]						
Tiempo	300				550		
[min]		Densidad	d de corrie	nte eléctric	a [A m ⁻²]		
	2,86	4,29	5,72	2,86	4,29	5,72	
0	0	0	0	0	0	0	
5	6,2500	8,2902	14,6341	7,9096	5,7576	10,1190	
10	9,6591	12,9534	18,9024	12,9944	9,6970	12,5000	
15	18,1818	21,2435	20,1220	14,1243	12,9697	16,6667	
30	22,7273	27,9793	31,0976	16,9492	18,1818	22,0238	
45	26,1364	35,2332	37,8049	21,4689	22,1212	25,5952	
60	31,8182	38,3420	42,6829	21,4689	24,8485	27,9762	
75	34,0909	40,4145	45,8841	24,2938	29,3939	32,7381	
100	38,0682	45,5959	51,2195	27,6836	31,5152	35,7143	

Análisis de varianza de un factor para los datos a 300 mL min⁻¹ de la Figura 22

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
0	6	0	0	0
5	6	52,9605	8,8268	10,5169
10	6	76,7062	12,7844	11,3767
15	6	103,3080	17,2180	10,6980
30	6	138,9589	23,1598	30,2131
45	6	168,3598	28,0600	46,9808
60	6	187,1367	31,1894	65,7351
75	6	206,8154	34,4692	59,6170
100	6	229,7966	38,2994	77,1249

ANÁLISIS DE VARIANZA

Entre grupos 7843,3547 8 980,4193 28,2576 4,1349E-15 2,15 2 Dentro de	Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
	Entre grupos Dentro de	7843,3547	8	980,4193	28,2576	4,1349E-15	2,1521
los grupos 1561,3119 45 34,6958	los grupos	1561,3119	45	34,6958			
Total 9404,6666 53	Total	9404,6666	53				

Fuente: elaboración propia.

Análisis de varianza de un factor para los datos a 550 mL min⁻¹ de la Figura 22

	RESUMEN				
_	Grupos	Cuenta	Suma	Promedio	Varianza
	0	3	0	0	0
	5	3	23,7862	7,9287	4,7559
	10	3	35,1913	11,7304	3,1623
	15	3	43,7607	14,5869	3,5774
	30	3	57,1548	19,0516	7,0054
	45	3	69,1854	23,0618	4,9201
	60	3	74,2936	24,7645	10,5914

Continuación Tabla Análisis de varianza de un factor para los datos a 550 mL min⁻¹ de la Figura 22

75	3	86,4258	28,8086	18,0836
100	3	94,9131	31,6377	16,1342

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de	2 554,9961	8	319,3745	42,1275	4,2343E-10	2,5102
los grupos	136,4606	18	7,5811			
Total	2 691,4567	26		-		

23
a Figura
ę
datos
los
para
factores
sop
de
varianza
qe
Análisis

RESUMEN Flujo volumétrico 300 mL min-1	5	10	15	30	45	60	75	100	Total
Cuenta	3	3	3	3	3	3	3	3	24
Suma	29,1743	41,5149	59,5473	81,8041	99,1744	112,8431	120,3896	134,8835	679,3312
Promedio	9,7248	13,8383	19,8491	27,2680	33,0581	37,6144	40,1299	44,9612	28,3055
Varianza	19,1171	21,9472	2,3993	17,8948	37,5866	29,9077	34,8309	43,5415	168,4892
Flujo volumétrico 550 mL min ⁻¹									
Cuenta	e	e	e	ę	e	e	e	ę	24
Suma	23,7862	35,1913	43,7607	57,1548	69,1854	74,2936	86,4258	94,9131	484,7108
Promedio	7,9287	11,7304	14,5869	19,0516	23,0618	24,7645	28,8086	31,6377	20,1963
Varianza	4,7559	3,1623	3,5774	7,0054	4,9201	10,5914	18,0836	16,1342	69,7283
Total									
Cuenta	9	9	9	9	9	9	9	9	
Suma	52,9605	76,7062	103,3080	138,9589	168,3598	187,1367	206,8154	229,7966	
Promedio	8,8268	12,7844	17,2180	23,1598	28,0600	31,1894	34,4692	38,2994	
Varianza	10,5169	11,3767	10,6980	30,2131	46,9808	65,7351	59,6170	77,1249	

