

REDISEÑO DE LA RED DE AIRE COMPRIMIDO EN LA PLANTA DE REENCAUCHE VIFRIO, S.A.

José María González Cortez

Asesorado por el Ing. Edwin Estuardo Sarceño Zepeda

Guatemala, julio de 2022

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

REDISEÑO DE LA RED DE AIRE COMPRIMIDO EN LA PLANTA DE REENCAUCHE VIFRIO, S.A.

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA
POR

JOSÉ MARÍA GONZÁLEZ CORTEZ ASESORADO POR EL ING. EDWIN ESTUARDO SARCEÑO ZEPEDA

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO MECÁNICO

GUATEMALA, JULIO DE 2022

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANA	Inga. Aurelia Anabela Cordova Estrada
VOCAL I	Ing. José Francisco Gómez Rivera
VOCAL II	Ing. Mario Renato Escobedo Martínez
VOCAL III	Ing. José Milton de León Bran
VOCAL IV	Br. Kevin Vladimir Cruz Lorente
VOCAL V	Br. Fernando José Paz González
SECRETARIO	Ing. Hugo Humberto Rivera Pérez

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANA	Inga. Aurelia Anabela Cordova Estrada
EXAMINADOR	Ing. Carlos Aníbal Chicojay Coloma
EXAMINADOR	Ing. Carlos Humberto Pérez Rodríguez
EXAMINADOR	Ing. Edwin Estuardo Sarceño Zepeda
SECRETARIO	Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

REDISEÑO DE LA RED DE AIRE COMPRIMIDO EN LA PLANTA DE REENCAUCHE VIFRIO, S.A.

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Mecánica, con fecha 6 de noviembre de 2019.

José María González Cortez

Universidad de San Carlos de Guatemala

Unidad de EPS

Guatemala, 13 de mayo de 2022 REF.EPS.DOC.199.05.2022.

Ing. Oscar Argueta Hernández Director Unidad de EPS Facultad de Ingeniería Presente

Estimado Ingeniero Argueta Hernández.

Por este medio atentamente le informo que como Asesor-Supervisor de la Práctica del Ejercicio Profesional Supervisado (E.P.S.), del estudiante universitario José María González Cortez de la Carrera de Ingeniería Mecánica, con carné No. 201331346, procedí a revisar el informe final, cuyo título es REDISEÑO DE LA RED DE AIRE COMPRIMIDO EN LA PLANTA DE REENCAUCHE VIFRIO, S.A.

En tal virtud, LO DOY POR APROBADO, solicitándole darle el trámite respectivo.

Sin otro particular, me es grato suscribirme.

Atentamente,

"Id y Enseñad a Todos"

Ing. Edwin Estuardo Sarceno Zepeda Asesor-Supervisor de HPS

Área de Ingeniería Mecánica

c.c. Archivo EDSZ/ra

Universidad de San Carlos de Guatemala

Guatemala, 13 de mayo de 2022 REF.EPS.D.170.05.2022

Ing. Gilberto Enrique Morales Baiza Director Escuela de Ingeniería Mecánica Facultad de Ingeniería Presente

Estimado Ingeniero Morales Baiza:

Por este medio atentamente le envío el informe final correspondiente a la práctica del Ejercicio Profesional Supervisado, (E.P.S) titulado: REDISEÑO DE LA RED DE AIRE COMPRIMIDO EN LA PLANTA DE REENCAUCHE VIFRIO, S.A., que fue desarrollado por el estudiante universitario José María González Cortez quien fue debidamente asesorado y supervisado por el Ingeniero Edwin Estuardo Sarceño Zepeda.

Por lo que habiendo cumplido con los objetivos y requisitos de ley del referido trabajo y existiendo la aprobación del mismo por parte del Asesor - Supervisor de EPS, en mi calidad de Director apruebo su contenido solicitándole darle el trámite respectivo.

Sin otro particular, me es grato suscribirme.

"Id y Enseñad a Todos"

Ing. Oscar Argueta Hernández Director Unidad de EPS

OAH/ra

Ref.E.I.M.035.2022

El Revisor de la Escuela de Ingeniería Mecánica, de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer el dictamen del Asesor-Supervisor y del Director de la Unidad de EPS, al trabajo de graduación titulado: REDISEÑO DE LA RED DE AIRE COMPRIMIDO EN LA PLANTA DE REENCAUCHE VIFRIO, S.A. del estudiante José María González Cortez, CUI 2666741000701, Registro Académico 201331346 y habiendo realizado la revisión de Escuela se autoriza para que continúe su trámite en la oficina de Lingüística, Unidad de Planificación.

"Id y Enseñad a Todos"

Ing. Carlos Humberto Pérez Rodríguez Revisor Coordinador Área Complementaria

Guatemala, mayo de 2022 /aej

Ref.EIM.046.2022

El Director de la Escuela de Ingeniería Mecánica, de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer el dictamen del Asesor-Supervisor y del Director de la Unidad de EPS, al trabajo de graduación titulado: REDISEÑO DE LA RED DE AIRE COMPRIMIDO EN LA PLANTA DE REENCAUCHE VIFRIO, S.A. del estudiante José María González Cortez, CUI 2666 74100 0701, Reg. Académico 201331346 y luego de haberlo revisado en su totalidad, procede a la autorización del mismo.

"Id y Enseñad a Todos"

Ing. Gilberto Enrique Morales Baiza Director

Escuela de Ingeniería Mecánica

Guatemala, septiembre de 2022 /aej

Decanato Facultad de Ingeniería 24189101-24189102 secretariadecanato@ingenieria.usac.edu.gt

LNG.DECANATO.OI.483.2022

SHIVERSIDAD DE SAN CARLOS DE GUATEARAL

FACULTAD DE INGENIERÍA

La Decana de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Ingeniería Mecánica, al Trabajo de Graduación titulado: REDISEÑO DE LA RED DE AIRE COMPRIMIDO EN LA PLANTA DE REENCAUCHE VIFRIO, S.A., presentado por: José María González Cortez, después de haber culminado las revisiones bajo la responsabilidad las previas /deinstancias correspondientes, autoriza la impresión del mismo. ESIS INTER

PICUA, CARO

IMPRÍMASE:

Inga. Aureiia Anabela Cordova Estrada

Decana

Guatemala, julio de 2022

ACTO QUE DEDICO A:

Dios Porque sin Él nada de esto fuera posible, gracias

por tanta bendición.

Mis padres Flora Cortez y José María González Cruz por su

apoyo incondicional en los buenos y malos

momentos, este logro también es de ustedes.

Mis hermanas y hermano Nancy, Jacqueline y Marlon por su apoyo y

consejos.

Mi familia Gracias por su apoyo y motivación.

Mi novia María Karina por estar conmigo a lo largo de mi

formación académica, gracias por apoyarme y

animarme en todo este tiempo.

AGRADECIMIENTOS A:

Universidad de San

Carlos de Guatemala

Por mi formación académica y conocimiento

adquiridos.

Facultad de Ingeniería Por formarme profesionalmente como ingeniero

mecánico.

Mis amigos Jonathan, Luna, Abdel, Ventura, Rafael, Pedro

Arizandieta y José Ochoa por estar

apoyándome.

Familia Tay Juárez Por su apoyo incondicional durante el tiempo de

mi formación académica, gracias Isaías y

Lucrecia por ser parte de este logro.

Ing. Pedro Arizandieta Por sus consejos y enseñanzas durante el

ejercicio profesional supervisado.

José María Cortez Por sus consejos y apoyo incondicional.