	Valor crítico para F	4,1491	2,3127	2,3127			
	Probabilidad	1,1912E-07	6,4943E-14	1,1422E-01			
	Ľ	45,8357	39,0567	1,8363			opia.
	Promedio de los cuadrados	789,1059	672,3993	31,6136	17,2160		te: elaboración pr
	Grados de libertad	-	7	7	32	47	Fuen
/ARIANZA	Suma de cuadrados	789,1059	4706,7948	221,2952	550,9109	6268,1068	
ANÁLISIS DE V	Origen de las variaciones	Muestra	Columnas	Interacción	Dentro del grupo	Total	

Matriz de datos para la realización del ANOVA de 2 Factores

Flujo	Densidad de				Tiempo	[min]			
[mL min ⁻¹]	connente (A m ⁻²]	5	10	15	30	45	60	75	100
	2,86	6,2500	9,6591	18,1818	22,7273	26,1364	31,8182	34,0909	38,0682
300	4,29	8,2902	12,9534	21,2435	27,9793	35,2332	38,3420	40,4145	45,5959
	5,72	14,6341	18,9024	20,1220	31,0976	37,8049	42,6829	45,8841	51,2195
	2,86	7,9096	12,9944	14,1243	16,9492	21,4689	21,4689	24,2938	27,6836
550	4,29	5,7576	9,6970	12,9697	18,1818	22,1212	24,8485	29,3939	31,5152
	5,72	10,1190	12,5000	16,6667	22,0238	25,5952	27,9762	32,7381	35,7143
			- 						

Apéndice 8.

Figura 23. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente a flujo volumétrico de 300 y 550 mL min⁻¹, graficados en la Figura 22

Tabla de datos de la Figura 23

			Fluj	o voluméti	rico [mL mi	n ⁻¹]	
Tiempo	Ponotición		300			550	
[min]	Repetition		Den	sidad de co	orriente [A	m⁻²]	
		2,86	4,29	5,72	2,86	4,29	5,72
	1	38,0682	45,5959	51,2195	27,6836	31,5152	35,7143
100	2	30,6358	46,8750	49,4118	23,7569	29,7143	33,5227
	3	41,1765	43,0769	48,8372	30,8571	31,3953	34,5029
			Fuente el	aboración r	vronia		

Fuente: elaboración propia,

Análisis de varianza de un factor para los datos a 300 mL min⁻¹ de la Figura 23

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
1	3	134,8835	44,9612	43,5415
2	3	126,9226	42,3075	103,7802
3	3	133,0906	44,3635	15,9133

ANÁLISIS DE VARIANZA

v/ ((()/ () (<u>)</u> _/ (
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre						
grupos	11,6262	2	5,8131	0,1068	0,9003	5,1433
Dentro de						
los grupos	326,4698	6	54,4116			
Total	338.0960	8				
	000,0000					
		Fuente:	elaboración	propia.		

Análisis de varianza de un factor para los datos a 550 mL min⁻¹ de la Figura 23

RESUMEN				
Grupos	Cuenta	Suma	Promedio	Varianza
1	3	94,9131	31,6377	16,1342
2	3	86,9939	28,9980	24,2276
3	3	96,7554	32,2518	3,8731

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de	17,9326	2	8,9663	0,6081	0,5748	5,1433
los grupos	88,4698	6	14,7450			
Total	106,4024	8				
		Fuer	te: elaboración p	propia.		

		c	c	T_4_1
KESUMEN 300	-	7	τ	l otal
Cuenta	ę	ę	ĉ	6
Suma	134,8835	126,9226	133,0906	394,8968
Promedio	44,9612	42,3075	44,3635	43,8774
Varianza	43,5415	103,7802	15,9133	42,2620
550				
Cuenta	ę	с	e	6
Suma	94,9131	86,9939	96,7554	278,6624
Promedio	31,6377	28,9980	32,2518	30,9625
Varianza	16,1342	24,2276	3,8731	13,3003
Total				
Cuenta	9	9	9	
Suma	229,7966	213,9165	229,8460	
Promedio	38,2994	35,6528	38,3077	
Varianza	77,1249	104,3464	51,9227	

Análisis de varianza de dos factores para los datos de la Figura 23

	Valor crítico para F	4,7472	3,8853	3,8853				
	Probabilidad	0,0006	0,6749	0,9793				Ë
	L.	21,7067	0,4064	0,0210				oración propia
	Promedio de los cuadrados	750,5793	14,0536	0,7258		34,5783		Fuente: elab
	Grados de libertad	-	2	2		12	17	
VARIANZA	Suma de cuadrados	750,5793	28,1071	1,4517		414,9396	1195,0777	
ANÁLISIS DE	Origen de las variaciones	Muestra	Columnas	Interacción	Dentro del	grupo	Total	

Matriz de datos para la realización del ANOVA de 2 Factores

Fluio	Densidad	Tiempo	[min]	100
volumétrico	de		Repetición	
[mL min ⁻¹]	Corriente [A m ⁻²]	1	2	3
	2,86	38,0682	30,6358	41,1765
300	4,29	45,5959	46,8750	43,0769
	5,72	51,2195	49,4118	48,8372
	2,86	27,6836	23,7569	30,8571
550	4,29	31,5152	29,7143	31,3953
	5,72	35,7143	33,5227	34,5029
	Fuente: el	aboración pro	ola.	

160

Apéndice 9.

Figura 24. Remoción total promedio para Absorbancia Inicial Baja en función del tiempo a diferentes valores de densidad de corriente eléctrica y flujo volumétrico

Símbolo	ABC	Q	ρΙ	D 2	Error
de curva	ADS	[mL min ⁻¹]	[A m ⁻²]		estándar
•	0,102		2,86	0,85	5,71E-03
	0,113	300	4,29	0,97	2,63E-02
-0	0,119		5,72	0,92	8,35E-02
	0,114		2,86	0,79	2,11E-02
	0,117	550	4,29	0,64	1,99E-02
	0,120		5,72	0,89	7,34E-03

Descripción de cada curva de la Figura 24

Fuente: elaboración propia.

Condiciones de la experimentación para la Figura 24

Tipo de curvas	Isolíneas de densidad de corriente
	diferente a dos flujos volumétricos.
Flujo volumétrico	300 y 550 mL min ⁻¹
Longitud de onda	680 nm
Temperatura	24 °C
Rango de densidad de	[2,86; 5,72] A m ⁻²
corriente	
Transmitancia inicial	Baja
Rango de ABS iniciales	[0,102; 0,120]

Fuente: elaboración propia.

Tabla de datos de la Figura 24

		Fluj	o volumétr	rico [mL mi	n⁻¹]	
Tiempo		300			550	
(min)		Densidad	de corrie	nte eléctric	a [A m ⁻²]	
	2,86	4,29	5,72	2,86	4,29	5,72
0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
5	14,7059	2,9499	2,5210	4,3860	4,8433	6,3889
10	16,6667	4,1298	3,3613	8,7719	11,1111	7,2222
15	18,6275	4,4248	6,7227	10,5263	17,0940	7,5000
30	26,4706	9,7345	10,0840	17,5439	20,5128	13,3333
45	32,3529	11,9469	15,1261	18,4211	21,7949	14,1667
60	35,2941	15,9292	17,6471	20,1754	22,2222	17,5000
75	40,1961	17,6991	19,3277	21,0526	23,0769	19,1667
100	41,1765	21,2389	20,1681	21,9298	23,0769	20,8333

Análisis de varianza de un factor para los datos a 300 mL min⁻¹ de la Figura 24

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
0	3	0	0	0
5	3	20,1767	6,7256	47,8099
10	3	24,1578	8,0526	55,7992
15	3	29,7749	9,9250	58,1199
30	3	46,2891	15,4297	91,4563
45	3	59,4259	19,8086	120,5465
60	3	68,8704	22,9568	114,8949
75	3	77,2229	25,7410	157,3756
100	3	82,5835	27,5278	140,0008

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de	2178,8100	8	272,3513	3,1185	2,1447E-02	2,5102
los grupos	1572,0064	18	87,3337			
Total	3750,8164	26				

Fuente: elaboración propia.