ÍNDICE GENERAL

ÍNDI	CE DE ILI	USTRACIC)NES			VII
LIST	A DE SÍM	IBOLOS				XIII
GLO	SARIO					XV
RES	UMEN					XIX
OBJI	ETIVOS					XXI
INTR	ODUCCI	ÓN				XXIII
1.	GENER	RALIDADES	S DE LA EM	IPRESA		1
	1.1.					
	1.2.	-	_	_		2
	1,3.	Planeaci	ón estratégi	ca		2
		1.3.1.	Misión			2
		1.3.2.	Visión			3
		1.3.3.	Filosofía			3
	1.4.	Organiza	ición			4
	1.5.	Descripci	ión del prob	lema		4
	1.6.	Aire com	primido			5
		1.6.1.	Compreso	ores		6
		1.6.2.	Tipos de d	compresores		6
		1.6.3.	Compreso	res de tornillo.		8
		1.6.4.	Tratamien	to de aire		8
		1.6.5.	Depósito o	de aire		9
	1.7.	Sistema	de aire com	primido		11
		1.7.1.	Distribució	ón de aire com	orimido	12
			1.7.1.1.	Circuito cerra	ado	12

		1.7.1.2.	Circuito abierto	13
		1.7.1.3.	Circuito mixto	13
	1.7.2.	Tubería		14
		1.7.2.1.	Tubería principal	15
		1.7.2.2.	Tuberías secundarias	15
		1.7.2.3.	Tuberías de servicio	15
	1.7.3.	Clases de	tubería	15
		1.7.3.1.	Tuberías rígidas	16
		1.7.3.2.	Tuberías semirrígidas	16
		1.7.3.3.	Tuberías flexibles	16
	1.7.4.	Soporte d	e tubería	17
		1.7.4.1.	Distancia entre soporte según	
			diámetro	18
	1.7.5.	Accesorio	s de tubería	19
	1.7.6.	Longitud	de tubería	20
		1.7.6.1.	Longitud equivalente	21
		1.7.6.2.	Pérdidas por fricción en la tubería	23
		1.7.6.3.	Cálculo de presión teórica	24
	1.7.7.	Cálculo d	e diámetro teórico de tubería	24
1.8.	Uso de a	aire comprin	nido en la planta de reencauche	26
	1.8.1.	Área de ir	nspección inicial	26
	1.8.2.	Área de ra	aspado	29
	1.8.3.	Área de c	ardeo	31
	1.8.4.	Área de r	eparaciones	33
	1.8.5.	Área de c	ementado	34
	1.8.6.	Área de r	ellenado	35
	1.8.7.	Área de e	mbandado	36
	1.8.8.	Área de c	obertores	41
	1.8.9.	Área de v	ulcanización	44

		1.8.10.	Área de descargue y desarmado	. 45
		1.8.11.	Área de inspección final	. 46
		1.8.12.	Herramientas neumáticas utilizadas durante el	
			reencauche de llantas de camión y llantas OTR	. 47
	1.9.	Proceso	de reencauche OTR	. 49
		1.9.1.	Área de inspección inicial manual OTR	. 49
		1.9.2.	Área de raspado OTR	. 49
		1.9.3.	Área de cardeo OTR	. 52
		1.9.4.	Área de rellenado OTR	. 53
		1.9.5.	Área de embandado	. 54
		1.9.6.	Área de cobertores OTR	. 57
		1.9.7.	Área de vulcanización OTR	. 58
	1.10.	Conside	raciones en el diseño de la tubería de aire	. 61
2.	FASE [DE INVEST	GACIÓN	. 65
	2.1.	Diagnós	tico general del sistema de iluminación en los	
		centros o	de servicios	. 65
		2.1.1.	Diagnóstico general de iluminación	. 65
		2.1.2.	Tipos de luminarias utilizadas en las oficinas de	
			centros de servicios	. 65
	2.2.	Tipos de	iluminación en los centros de servicio	. 69
		2.2.1.	Natural	. 69
		2.2.2.	Artificial	. 69
	2.3.	Consum	os energéticos generados actualmente en los	
		centros o	de servicios	. 70
		2.3.1.	Consumo generado por luminarias instaladas	. 70
	2.4.	Costos o	le consumos de energía eléctrica	. 76
		2.4.1.	Costo promedio mensual de consumo eléctrico	
			total	. 76

		2.4.2.	vidas util	es de luminarias instaladas en los
			centros de	e servicios77
	2.5.	Propuest	ta para la i	mplementación de la iluminación con
		tecnolog	ía Led	78
		2.5.1.	Luminaria	s Led equivalente a instalar79
		2.5.2.	Consumo	eléctrico teórico de luminarias
			equivalent	es a instalar80
		2.5.3.	Tipos de	luminarias seleccionadas para la
			implement	ación85
	2.6.	Eficiencia	a energética	87
		2.6.1.	Vida útil d	e luminaria a utilizar87
		2.6.2.	Costo apre	oximado de la implementación88
			2.6.2.1.	Costo de iluminaria a instalar88
			2.6.2.2.	Costo de materiales a utilizar92
			2.6.2.3.	Costo aproximado para la
				implementación del sistema Led92
	2.7.	Análisis t	financiero	93
		2.7.1.	Período de	e recuperación inversión94
		2.7.2.	Vida útil si	stema de iluminación Led95
3.	FASE T	ÉCNICO F	PROFESION	IAL99
	3.1.	Estado d	el aire comp	orimido actual99
		3.1.1.		co actual de la red de aire comprimido
			Ū	ta de producción100
			3.1.1.1.	Consumo de aire comprimido por
				área103
			3.1.1.2.	Cálculo de eficiencia del sistema
				actual107
		3.1.2.	Diagrama	del sistema actual111
			9	

	3.1.3.	Sistema de tubería112
	3.1.4.	Cuarto de compresores116
		3.1.4.1. Secador119
		3.1.4.2. Depósitos de aire
3.2.	Detecció	on de pérdidas de aire comprimido en la red 121
	3.2.1.	Detección de fugas por el método Bandag 121
	3.2.2.	Fugas en el sistema de tubería de aire
		comprimido 125
	3.2.3.	Fugas en maquinaria126
		3.2.3.1. Fugas por inspección
		3.2.3.2. Fugas por deterioro de maquinaria 127
		3.2.3.3. Fugas por mal uso del aire
		comprimido por el operario128
3.3.	Eliminad	ión de pérdidas de aire comprimido130
	3.3.1.	Repuestos y costos
	3.3.2.	Recuperación de fugas selladas133
	3.3.3.	Tiempo de recuperación inversión134
3.4.	Rediseñ	o de la red de aire comprimido VIFRIO, S.A 134
	3.4.1.	Requerimiento de la Red135
	3.4.2.	Flujo volumétrico de anillo principal 135
	3.4.3.	Caída de presión en anillo principal136
	3.4.4.	Longitud nominal de anillo principal136
	3.4.5.	Cálculo para el anillo principal137
	3.4.6.	Flujo volumétrico para ramificaciones
	3.4.7.	Longitud nominal de ramificaciones
	3.4.8.	Cálculo de diámetro de tubería secundaria en
		área de inspección inicial140
	3.4.9.	Caídas de presión en ramificaciones 141
	3.4.10.	Selección de compresor

	3.5.	Diagram	a rediseño de la red	144
3.6.	Análisis	financiero	145	
		3,6.1.	Costos para la implementación	145
4.	FASE D	OCENCIA	٨	151
	4.1.	Presenta	ación de mejoras	151
		4.1.1.	Importancia de la eliminación de fugas de air	е
			comprimido en la industria	151
		4.1.2.	El uso responsable y adecuado del air	e
			comprimido	155
		4.1.3.	Ventajas y desventajas de un sistema d	le
			iluminación Led	161
		4.1.4.	Evaluación de resultados	163
		4.1.5.	Plan de mantenimiento para red de tuberías	165
CON	ICLUSION	NES		179
REC	OMENDA	CIONES .		181
BIBL	.IOGRAFÍ	A		183
ΔDÉ	NDICES			185

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Ubicación de la empresa	1
2.	Organigrama de la empresa	4
3.	Tipo de compresores	7
4.	Secador de aire	9
5.	Depósitos de aire	11
6.	Circuito de aire comprimido cerrado	12
7.	Circuito de aire comprimido abierto	13
8.	Circuito de aire comprimido mixto	14
9.	Tubo hierro galvanizado	14
10.	Soporte de tuberías	17
11.	Accesorios de tubería	20
12.	Diseño red de aire comprimido	62
13.	Diagrama del sistema actual de aire comprimido	111
14.	Cuarto de compresores	117
15.	Compresor Ingersoll Rand 50 HP	118
16.	Compresor Kaeser AS 30 – 30 HP	118
17.	Compresor Kaeser ASD 25	119
18.	Secador Kaeser TD 61	120
19.	Depósitos de aire	121
20.	Rediseño de la red de aire comprimido Llantas VIFRIO, S.A	145
21.	Distribución de las fugas en la red de aire comprimido	154