Análisis de varianza de un factor para los datos a 550 mL min⁻¹ de la Figura 24

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
0	3	0	0	0
5	3	15,6182	5,2061	1,1016
10	3	27,1053	9,0351	3,8328
15	3	35,1203	11,7068	24,0564
30	3	51,3900	17,1300	13,0147
45	3	54,3826	18,1275	14,6120

Continuación Tabla Análisis de varianza de un factor para los datos a 550 mL min $^{-1}$ de la Figura 24

			5	
60	3	59,8977	19,9659	5,6078
75	3	63,2962	21,0987	3,8241
100	3	65,8401	21,9467	1,2586

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	1436,5701	8	179,5713	24,0111	4,3032E-08	2,5102
grupos	134,6162	18	7,4787			
Total	1571,1863	26				

2	ţ
C ILIN	R
ü	
Q	5
ę	3
datoe	darvo
Š	2
nara	20
factoree	ומכרכו ממ
a doe	2000
varianza d	
de la	3
aálieie	
2	ř

RESUMEN 300	5	10	15	30	45	60	75	100	Total
Cuenta	3 20.1767	3 24.1578	3 20 77 AG	3 A6 7801	3 60 1760	3 68 8704	3 77 7779	3 87 6836	24 408 E013
Promedio	6,7256	8,0526	9,9250	15,4297	19,8086	22,9568	25,7410	27,5278	17,0209
Varianza	47,8099	55,7992	58,1199	91,4563	120,5465	114,8949	157,3756	140,0008	129,4893
550									
Cuenta	3	3	3	3	3	3	3	3	24
Suma	15,6182	27,1053	35,1203	51,3900	54,3826	59,8977	63,2962	65,8401	372,6503
Promedio	5,2061	9,0351	11,7068	17,1300	18,1275	19,9659	21,0987	21,9467	15,5271
Varianza	1,1016	3,8328	24,0564	13,0147	14,6120	5,6078	3,8241	1,2586	40,3599
Total									
Cuenta	9	9	9	9	9	9	9	9	
Suma	35,7949	51,2631	64,8953	97,6791	113,8085	128,7680	140,5191	148,4236	
Promedio	5,9658	8,5438	10,8159	16,2799	18,9681	21,4613	23,4199	24,7373	
Varianza	20,2573	24,1424	33,8230	42,6557	54,9112	50,8847	70,9450	65,8485	

	Valor F Probabilidad crítico para F	0,5021 4,8372E-01 4,1491	5,6679 2,5518E-04 2,3127	0,2248 9,7652E-01 2,3127			nte: elaboración propia.
	Promedio de los cuadrados	26,7769	302,2815	11,9914	53,332(μ
	Grados de libertad	-	7	7	32	47	
RIANZA	Suma de cuadrados	26,7769	2 115,9703	83,9397	1 706,6226	3 933,3094	
ANÀLISIS DE VA	Origen de las variaciones	Muestra	Columnas	Interacción Dentro del	grupo	Total	

Matriz de datos para la realización del ANOVA de 2 Factores

Flujo	Densidad de				Tiempo	[min]			
volumetrico [mL min ⁻¹]	corriente [A ·	5	10	15	30	45	60	75	100
	2,86	14,7059	16,6667	18,6275	26,4706	32,3529	35,2941	40,1961	41,1765
300	4,29	2,9499	4,1298	4,4248	9,7345	11,9469	15,9292	17,6991	21,2389
	5,72	2,5210	3,3613	6,7227	10,0840	15,1261	17,6471	19,3277	20,1681
	2,86	4,3860	8,7719	10,5263	17,5439	18,4211	20,1754	21,0526	21,9298
550	4,29	4,8433	11,1111	17,0940	20,5128	21,7949	22,2222	23,0769	23,0769
	5,72	6,3889	7,2222	7,5000	13,3333	14,1667	17,5000	19,1667	20,8333

Apéndice 10.

Figura 25. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente a flujo volumétrico de 300 y 550 mL min⁻¹, graficados en la Figura 24

		F	lujo voluméti	rico [mL min ⁻¹]			
Donotición		300			550			
Repetition		D	ensidad de co	orriente [A m ⁻	²]			
	2,86	4,29	5,72	2,86	4,29	5,72		
1	41,1765 21,2389 20,1681 21,9298 23,0769 2							
2	40,8163	20,6620	21,6216	23,4234	22,5000	20,6897		
3	43,0000	22,2692	20,0000	22,6891	24,1071	21,4286		
	<u> </u>	Fuen	te: elaboració	n propia.				

Tabla de datos de la Figura 25

Análisis de varianza de un factor para los datos a 300 mL min⁻¹ de la Figura 25

RESUMEN

_					
	Grupos	Cuenta	Suma	Promedio	Varianza
	1	3	82,5835	27,5278	140,0008
	2	3	83,1000	27,7000	129,2590
	3	3	85,2692	28,4231	160,6528

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	1,3539	2	0,6769	0,0047	0,9953	5,1433
Dentro de los grupos	859,8252	6	143,3042			
Total	861,1791	8				
		Euconto	· alabaraaián nrai	nia		

Análisis de varianza de un factor para los datos a 550 mL min⁻¹ de la Figura 25

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
1	3	65,8401	21,9467	1,2586
2	3	66,6131	22,2044	1,9339
3	3	68,2248	22,7416	1,7958

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	0,9869	2	0,4934	0,2968	0,7535	5,1433
Dentro de los grupos	9,9766	6	1,6628			
Total	10,9635	8				
		Fuente: el	aboración pro	opia.		

25
a Figura
de la
datos (
os
para
factores
sop
de
varianza
de
Análisis

SUMEN 300	-	2	ę	Total
lta	ĉ	e	ĉ	6
8	82,5835	83,1000	85,2692	250,9526
nedio	27,5278	27,7000	28,4231	27,8836
anza	140,0008	129,2590	160,6528	107,6474
550				
nta	ę	e	e	6
8	65,8401	66,6131	68,2248	200,6779
nedio	21,9467	22,2044	22,7416	22,2975
anza	1,2586	1,9339	1,7958	1,3704
Total				
nta	9	9	9	
а а	148,4236	149,7130	153,4939	
nedio	24,7373	24,9522	25,5823	
anza	65,8485	61,5377	74,6631	

	Valor Idad crítico para F	892 4,7472	842 3,8853	1998 3,8853			
	Probabil	0,1	0'0	0,9			ia.
	ч	1,9373	0,0160	0,0002			oración prop
	Promedio de los cuadrados	140,4189	1,1574	0,0130	72,4835		Fuente: elab
	Grados de libertad	-	2	2	12	17	
VARIANZA	Suma de cuadrados	140,4189	2,3148	0,0260	869,8019	1012,5615	
ANÁLISIS DE	Origen de las variaciones	Muestra	Columnas	Interacción Dentro del	grupo	Total	

2 Factores
ĝ
4
2
0
z
◄
-
Ð,
a realización
_
para
latos
0
e
tij
a
≥

	Densidad	Tiempo	o [min]	100
riujo volumétrico	de	•	Repetición	
[mL min ⁻¹]	cornente [A m ⁻²]	1	2	3
	2,86	41,1765	40,8163	43,0000
300	4,29	21,2389	20,6620	22,2692
	5,72	20,1681	21,6216	20,0000
	2,86	21,9298	23,4234	22,6891
550	4,29	23,0769	22,5000	24,1071
	5,72	20,8333	20,6897	21,4286

Fuente: elaboración propia.

Apéndice 11.

Figura 26. Remoción total promedio en función del tiempo a diferentes valores de densidad de corriente eléctrica y absorbancia inicial (λ = 680 nm), con flujo volumétrico constante (300 mL min⁻¹)

Símbolo de curva	Absorbancia inicial	ABS	Q [mL min ⁻¹]	ρ _ι [A m ⁻²]	R ²	Error estándar
	Alto	0,193	300	4,29	0,93	1,20E-04
+	Alla	0,177	300	7,15	0,96	9,49E-05
-		0,113	300	4,29	0,99	1,47E-05
	Baja	0,119	300	7,15	0,95	2,45E-05

Descripción de cada curva de la Figura 26

Fuente: elaboración propia.