TABLAS

I.	Cálculo de depósitos de almacenaje de aire comprimido	10
II.	Distancia entre soporte según diámetro	18
III.	Pérdidas de presión de aire en accesorios de tubería	21
IV.	Valor de accesorios en codos equivalentes	22
V.	Factores de cálculo de pérdidas de presión debidas a la friccio	ón en
	tuberías para cualquier presión inicial	23
VI.	Ficha técnica abridora de llantas modelo 396	27
VII.	Ficha técnica analizadora Insight	28
VIII.	Ficha técnica raspadora agrícola	29
IX.	Ficha técnica raspadora automática	30
Χ.	Ficha técnica raspadora manual	31
XI.	Ficha técnica spinners área de cardeo	32
XII.	Ficha técnica abridora de llantas área de reparaciones	33
XIII.	Ficha técnica cementadora	34
XIV.	Ficha técnica extrusora	35
XV.	Ficha técnica spinners área de rellenado	36
XVI.	Ficha técnica cortadora de bandas	37
XVII.	Ficha técnica embandadora 5350	38
XVIII.	Ficha técnica embandadora 5110	39
XIX.	Ficha técnica embandadora manual	40
XX.	Ficha técnica aplicador de cobertores	41
XXI.	Ficha técnica lifter monorriel	42
XXII.	Ficha técnica levantadora de neumáticos ARC	43
XXIII.	Ficha técnica probadora de cobertores	44
XXIV.	Ficha técnica cámaras de vulcanización	45
XXV.	Ficha técnica abridora de llantas modelo 396	46
XXVI.	Ficha técnica pintadora de llantas	47

XXVII.	Ficha técnica herramientas neumáticas	48
XXVIII.	Ficha técnica raspado de llanta OTR	50
XXIX.	Ficha técnica raspado de llanta OTR agrícola	51
XXX.	Ficha técnica spinner cardeo OTR	52
XXXI.	Ficha técnica spinner rellenado OTR	53
XXXII.	Ficha técnica molino OTR	54
XXXIII.	Ficha técnica regrabadora OTR	55
XXXIV.	Ficha técnica embandadora y sticher OTR	56
XXXV.	Ficha técnica armado de cobertores OTR	57
XXXVI.	Ficha técnica cámara de vulcanizado modelo 231	58
XXXVII.	Ficha técnica cámara de vulcanizado neumático vapor OTR	59
XXXVIII.	Ficha técnica cámara de vulcanizado IMS	60
XXXIX.	Luminarias instaladas actualmente en centros de servicios	66
XL.	Consumo generado por luminarias instaladas actualmente en el	
	Centro de Servicio Petapa	70
XLI.	Consumo generado por luminarias instaladas actualmente en el	
	Centro de Servicio Aguilar Batres	72
XLII.	Consumo generado por luminarias instaladas actualmente en el	
	Centro de Servicio Américas	73
XLIII.	Consumo generado por luminarias instaladas actualmente en el	
	Centro de Servicio San Cristóbal	75
XLIV.	Costo mensual de consumo eléctrico actual en luminarias	76
XLV.	Vidas útiles luminarias instaladas	77
XLVI.	Luminarias equivalentes actuales y Led	79
XLVII.	Consumo generado por luminarias Led en el Centro de Servicio	
	Petapa	80
XLVIII.	Consumo generado por luminarias Led en el Centro de Servicio	
	Aquilar Batres	81

XLIX.	Consumo generado por luminarias Led en el Centro de Servicio
	Américas83
L.	Consumo generado por luminarias Led en el Centro de Servicio San
	Cristóbal84
LI.	Luminarias seleccionadas para la implementación85
LII.	Vida útil de luminaria Led87
LIII.	Costo de luminarias Led en el Centro de Servicio Petapa89
LIV.	Costo de luminarias Led en el Centro de Servicio Aguilar Batres89
LV.	Costo de luminarias Led en el Centro de Servicio Américas90
LVI.	Costo de luminarias Led en el Centro de Servicio San Cristóbal91
LVII.	Costo de materiales a utilizar92
LVIII.	Costo aproximado para implementación Led93
LIX.	Ahorro kWh-mes en centros de servicios93
LX.	Ahorro para Llantas VIFRIO, S.A. por la implementación de luminaria
	led en los centros de servicios del área metropolitana
	mensualmente94
LXI.	Tiempo recuperación de la inversión en cada centro de servicio95
LXII.	Vida útil de sistema de luminaria led97
LXIII.	Consumo de aire comprimido de maquinaria de planta de
	reencauche VIFRIO104
LXIV.	Consumo de aire comprimido de herramientas de planta de
	reencauche VIFRIO, S.A106
LXV.	Porcentaje de pérdida de presión en ramificaciones y diámetros de
	tuberías108
LXVI.	Porcentaje de pérdida de presión en tubería secundaria y diámetros
	de tuberías109
LXVII.	Porcentaje de pérdida de presión en tubería secundaria y de servicio
	en área OTR v diámetros de tuberías 109

LXVIII.	Porcentaje de perdida de presion en tuberia principal y diametro c	le
	tubería	110
LXIX.	Porcentaje de pérdida de presión en planta de reencauch	ne
	VIFRIO, S.A.	110
LXX.	Fotografías línea principal y ramificaciones	113
LXXI.	Cuarto de compresores	117
LXXII.	Características técnicas principales secador Kaeser TD 61	119
LXXIII.	Detalles de los depósitos de aire.	120
LXXIV.	Tiempo de carga y descarga compresor Kaeser 25 HP	123
LXXV.	Tiempo de carga y descarga compresor Kaeser 30 HP	123
LXXVI.	Tiempo de carga y descarga compresor Ingersoll Rand 50 HP	124
LXXVII.	Costo de fugas por año planta de reencauche VIFRIO, S.A	124
LXXVIII.	Fugas de aire comprimido en mangueras y acoples rápidos	125
LXXIX.	Fugas de aire comprimido en maquinaria	127
LXXX.	Fugas de aire por deterioro de maquinaria	128
LXXXI.	Fugas por mal uso del aire comprimido por el operario	129
LXXXII.	Costo aire comprimido por mal uso de los operarios	129
LXXXIII.	Repuestos y costos determinados por inspección en maquinaria	130
LXXXIV.	Repuestos y costos por deterioro de maquinaria	131
LXXXV.	Repuestos y costos de mangueras y accesorios de tuberías	132
LXXXVI.	Costo por fugas anuales	133
LXXXVII.	Inversión para eliminar fugas	133
LXXXVIII.	Resumen requerimiento de la red	135
LXXXIX.	Longitud tubería principal	137
XC.	Tabla factores de cálculo de pérdidas de presión debidas a	la
	fricción en tuberías para cualquier presión inicial	137
XCI.	Accesorios para tubería principal de diámetro de 4"	138
XCII.	Flujo volumétrico inspección inicial	139
XCIII.	Longitud nominal en tubería área de inspección final	139

XCIV.	Accesorios para tuberia secundaria en area de inspección inicial de
	diámetro de 2"140
XCV.	Factores de cálculo de pérdidas de presión debidas a la fricción en
	tuberías para cualquier presión inicial140
XCVI.	Porcentaje de pérdida de presión en tuberías secundarias y
	diámetros de tuberías141
XCVII.	Porcentaje de pérdida de presión en ramificaciones y diámetros de
	tuberías142
XCVIII.	Porcentaje de pérdida de presión en tubería principal y diámetro de
	tubería143
XCIX.	Porcentaje de pérdida de presión en rediseño de la red de aire
	comprimido en la planta de reencauche VIFRIO143
C.	Características compresor Kaeser SIGMA ASD 40S144
CI.	Costo tubería para red principal y secundaría146
CII.	Costo tubería de servicio147
CIII.	Costo total del proyecto148
CIV.	Control mantenimiento preventivo compresor Ingersoll Rand
	50 HP175
CV.	Control mantenimiento preventivo compresor Kaeser AS 30 HP176
CVI.	Control mantenimiento preventivo compresor Kaeser ASD 25177
CVII.	Control mantenimiento preventivo secador Kaeser TD 61178

LISTA DE SÍMBOLOS

Símbolo Significado

HP Caballo de fuerza

Q Caudal

cm Centímetro

CDS Centro de servicio

kW Kilo Watts

It/s Litros por segundo

Long Longitud

m³/min Metro cúbico por minuto

m Metro

m/s Metros sobre segundo

mm MilímetroNúm Número

CFM Pies cúbicos por minuto

P Presión

PSI Presión sobre pulgada cuadrada

" Pulgada

' Pies

Q Quetzales

rpm Revoluciones por minuto

V Voltios

GLOSARIO

Aire Sustancia gaseosa, transparente, inodora e insípida

que envuelve la tierra y forma la atmosfera.

Aire comprimido Se produce en máquinas llamadas compresores. Es

el aire que se toma del medio ambiente, al que se le

eleva la presión desde la atmosférica a una presión

mayor, a base de reducir el volumen antes ocupado y este se almacena en un depósito hasta alcanzar la

presión del compresor.

Caudal Cantidad de aire comprimido transportado por unidad

de tiempo a través de la red de distribución.

Codo Trozo de tubo que esta doblado en ángulo o en arco

y sirve para variar la dirección de una tubería o

cañería.

Compresor Aparato que sirve para reducir a menor volumen un

líquido o un gas por medio de la presión.

Eficiencia energética Obtención de los mismos bienes y servicios

energéticos utilizando menor cantidad de energía.

EGGSA Empresa Eléctrica de Guatemala Sociedad Anónima.

Flicker Parpadeo es el fenómeno provocado por las lámparas

fluorescentes a causa de los ciclos del voltaje.

FRL Abreviatura que se da al conjunto de filtro, regulador

y lubricador de un sistema de aire comprimido.

Humedad Cantidad de agua, vapor de agua o cualquier otro

líquido que está presente en la superficie o en el

interior de un cuerpo o en el aire.

Iluminancia Es la cantidad de luz que enciende en la unidad de

área y es medida en luxes.

Led De la sigla inglesa LED; *Light-Emitting Diode*, diodo

emisor de luz. Es un dispositivo semiconductor que

emite luz cuando se aplica potencial eléctrico en él.

Lubricante Sustancia grasa o aceitosa que se aplica a las piezas

de un engranaje para que el rozamiento sea menor o

más suave.

Red Conjunto de cables, tuberías, vías de comunicación u

otras cosas largas y finas que se encuentran o cruzan

en numerosos puntos permitiendo algún tipo de

transmisión, intercambio o movimiento de algo a

través de ellos.

Rentable Que produce un beneficio que compensa la inversión

o el esfuerzo que se ha hecho.

Secador Aparato o máquina eléctrica para secar.

Termodinámica Parte de la física que estudia la acción mecánica del

calor y las restantes formas de energía.

Válvula Dispositivo que abre o cierra el paso de un fluido por

un conducto en una máquina, aparato o instrumento,

gracias a un mecanismo, a diferencias de presión.

RESUMEN

Llantas VIFRIO, S.A., es una empresa que se dedica al reencauche de llantas, la empresa está teniendo un gran crecimiento ya que reencauchan llantas de camión y llantas tipo agrícola denominadas OTR, por lo que en este informe se basa en el estudio del rediseño de la red para lograr un sistema más eficiente.

La mayoría de la maquinaria utilizada funciona con una fuente de energía neumática, por lo que actualmente se cuenta con una red deficiente que afecta a la calidad del producto final esto se debe a los cambios realizados en la red y la falta de mantenimiento preventivo. Actualmente la línea de producción se ve afectada por no cumplir con los requerimientos de la red, tales como; la caída de presión, paros por sobrecarga en los compresores y un problema serio de fugas de aire. Por lo que en el rediseño se busca corregir estos problemas.

Se busca proponer un rediseño rentable para la empresa; por lo que se realizó un análisis donde se aplicaron conocimientos teóricos en el diseño de la red, cálculos matemáticos y un estudio de las demandas del caudal consumido por cada máquina por medio de manuales del fabricante, posteriormente se calculó este dato denominado caudal corregido por medio de una ecuación que involucra los tiempos de uso de cada maquinaria y herramienta neumática. Los conceptos aplicados tienen como finalidad una mejor calidad y eficiencia de la red de aire comprimido, logrando estos objetivos se obtendrán mejores producción y calidad del producto final.

OBJETIVOS

General

Rediseñar la red de aire comprimido en la planta de reencauche VIFRIO, S.A.

Específicos

- Diseñar un sistema de iluminación Led en los centros de servicio VIFRIO,
 S.A. en el área metropolitana.
- Rediseñar la red de aire comprimido de la planta de reencauche VIFRIO,
 S.A. para que se cumpla con la demanda de la producción.
- Diagnosticar si la red cumple con los requerimientos necesarios para abastecer la planta de producción mediante cálculos matemáticos y fundamentos teóricos.
- 4. Capacitar a los operarios de la planta para el buen manejo del aire comprimido para un mayor ahorro energético.

INTRODUCCIÓN

El aire comprimido hoy en día es la energía más utilizada en la industria, ya que muchas maquinas industriales necesitan de este fluido para su operación y de las diversas utilidades que se le puede dar al mismo, la red de aire comprimido en el área de producción de llantas reencauchadas VIFRIO, S.A., se ve afectada por las caídas de presión, falta de mantenimiento en la red y el mal uso del aire comprimido.

La red sufre de fugas de aire comprimido, humedad, vueltas innecesarias y tuberías mal dimensionadas, ya que conforme se necesitó una ramificación se instalaron tuberías de distintos diámetros, llevando a que la red sufra caídas de presión, esto ocasiona un bajo rendimiento de la maquinara al operarlas. Por lo que se propone el rediseño de la red de aire comprimido para cumplir con las demandas de la planta, demandas que serán analizadas mediante cálculos matemáticos y fundamentos teóricos. La eliminación de fugas, humedad y el correcto dimensionamiento de las tuberías permitirá una disminución del consumo energético y esto significa un ahorro para la planta de reencauche VIFRIO, S.A.

El rediseño adecuado de la línea de aire comprimido necesita un plano adecuado para determinar la longitud para el cálculo de tuberías y accesorios, este cálculo se obtiene a través de fórmulas y tablas utilizando diámetros arbitrarios, entonces se puede evaluar los diámetros correctos que nos permitan una caída de presión permisible. Ejecutar un plan de mantenimiento en la red nos ayudará a mantener el sistema eficiente.

1. GENERALIDADES DE LA EMPRESA

1.1. Aspectos generales de la empresa

Somos una empresa con 73 años en mercado, cuenta con una planta de reencauche de llantas y centros de servicio automotriz nos dedicamos a proveer productos y servicios de la más alta calidad, en la rama de automóvil de pasajero, comercial, empresarial, autobuses, agrícolas. En VIFRIO ofrecemos los servicios de mecánica preventiva y general, así como las prestigiosas marcas de llantas Bridgestone, Firestone, triangle y falken nos diferenciamos en la calidad de nuestros servicios.¹

Las oficinas centrales de la empresa Llantas VIFRIO, S.A., se encuentran ubicadas en la 42 calle 20-64 zona 12, ciudad de Guatemala, departamento de Guatemala, número telefónico: 23131212. La planta de producción está a cargo de Manolo Orantes, con una cantidad de 400 personas que laboran en la empresa.

Figura 1. Ubicación de la empresa

Fuente: elaboración propia, empleando Google Maps.

¹ VIFRIO. Bienvenido a VIFRIO. http://www.VIFRIO.com/. Consulta: 20 de agosto de 2021.

1.2. Historia

En VIFRIO se ofrecen servicios de mecánica preventiva y general, así como las prestigiosas marcas de llantas Bridgestone, Firestone, Triangle y Falken. Se diferencia en la calidad de los servicios.

En otro giro de la empresa, VIFRIO se ha destacado siendo pionera en la industria del reencauche, están comprometidos a ofrecer a sus clientes empresariales una reducción del costo por kilómetro recorrido, lo cual representa un ahorro en la operación de las flotas, esto con el respaldo y la excelencia de la marca Bandag. También, tienen a disposición el servicio técnico en el predio y asistencia técnica en el camino. Gracias al trabajo desempeñado y a la excelencia de sus servicios, en 2008, VIFRIO obtuvo la certificación de la norma ISO 9001:2000. En el año 2010 realizó la transición a la nueva versión de la norma ISO 9001:2008.