Condiciones de la experimentación para la Figura 26

Tipo de curvas	Isolíneas de densidad de corriente				
	diferente al mismo flujo volumétrico,				
Flujo volumétrico	300 mL min ⁻¹				
Longitud de onda	680 nm				
Temperatura	24 °C				
Rango de densidad de	[4,29; 7,15] A m ⁻²				
corriente					
Transmitancia inicial	Alta y baja				
Rango de ABS	[0,113; 0,193]				
iniciales					

Fuente: elaboración propia.

Tabla de datos de la Figura 26

		Absor	bancia		
Tiempo	AI	ta	Baja		
(min)	Densidad	d de corrie	nte eléctric	a [A m ⁻²]	
	4,29	7,15	4,29	7,15	
0	0	0	0	0	
5	8,2902	4,5198	1,6807	2,9499	
10	12,9534	11,8644	3,3613	4,1298	
15	21,2435	20,3390	5,8824	4,4248	
30	27,9793	26,5537	9,2437	9,7345	
45	35,2332	33,8983	12,1849	11,9469	
60	38,3420	40,6780	14,2857	15,9292	
75	40,4145	44,9153	15,1261	17,6991	
100	45,5959	51,4124	16,8067	21,2389	

Análisis de varianza de un factor para los datos a Absorbancia Alta de la Figura 26

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
0	2	0	0	0
5	2	12,8099	6,4050	7,1079
10	2	24,8178	12,4089	0,5929
15	2	41,5825	20,7913	0,4091
30	2	54,5329	27,2665	1,0162
45	2	69,1315	34,5657	0,8909
60	2	79,0199	39,5100	2,7284
75	2	85,3298	42,6649	10,1284
100	2	97,0083	48,5041	16,9163

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	4626,1403	8	578,2675	130,7967	2,1371E-08	3,2296
grupos	39,7901	9	4,4211			
Total	4665,9304	17				

Análisis de varianza de un factor para los datos a Absorbancia baja de la Figura 26

RESUMEN

Grupos	Cuenta	Suma	Promodio	Varianza
Grupos	Guerna	Juna	i iomedio	vandriza
0	2	0	0	0
5	2	4,6305	2,3153	0,8054
10	2	7,4911	3,7456	0,2953
15	2	10,3071	5,1536	1,0623
30	2	18,9782	9,4891	0,1205
45	2	24,1318	12,0659	0,0283
60	2	30,2149	15,1075	1,3505
75	2	32,8252	16,4126	3,3103
100	2	38,0457	19,0228	9,8223

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	739,6784	8	92,4598	49,5473	1,5312E-06	3,2296
grupos	16,7948	9	1,8661			
Total	756,4733	17				

RESUMEN Absorbancia Inicial Alta	0	5	10	15	30	45	60	75	100	Total
Cuenta	2	2	2	2	2	2	2	2	2	18
Suma	0	12,8099	24,8178	41,5825	54,5329	69,1315	79,0199	85,3298	97,0083	464,2326
Promedio	0	6,4050	12,4089	20,7913	27,2665	34,5657	39,5100	42,6649	48,5041	25,7907
Varianza	0	7,1079	0,5929	0,4091	1,0162	0,8909	2,7284	10,1284	16,9163	274,4665
Absorbancia Inicial Baja										
Cuenta	2	2	2	2	2	2	2	2	2	18
Suma	0	4,6305	7,4911	10,3071	18,9782	24,1318	30,2149	32,8252	38,0457	166,6245
Promedio	0	2,3153	3,7456	5,1536	9,4891	12,0659	15,1075	16,4126	19,0228	9,2569
Varianza	0	0,8054	0,2953	1,0623	0,1205	0,0283	1,3505	3,3103	9,8223	44,4984
Total										
Cuenta	4	4	4	4	4	4	4	4	4	
Suma	0	17,4405	32,3089	51,8896	73,5112	93,2632	109,2349	118,1549	135,0539	
Promedio	0	4,3601	8,0772	12,9724	18,3778	23,3158	27,3087	29,5387	33,7635	
Varianza	0	8,2130	25,3138	82,0029	105,7238	169,0541	199,8538	234,2073	298,6288	