1.3. Planeación estratégica

Ofrecemos los mejores servicios para el vehículo, desde mecánica general, hasta el manejo y control de llantas de un sedán, camioneta y camión y demás. Asimismo, producimos llantas reencauchadas con altos estándares de calidad. Buscamos la mejor continua de nuestros procesos y satisfacción al cliente.²

1.3.1. Misión

Ser un grupo empresarial socialmente responsable, comprometido con nuestros colaboradores, proveedores, clientes y accionistas. Ofrecemos a nivel nacional e internacional nuevos modelos de negocios con altos estándares de calidad, tecnología avanzada y nuestro recurso humano que responde a los valores éticos y morales de la organización.³

2

² VIFRIO, S.A. *Organización*. http://www.VIFRIO.com/page.php?st=VIFRIO&ref=15. Consulta: 20 de agosto de 2021.

³ Ibid.

1.3.2. Visión

"Ser la mejor opción para hacer negocios en llantas, servicios, reencauche y asesoría técnica."⁴

1.3.3. Filosofía

Se ha diseñado una carrera organizacional en cada uno de los puestos de trabajo. Se fomenta el Trabajo en Equipo, el liderazgo en los colaboradores y el trabajo ético basado en valores y principios.

Valores

- o Lealtad
- Disciplina
- Confianza
- o Compromiso
- Perseverancia

Principios

- o Integridad
- o Respeto
- Humildad
- Honestidad
- Ética en los negocios

⁴ VIFRIO, S.A. *Organización.* http://www.VIFRIO.com/page.php?st=VIFRIO&ref=15. Consulta: 20 de agosto de 2021.

1.4. Organización

En la Figura 2 se describe el organigrama de la empresa.

Gerente de ventas empresarial y cuentas clave Gerente de ventas comercial Director Comercial Gerente de ventas OTR división minas Gerente de ventas mayoreo Junta directiva Gerente de informática Gerencia general Gerencia General Coordinador Gerencia Gerente de Finanzas General Gerente de Centro de Servicios Gerente Reencauche y mantenimiento Director de operaciones Gerente de logistica Gerente de auditoria interna

Figura 2. Organigrama de la empresa

Fuente: elaboración propia, empleando Visio 2019.

1.5. Descripción del problema

En la red de aire comprimido se puede observar que la tubería tiene varios años de estar funcionando y la red ha tenido demasiadas derivaciones y vueltas innecesarias, tubería mal dimensionada y muchas perdidas por fuga de aire. Debido a que en el área son utilizadas herramientas y maquinaria neumática tales como abridora de llantas, spinners, embandadoras, raspadoras, cámaras de vulcanización, entre otros.

No existe un plan de mantenimiento de los compresores y de la red de aire comprimido, no se cumple con el mantenimiento de la red de aire y el cuarto de compresores lo utilizan como bodega, a pesar que la planta cuenta con tres depósitos de aire no es capaz de abastecer toda la red cuando existe la alta demanda de producción. No se cumple con el plan de mantenimiento preventivo para cambio de oring, empaques y lubricación de la maquinaria y herramienta neumática. Los operarios desperdician aire comprimido para limpiarse las partículas de caucho esparcidas en su vestimenta, limpian el piso descargando una corriente de aire comprimido y son gastos innecesarios para la empresa, ya que el aire comprimido no es gratis.

1.6. Aire comprimido

Debido a las propiedades casi ideales que presenta el aire libre, la utilización de este como medio de transmisión de energía, se ha convertido en las fuentes más utilizadas en la industria. En ellas se usa como medio de mecanización y automatización, logrando así una producción rápida, limpia y económica.

Cuando se trabaja con aire se entiende que es una mezcla de aproximadamente 78 % de nitrógeno, 21 % oxígeno y 1 % dióxido de carbono, argón, hidrogeno, neón, helio, criptón y xenón. Aparte que estos gases el aire contiene un porcentaje variable de vapor de agua, que se denomina humedad. Aunque se encuentran presentes en todos estos componentes en el aire, éste

conserva sus propiedades particulares, para todos los fines prácticos; ese aire que es una mezcla de varios elementos químicos cumple con las leyes de los gases, precisamente como cualquier otro gas perfecto o ideal.

1.6.1. Compresores

El compresor es una máquina que aspira aire de la atmósfera y disminuye el volumen de éste al ser comprimido, eleva la presión y almacena energía, para que luego sea utilizada en equipo neumático.

Un compresor de aire está compuesto de una unidad compresora y acoplada directamente, si es posible al motor de accionamiento. Si se necesita un engranaje, o volante de inercia, se utiliza una caja reductora, pero mucho más con frecuencia se utiliza la transmisión por correas trapezoidales.

1.6.2. Tipos de compresores

Existen dos principios de compresión de aire: la compresión de desplazamiento positivo y la compresión dinámica.

dinámicos

Desplazamiento positivo

Flujo radiat Icentrifugo)

Un solo rotor

Dos rotores

Flujo rotativo

Palotas

Engranajes

Tornillo

Figura 3. **Tipo de compresores**

Fuente: Dina Gas. *Turbomáquinas*. http://dinagasunefaim.blogspot.com/.
Consulta: 20 de agosto de 2021.

De desplazamiento positivo

Este tipo de compresores aumentan la presión directamente por reducción del volumen en la cámara que encierra el gas. Esta acción es aprovechada para dar un servicio con una relación de presión relativamente elevada, aunque presenta ciertas dificultades por las altas temperaturas y la condensación. Dentro de este grupo se encuentran clasificados los siguientes tipos de compresores:

Compresores dinámicos

Lo compresores dinámicos están disponibles en diseño axial y radial. También son conocidos normalmente como turbocompresores. Los que tienen diseño radial se denominan compresores centrífugos. Los compresores dinámicos funcionan a presión constante, a diferencia de los compresores de desplazamiento positivo que funcionan con caudal constante. Estos se ven afectados por los cambios de temperatura de entrada, ya que al cambiar también hay un cambio en la capacidad.

1.6.3. Compresores de tornillo

El principio de compresión de un compresor de desplazamiento rotativo en forma de tornillo fue desarrollado durante la década de 1930, teniendo la necesidad de un compresor rotativo que entregará un elevado caudal y que permanezca estable en condiciones de presión variables.

Las piezas principales del elemento de tornillo son los rotores hembra y macho, girando en direcciones opuestas y sin disminuir el volumen entre ellos y la carcasa. Cada elemento de tornillo tiene una relación de presiones integrada fija que depende de su longitud, del paso del tornillo y de la forma de la lumbrera de descarga.

El no tener válvulas y fuerzas mecánicas que ocasionen desequilibrio, significa que puede funcionar con una alta velocidad del eje y puede combinar un gran caudal con unas pequeñas dimensiones exteriores.

1.6.4. Tratamiento de aire

Es importante tratar el aire para evitar impurezas, humedad, lubricantes, entre otros, dentro de la red de aire comprimido, según los requerimientos de la calidad del aire para el proceso en el que será utilizado.

Los secadores son importantes para la eliminación de condensado dentro de la red de aire comprimido. Como se ha mencionado, el aire contiene una cantidad de humedad que depende de varios factores, por lo que la eliminación total o parcial de esta humedad es necesaria para evitar deficiencias, tanto en la red como en el proceso en el que será utilizada. Esta humedad está presente en el ambiente, aunque a veces no es perceptible, al ser comprimida y llevarla al punto de rocío esta se condensa. Esta condensación puede dañar los equipos y herramientas.

Figura 4. **Secador de aire**

Fuente: *Secadores*. http://www.kaeser.es/Products_and_Solutions/Compressed-air-treatment/Drying. Consulta: 20 de agosto de 2021.

1.6.5. Depósito de aire

El depósito de aire es un equipo muy importante que debe estar conectado directamente al compresor y tiene tres funciones principales. La primera función para separar el condensado de agua en colaboración con el refrigerador posterior. Se puede tener instalados dos o más depósitos de aire, en lugar de uno, con lo que se incrementará la separación del condensado. La segunda función es la de servir como depósito amortiguador de pulsaciones del aire comprimido, particularmente en el caso de compresores de pistón. Una

amortiguación de pulsaciones satisfactoria se obtiene con un volumen de depósito en metros cúbicos, 6 veces la capacidad del compresor en metros cúbicos por minuto. La tercera función, y la más importante de los depósitos, es la de almacenar aire comprimido.

Es mejor un depósito grande para almacenar aire comprimido. No obstante, si fuera muy grande, sería costoso y ocuparía mucho espacio. Para el caso de los compresores transportables, hay que pensar acerca de su peso y volumen; por eso tales máquinas disponen de otros depósitos, distintos al de los compresores estacionarios. El volumen más pequeño que un depósito debería tener, lo cual depende principalmente de dos factores: del flujo de aire normal y del sistema de regulación del compresor. Dicho volumen puede elegirse en la siguiente tabla.

Tabla I. Cálculo de depósitos de almacenaje de aire comprimido

lt/min	m³/min	Volumen depósito (m³)
1,6 – 4,0	0,1 - 0,25	0,15
4,0 - 8,0	0,25 - 0,5	0,25
8,0 – 16,5	0,5 – 1,0	0,375
16,5 – 50,0	1,0 – 3,0	0,5
50,0 - 270	3,0 – 16,0	1
270 – 500	16,0 – 30,0	2
500 – 1 000	30,0 - 60,0	4
1 000	60,0	6

Debe tenerse en cuenta que los depósitos de aire están sujetos a determinadas normas, muy estrictas, por cierto, y que deberían inspeccionarse regularmente. Los depósitos de aire están provistos de una válvula de seguridad, que debe inspeccionarse también, haciéndola funcionar, y de una válvula de drenaje para el condensado, que igualmente debe probarse. Por todo eso, los depósitos deben instalarse de tal modo, que puedan inspeccionarse desde cualquier posición.

Tanque en el Exterior

El tanque el el exterior tiene válvula de desahogo y manómetro en el interior

Descarga

El tubo de descarga tiene curvas de radio grande para ahorrar energía

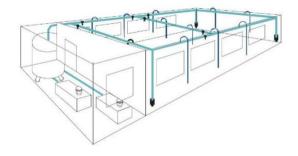
Figura 5. **Depósitos de aire**

Fuente: ELONKA, Michael, ROBINSON, Joseph.

Operación de plantas industriales, preguntas y respuestas. p. 16.

1.7. Sistema de aire comprimido

En un sistema de aire comprimido debe contar con ciertos equipos que garantizan y mejoran la calidad del aire, estos equipos se emplean según los requerimientos del proceso en el que será utilizado, por ejemplo, si es en una industria de alimentos, el aire debe estar libre de aceites que pudiesen mezclarse con el producto; por otra parte, si se utilizar en un taller mecánico, no es necesario el uso de equipos libres de lubricantes.


1.7.1. Distribución de aire comprimido

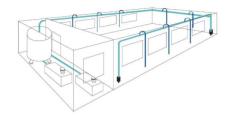
Para la distribución del aire comprimido hay tres tipos de circuitos utilizados en la industria, los cuales se explican a continuación.

1.7.1.1. Circuito cerrado

Este circuito es de los más utilizados ya que tiene la ventaja de mantener la presión, caudal y la velocidad de aire constante en varios puntos del circuito debido a que cada una de estas variables se comparte a lo largo de toda la línea.

Figura 6. Circuito de aire comprimido cerrado

Fuente: distribución de aire comprimido. http://industrial-automatica.blogspot.com.

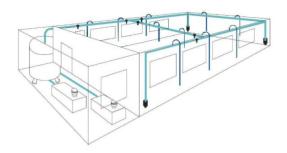

Consulta: 20 de agosto de 2021.

Este circuito tiene la ventaja de tener flujo en ambos sentidos de la línea de aire, aunque esto también conlleva cierta desventaja ya que los equipos de mantenimientos como: filtros, reguladores, lubricadores y algunas válvulas, traen predefinido la dirección del flujo; por lo que no se pueden instalar en la línea principal de aire, solamente al final de cada ramal, ya que ahí siempre se garantiza el flujo en una dirección.

1.7.1.2. Circuito abierto

Este tipo de circuito tiene la ventaja de ser más económico en su inversión inicial ya que conlleva menos materiales. Se debe tener en cuenta que este tipo de circuito se debe utilizar únicamente en sistemas en los que los puntos de consumo están cercanos a la unidad compresora, ya que se presentan muchas pérdidas de presión y caudal a lo largo de la línea.

Figura 7. Circuito de aire comprimido abierto


Fuente: *distribución de aire comprimido*. http://industrial-automatica.blogspot.com. Consulta: 20 de agosto de 2021.

A diferencia del circuito cerrado, en este, el flujo del aire va una sola dirección a lo largo de toda la línea, por lo que sí se pueden utilizar unidades de mantenimiento, garantizando una mejor calidad de aire.

1.7.1.3. Circuito mixto

En este tipo de circuito se aprovechan las ventajas de ambos circuitos anteriormente mencionados. Este circuito es de uso muy frecuente en la industria. Para la instalación se debe tener cuidado con la medición de diámetros y materiales a usar, ya que puede resultar costosa.

Figura 8. Circuito de aire comprimido mixto

Fuente: distribución de aire comprimido. http://industrial-automatica.blogspot.com.

Consulta: 20 de agosto de 2021.

1.7.2. Tubería

Se debe considerar el tipo de tubería a ser utilizada en la red, tanto el material como los diámetros. Para la realización de una red de aire comprimido existe varios materiales recomendados, tales como: Hierro Galvanizado, Aluminio, PVR. Aunque en algunos lugares utilicen el PVC para distribuir el aire comprimido, este no se recomienda por el riesgo de explosión, pudiendo causar lesiones a personas cerca de él. Ejemplo: hierro galvanizado.

Figura 9. **Tubo hierro galvanizado**

Fuente: Productos. http://www.donadio-cba.com.ar/. Consulta: 25 de agosto de 2021.

1.7.2.1. Tubería principal

Se llama así a la tubería que transporta el aire del depósito o acumulador, y conduce la totalidad del caudal de aire. Debe de considerarse la sección o el diámetro mayor posible para evitar pérdidas de presión y prever futuras ampliaciones en la red de distribución, por consiguiente, un aumento de caudal.

1.7.2.2. Tuberías secundarias

Son las ramificaciones que se derivan de la tubería principal, hacia todas las áreas de trabajo de la cuales se derivan los puntos de servicio. El caudal que suministren será la suma de los caudales parciales que se deriven o todos los puntos de servicio que salga de ella. Debe de considerarse igualmente el diámetro mayor posible por futuras ampliaciones al calcular su diámetro.

1.7.2.3. Tuberías de servicio

Son las que alimentan o proveen el aire comprimido a los equipos neumáticos. Cuentan con acoples rápidos y las mangueras de aire, así como la unidad de mantenimiento. Con el fin de evitar obstrucciones se recomiendan diámetros mayores a ½", pudiéndose colocar hasta un máximo de tres acoples rápidos en cada una de ellas.

1.7.3. Clases de tubería

Las tuberías son conductos formados por tubos, los cuales transportan el aire comprimido desde el compresor, hasta los lugares de servicio. Las tuberías pueden clasificarse en rígidas, semirrígidas y flexibles.

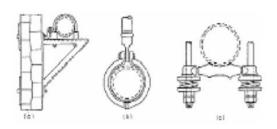
1.7.3.1. Tuberías rígidas

Son empleadas para instalaciones permanentes, es decir, que no estarán sometidas algún tipo de movimiento relativo. Adecuadas para altas presiones y su fabricación es de base metálica. Entre las tuberías rígidas más utilizadas se encuentran: Las tuberías de acero de peso normalizado, útil cuando se requieren de grandes diámetros, mayores de 4". Las tuberías de cobre normalmente son utilizados para diámetros reducidos, y expuestos ambientes poco corrosivos. Se debe de tener presente a su alta fragilidad en presencia de vibraciones, elevado costo y limitaciones de accesorios. Cuando se elija e instale es tipo de material.

1.7.3.2. Tuberías semirrígidas

Cuenta con cierta maleabilidad, la cual es útil al momento de su instalación y mantenimiento. Fabricadas en su mayoría de materiales termoplásticos como el PVC y el polietileno. Tienen capacidad de trasportar aire a moderadas presiones, son livianas y de un costo relativamente bajo. Pueden soportar medios corrosivos y ligeros desplazamientos sin sufrir daños. Aunque pueden no ser compatible con aceites utilizados en los compresores.

1.7.3.3. Tuberías flexibles


También llamadas mangueras, estas pueden soportar: deformaciones, vibraciones, medios corrosivos y una gran gama de presiones. Dependiendo del material de fabricación, además, están constituidas por un forro interior liso, resistente a la neblina de aceite, una capa intermedia resistente a la presión y de un forro externo flexible que les proporciona resistencia a los solventes y la abrasión. Los materiales más empleados para su fabricación son: Nylon, PVC flexible, caucho y lona. La resistencia de las mangueras está relacionada

directamente con el espesor de pared y la clase de material utilizado en su fabricación.