Análisis de varianza de dos factores para los datos de la Figura 26

<
N
~
~
$\overline{\sim}$
LL,
< 1
~
~
ш
\sim
^
~
- 70
0,
_
-
~
4
<

Valor crítico para F	4,4139	2,5102	2,5102			
Probabilidad	2,7495E-16	1,4542E-15	2,6053E-09			
F	782,6346	179,4797	33,8828			oropia.
Promedio de los cuadrados	2460,2936	564,2131	106,5142	3,1436		e: elaboración p
Grados de libertad	-	8	8	18	35	Fuent
Suma de cuadrados	2460,2936	4513,7052	852,1136	56,5849	7882,6972	
Origen de las variaciones	Muestra	Columnas	Interacción	Dentro del grupo	Total	

2
a,
÷.
2
◄
>
o
Ż
┛
_
Ð
σ
ō
÷.
×
Ň
g
Ð
_
0
ß
Ē
g
-
ŝ
2
a
σ
Ð
σ
N
-2
臣
0
_

	Densidad					Tiempo	[min]			
	ae corriente [A	0	5	10	15	30	45	60	75	100
Absorbancia	m ⁻²]	-	1							
A Ha	4,29	0	8,2902	12,9534	21,2435	27,9793	35,2332	38,3420	40,4145	45,5959
PIIN	7,15	0	4,5198	11,8644	20,3390	26,5537	33,8983	40,6780	44,9153	51,4124
Raia	4,29	0	1,6807	3,3613	5,8824	9,2437	12,1849	14,2857	15,1261	16,8067
naja	7,15	0	2,9499	4,1298	4,4248	9,7345	11,9469	15,9292	17,6991	21,2389
				Fuente: 6	elaboraciór	n propia.				

Apéndice 12.

Figura 27. Diagrama de cajas para el tiempo final (100 min) para cada densidad de corriente a Absorbancia Inicial Alta y Baja, graficadas en la Figura 26

		Absorban	cia inicial	
Popotición	Alt	ta	Ва	ja
Repeticion	Dens	sidad de co	orriente [A	m ⁻²]
	4,29	7,15	4,29	7,15
1	45,5959	51,4124	16,8067	21,2389
2	46,8750	52,0000	15,6522	22,5181
3	43,0769	50,8380	15,0000	23,7579
	Repetición 1 2 3	Alt Dens 4,29 45,5959 2 46,8750 3 43,0769	Absorban Alta Densidad de co 4,29 7,15 1 45,5959 51,4124 2 46,8750 52,0000 3 43,0769 50,8380	Absorbancia inicial Absorbancia inicial Alta Ba Densidad de corriente [A 4,29 7,15 4,29 1 45,5959 51,4124 16,8067 2 46,8750 52,0000 15,6522 3 43,0769 50,8380 15,0000

Tabla de datos de la Figura 27

Fuente: elaboración propia.

Análisis de varianza de un factor para los datos a Absorbancia Inicial Alta de la Figura 27

RESUMEN

Grupos	Cuenta	Suma	Promedio	Varianza
1	2	97,0083	48,5041	16,9163
2	2	98,8750	49,4375	13,1328
3	2	93,9149	46,9575	30,1171

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	6,2760	2	3,1380	0,1565	0,8617	9,5521
grupos	60,1662	3	20,0554			
Total	66,4422	5				
		Fuente: el	aboración pro	opia.		

Análisis de varianza de un factor para los datos a Absorbancia Inicial Baja de la Figura 27

RESUMEN				
Grupos	Cuenta	Suma	Promedio	Varianza
1	2	38,0457	19,0228	9,8223
2	2	38,1703	19,0851	23,5704
3	2	38,7579	19,3789	38,3501

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	0,1447	2	0,0723	0,0030	0,9970	9,5521
grupos	71,7428	3	23,9143			
Total	71,8874	5				
		Fuente: el	aboración pro	opia.		