1.7.4. Soporte de tubería

Las tuberías deben de tener soporte entre los puntos que conectan. Cuando no hay problema de dilatación en montaje es sencillo, porque se pueden utilizar soportes de abrazaderas, varillas y un tensor de ajuste. Un soporte adecuado debe tener una base resistente y rígida, apoyada adecuadamente y un dispositivo regulable de rodillos, si existe dilatación, que mantengan la alineación en cualquier dirección. Cuando existe dilatación en la tubería, una solución es colocar un soporte formado de perfiles de acero y pernos en forma de U, los cuales fijan la tubería sobre el soporte como se representa en la Figura 10. Cuando la tubería es soportada por debajo, para no dificultar la dilatación los soportes están proviso por rodillos.

Figura 10. **Soporte de tuberías**

Fuente: EUGENE, Avallone y BAUMEISTER, Theodore.

Manual del Ingeniero Mecánico. p. 8.

Los soportes deben colocarse cerca de los cambios de dirección. El peso de la tubería no debe cargarse a los cuerpos de válvulas. Al establecer la localización de los soportes de los tubos, debe de guiarse por dos condiciones:

la luz o claro horizontal no debe ser tan larga que la flecha del tubo imponga un esfuerzo excesivo en la pared del mismo; la inclinación de la tubería en sentido descendente para drenar o expulsar el agua condesada

1.7.4.1. Distancia entre soporte según diámetro

Los soportes son seleccionados según la arquitectura del edificio. Tendrán una base rígida y resistente. Solo se utilizarán soportes aéreos donde sea ameritado u obligatorio el uso. Este soporte permite colocar la tubería aéreamente, con el fin de facilitar la instalación de accesorios, puntos de drenaje, futuras ampliaciones y fácil inspección, aspectos importantes en el mantenimiento de la línea de aire.

Tabla II. Distancia entre soporte según diámetro

Diámetro de tubería	Horizontal (m)	Vertical (m)
1/4"	1,25	1
1/,"	1,75	1,25
3/4"	2,7	1,75
1 1/4"	3	2,5
1 ½"	3	2,5
2"	3,5	2,75
3"	3,5	3
4"	3,5	3
6"	5,25	3,5
10"	5,18	4,25
12"	5,48	4,87

Fuente: ROSALES, Robert. Manual de mantenimiento industrial. p. 97.

1.7.5. Accesorios de tubería

Para llevar a cabo la instalación de una red de distribución de aire, es indispensable la utilización de accesorios. Son útiles para adaptar la tubería a la forma del edificio y para cumplir las necesidades de las máquinas. Entre los accesorios más usados son:

- Niples y uniones: accesorios que actúan de enlace entre tubos del mismo diámetro. La unión posee rosca hembra mientras el niple posee rosca doble macho.
- Adaptadores: son elementos de uniones que sirven para unir tuberías de diferente rosca.
- Reducciones: son elementos de unión que acoplan tuberías de diferentes diámetros.
- Codos: cambia la dirección del flujo a 30, 45, 60 ó 90 °C. Estos pueden ser codos iguales cuando no hay variación de diámetro en sus extremos o desiguales cuando sí lo hay.
- Tees: elemento que acopla tres tuberías. Siendo el diámetro de dichas tuberías iguales o desiguales según sea la necesidad.
- Cruces: elementos de conexión, y se utilizan para conectar cuatro tuberías en un mismo plano, se utilizan para hacer derivaciones de una línea.
 Pueden poseer diámetros iguales o desiguales en sus extremos.

- Tapones: impiden el paso del flujo en una dirección no desea. Se denominan así cuando poseen rosca hembra y tapas cuando tiene roca macho.
- Acoples rápidos: sirven para conectar fácil y velozmente herramientas o equipos neumáticos en la red. Son necesarios cuando se tienen diversas máquinas o dispositivos en un mismo punto de conexión.

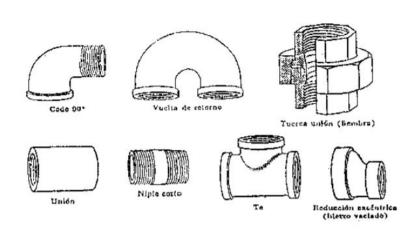


Figura 11. Accesorios de tubería

Fuente: ÁVILA PINZÓN, Álvaro Antonio. Folleto instalaciones mecánicas. p. 6.

1.7.6. Longitud de tubería

Para el diseño de una red, las conducciones o tuberías deben ser lo más cortas y rectas posibles, es decir, tener el mínimo de curvas cerradas o accesorios, para evitar que se incremente la pérdida de presión. La pérdida de presión se debe a la resistencia del flujo a través de un conducto, el cual se incrementa por el uso de accesorios, afectando así la capacidad de conducción. Para expresar la resistencia a la conducción causada por los accesorios, estos

deben de expresarse en longitudes equivalentes de tubo recto por medio de operaciones matemáticas o mediante el uso de tablas. Las resistencias así expresadas son sumadas a la longitud real de la tubería y la suma es llamada longitud equivalente de la tubería.

1.7.6.1. Longitud equivalente

Las resistencias que ocasionan los accesorios varían dependiendo de su diámetro. Para determinar la longitud de la tubería debido a la existencia de accesorios se pueden utilizar dos métodos: Se relacionan los accesorios directamente con longitudes de tubo recto, son variables estas según sea, el diámetro de los accesorios. Para ello se utiliza la tabla III, la cual muestra longitud de tubo recto en pies.

Tabla III. Pérdidas de presión de aire en accesorios de tubería

According	Tamaño nominal de tubería en pulgadas								
Accesorios	1/2"	3/4"	1"	1 1/4"	1 ½"	2	2 ½"	3"	4"
Codo	1,55	2,06	2,62	3,45	4,02	5,17	6,16	7,5	10
Válvula de compuerta	0,36	0,48	0,61	0,81	0,94	1,21	1,4	1,55	2
Válvula de ángulo	6,65	11,4	14,6	19,1	22,4	28,7	34,3	37,5	50
Válvula de globo	17,3	22,9	29,1	38,3	44,7	57,4	66,5	88,5	113,33
Tee	0,62	0,82	1,05	1,38	1,61	2,07	2,47	5	6,67
Reducción	0,066	0,132	0,165	0,198	0,231	0,33	0,66	0,99	1,65
Cuello de cisne	0,627	0,66	0,825	1,07	1,32	1,65	1,83	2,01	2,33
Filtro separador	0,66	0,99	1,32	1,65	1,96	2,31	3,3	4,33	5,3

Fuente: ÁVILA PINZÓN, Álvaro Antonio. *Folleto instalaciones mecánicas:* tuberías neumáticas. p. 8.

Se relacionan los accesorios con la resistencia que ocasionaría un codo de 90; hallando así un número determinado de codos equivalentes, y estos, a su vez, se convierten en una longitud recta utilizando la siguiente fórmula y la tabla III:

$$L_e = \textit{N\'umero de codos equivalentes} * (\frac{25*\textit{d\'i\'ametro del tubo}}{12})$$

Tabla IV. Valor de accesorios en codos equivalentes

Nombre de la parte	Codos equivalentes			
	Tubo de hierro	Tubo de cobre		
Válvula de ángulo radiador	2,0	3,0		
Válvula de globo abierta	12,0	17,0		
Válvula de compuerta abierta	0,5	0,7		
Te con desviación del 100%	1,8	1,2		
Te con desviación del 50%	4,0	4,0		
Te con desviación del 33%	9,0	11,0		
Te con desviación del 25%	16,0	20,0		
Codo de 90	1,0	1,0		
Codo de 90 con curva grande	0,5	0,5		
Codo de 45	07	0,7		
Retorno (U) abierto	1,0	1,0		
Unión de reducción	0,4	0,4		

Fuente: ÁVILA PINZÓN, Álvaro Antonio. *Folleto instalaciones mecánicas:* tuberías neumáticas. p. 9.

Una vez obtenida la longitud de los accesorios expresados en longitudes rectas de tuberías, estas son sumadas a longitud real de tubería recta. Según se muestra en la siguiente ecuación. Determinando así la longitud equivalente de toda la red de distribución de aire comprimido.

Longitud equivalente = L. de tubería + L. por accesorios.