2 3 Total	2 2	0 93,9149 289,7	5 46,9575 48,2	8 30,1171 13,2			2 2	3 38,7579 114,9	1 19,3789 19,1	4 38,3501 14,3			4 4	3 132,6728	3 33,1682	0 776 2472
		98,8750	49,4375	13,1328				38,1703	19,0851	23,5704			7	137,0453	34,2613	310 3233
.	2	97,0083	48,5041	16,9163			2	38,0457	19,0228	9,8223			4	135,0539	33,7635	208 6288
RESUMEN Absorbancia Inicial Alta	Cuenta	Suma	Promedio	Varianza	Ahsorhancia	Inicial Baja	Cuenta	Suma	Promedio	Varianza	ł	l otal	Cuenta	Suma	Promedio	Varianza

Análisis de varianza de dos factores para los datos de la Figura 27
ANÁLISIS DE	VARIANZA					
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	щ	Probabilidad	Valor crítico para F
Muestra	2546,9645	1	2546,9645	115,8511	3,8019E-05	5,9874
Columnas	2,3962	2	1,1981	0,0545	9,4743E-01	5,1433
Interacción	4,0245	2	2,0123	0,0915	9,1378E-01	5,1433
Dentro del						
grupo	131,9089	9	21,9848			
Total	2685,2941	11				
			Fuente: elaboraci	ión propia.		

Matriz de datos para la realización del ANOVA de 2 Factores

	Densidad	Tiempo	[min]	100
Absorbancia	de		Repetición	
Inicial	cornente [A m ⁻²]	+	2	e
Alter	4,29	45,5959	46,8750	43,0769
AIR	7,15	51,4124	52,0000	50,8380
0.10	4,29	16,8067	15,6522	15,0000
Daja	7,15	21,2389	22,5181	23,7579
	Fuente: ela	tboración prop	la.	

182

Apéndice 13.

Figura 28. Absorbancia en función del tiempo con absorbancia inicial alta (ABS = 0,169; λ = 680 nm; Q = 550 mL min⁻¹; ρ_i = 7,15 A m⁻²)

Descripción de la curva de la Figura 28

Símbolo de curva	Modelo matemático	R ²	Velocidad de remoción [% min ⁻¹]	ABS	Q [mL min ⁻ 1]	ρ _ι [A m ⁻²]	Error estándar
•	ABS = -0,0024t + 0,1684	0,9868	2,4E-03				
•	ABS = -0,0004t + 0,1361	0,9788	0,4E-03	0,169	550	7,15	1,17E-04
-	ABS = -0,0002t + 0,1213	0,9619	0,2E-03				

Fuente: elaboración propia.

Condiciones de la experimentación para la Figura 28

Tipo de curvas	Curva en función de la densidad de corriente y flujo volumétrico
Flujo volumétrico	550 mL min ⁻¹
Longitud de onda	680 nm
Temperatura	24 °C
Densidad de corriente	7,15 A m ⁻²
Transmitancia inicial	Alta
ABS inicial	0,169

Fuente: elaboración propia.

Apéndice 14.

Figura 29. Absorbancia en función del tiempo con absorbancia inicial alta (ABS = 0,117; λ = 680 nm; Q = 550 mL min⁻¹; ρ_i = 4,29 A m⁻²)

Descripción de la curva de la Figura 29

Símbolo de curva	Modelo matemático	R ²	Velocidad de remoción [% min ⁻¹]	ABS	Q [mL min ⁻¹]	ρ _ι [A m ⁻²]	Error estándar
•	ABS = -0,0013t + 0,1174	0,9948	1,3E-03				
	ABS = -0,0002t + 0,0991	0,9374	0,2E-03	0,117	550	4,29	6,59E-05
-	ABS = -2E - 05t + 0,0923	0,9412	2,0E-05				

Fuente: elaboración propia.

Condiciones de la experimentación para la Figura 29

	Curva en función de la densidad de
Tipo de cuivas	corriente y flujo volumétrico,
Flujo volumétrico	550 mL min ⁻¹
Longitud de onda	680 nm
Temperatura	24 °C
Densidad de corriente	4,29 A m ⁻²
Transmitancia inicial	Baja
ABS inicial	0,117

Fuente: elaboración propia.

ANEXOS

Figura 30. Empaques tipo anillos Raschig, vista superior

Figura 32. Empaques tipo anillos en espiral, vista superior

Figura 33. Empaques tipo anillos en espiral, vista frontal