1.7.6.2. Pérdidas por fricción en la tubería

Un fluido al ser trasportado sufre pérdidas de presión, ocasionado por la longitud de la tubería. El factor de fricción F, es un parámetro adimensional que se utiliza para calcular la pérdida por fricción en la tubería.

Tabla V. Factores de cálculo de pérdidas de presión debidas a la fricción en tuberías para cualquier presión inicial

CFM	1/2"	3/4"	1 "	1 1/4 "	1 ½"	2"	2 ½"	3"	4"
5	12,7	1,2	0,5						
10	50,7	7,8	2,2	0,5					
15	114	17,6	4,9	1,1					
20	202	304	8,7	2	0,9				
30	456	70,4	19,6	4,5	2				
40	811	125,3	34,8	8,1	3,6				
50		196	54,4	12,6	5,6	1,5			
60		282	78,3	18,2	8	2,2			
70		385	106,6	24,7	10,9	2,9	1,1		
80		503	139,2	32,3	14,3	3,8	1,5		
90		646	176,2	40,9	18,1	4,8	1,9		
100		785	217,4	50,5	22,3	6	2,3		
150			490	113,6	50,3	13,4	5,2	1,6	
200			870	202	89,4	23,9	9,3	2,9	
300				454	201	53,7	20,9	6,6	
400						94,7	37,1	11,7	2,7
500						150	58	18,3	4,3
600						215	83,5	26,3	6,2
700						294	113,7	35,8	8,5
800						382	148,4	46,7	11,1
900						486	188	59,1	14
1000						600	232	73	17,3

Fuente: ÁVILA PINZÓN, Álvaro Antonio. Folleto instalaciones mecánicas. p. 9.

1.7.6.3. Cálculo de presión teórica

Se distinguen dos conceptos: la presión de servicio es la suministrada por el compresor o acumulador y existe en las tuberías que alimentan a los consumidores. La presión de trabajo es la necesaria en el puesto de trabajo considerado. Por eso los datos de servicio de los elementos se refieren a esta presión.

Para calcular la demanda de presión se debe de sumar la presión prescrita a la herramienta, la caída de presión que se presentará en la línea y los accesorios, obteniendo así la presión al inicio de la línea principal.

$$P2 = P1 + P$$

P2 = presión demandada en PSI

P1 = presión de la herramienta en PSI, la presión mayor

P = caída de presión admisible en la línea en PSI, 3 al 6 %

1.7.7. Cálculo de diámetro teórico de tubería

La dimensión del diámetro en una tubería es de suma importancia, debido a que las pérdidas de presión que sufre un fluido cuando se transporta en ella están directamente relacionadas con su diámetro. Por ello es importante calcular un diámetro óptimo, el cual posea la capacidad de transportar un caudal determinado; estas pérdidas oscilan entre un 3 % a un 6 % de la presión nominal. Para determinar el diámetro óptimo en una instalación neumática se deben seguir los siguientes pasos:

Calcular el consumo de aire del equipo, el cual es el resultado de la suma de los consumos individuales de todos los equipos y máquinas neumáticas que se desean instalar.

Determinar el caudal Q requerido por la instalación; el cual es el resultado de la suma del consumo de aire del equipo más un 5 % por desgaste más 10 % por más fugas más un 20 % ó 30 % por futuras ampliaciones según proyecciones de la empresa para agregar equipos.

$$Q_{total} = Q + 5 \% perdidas + 10 \% errrores de calculos$$

Calcular la presión de la instalación, la cual viene dada por la presión máxima requerida para el accionamiento del equipo neumático. Esta operación se detalla en el siguiente inciso.

Establecer la pérdida de presión admisible, la cual es la pérdida basada en la variación de presión que puede sufrir la instalación sin repercutir en el funcionamiento del equipo neumático. Determinar la longitud equivalente:

Para determinar la longitud debida a los accesorios se deben de tomar un diámetro arbitrario, debido a que esta longitud varía según sea el diámetro de la tubería. La longitud equivalente se dará en pies.

Calcular la pérdida de presión en la tubería:

P = (Factor de pérdidas (F) * Long. Equivalente) /(Factor de tubería(R) * 1 000)
PSI

El factor de pérdida, F, se determina mediante la tabla V, utilizando para ello el diámetro de la tubería en pulgadas y el caudal de aire requerido por la instalación CFM.

Factor de pérdida (R) = (P. Instalaciones + P. Manométrica) /(P. Manométrica)

Cuantificar la pérdida de presión en porcentaje

% de pérdida de presión = Pérdida de presión * 100 / Presión de instalación

Se compara la pérdida admisible de presión con la pérdida de presión en la tubería; si esta última es mayor se debe aumentar el diámetro de la tubería.

El diámetro óptimo de la tubería neumática se determina por tanteos al variar el diámetro dentro de la tubería y corroborar que la pérdida de presión en la tubería sea igual o menor que la pérdida de presión admisible entre un rango entre 3 % a 6 %.

1.8. Uso de aire comprimido en la planta de reencauche

En esta área se los operarios utilizan la siguiente maquinaria para ver el estado del neumático. A continuación, se presentan las fichas técnicas de la maquinara neumática utilizada para reencauchar las llantas.

1.8.1. Área de inspección inicial

Se realiza un examen físico minucioso de las condiciones en las que se encuentra cada una de las partes del neumático que se va a renovar, consideradas como críticas, observando el límite máximo de abertura de los

talones. Todos los daños encontrados deben ser indicados o marcados con crayón.

Tabla VI. Ficha técnica abridora de llantas modelo 396

Datos técnicos			
Nombre	Abridora de llantas		
Marca	Bandag		
Modelo	396		
Cantidad	2		
Número de máquina	1 y 2		
Presión de trabajo	120 PSI		
CFM	70		

Tabla VII. Ficha técnica analizadora Insight

Datos técnicos			
Nombre	Analizadora de cascos, Insight		
Marca	Bandag		
Modelo	7400		
Cantidad	1		
Número de máquina	33		
Presión de trabajo	120 PSI		
CFM	70		

1.8.2. Área de raspado

Se retira la parte remanente de la banda de rodamiento, dejando la carcasa con las dimensiones y la textura correcta para la posterior aplicación de la nueva banda de rodamiento.

Tabla VIII. Ficha técnica raspadora agrícola

Datos	técnicos	
Nombre	Raspadora Agrícola	
Marca	Bandag	
Modelo	231 y 23	
Cantidad	1	
Número de máquina	3	
Presión de trabajo	120 PSI	
CFM	65	
TS COLUMN TO SERVICE AND ADDRESS OF THE PARTY OF THE PART		

Tabla IX. Ficha técnica raspadora automática

Datos técnicos			
Nombre	Raspadora automática		
Marca	Bandag		
Modelo	8400		
Cantidad	1		
Número de máquina	4		
Presión de trabajo	120 PSI		
CFM	65		

Tabla X. Ficha técnica raspadora manual

Datos t	Datos técnicos				
Nombre	Raspadora Manual				
Marca	Bandag				
Modelo	8120				
Cantidad	1				
Número de máquina	5				
Presión de trabajo	120 PSI				
CFM	65				

1.8.3. Área de cardeo

Se limpian y prepararan todos los daños de la carcasa, sean estos en el talón, solamente goma, lateral, hombro y banda de rodamiento, para identificar las averías se utiliza tiza escolar para resaltar las pasantes con un círculo.

Tabla XI. Ficha técnica spinners área de cardeo

Datos técnicos			
Nombre	Spinner		
Marca	Bandag		
Modelo	1100		
Cantidad	6		
Número de máquina	6, 7, 8, 9, 10 y 11		
Presión de trabajo	120 PSI		
CFM	5		

1.8.4. Área de reparaciones

Para la ejecución de una buena reparación es fundamental seguir atentamente los procedimientos y respetar rigurosamente las tablas de aplicación; y con ello devolver a la región averiada la resistencia original de la carcasa.

Tabla XII. Ficha técnica abridora de llantas área de reparaciones

Datos to	Datos técnicos				
Nombre	Abridora de llantas				
Marca	Bandag				
Modelo	372				
Cantidad	5				
Número de máquina	13, 14, 15, 16 y 37				
Presión de trabajo	120 PSI				
CFM	5				

1.8.5. Área de cementado

Se aplica una capa fina y uniforme de cemento en la superficie raspada de la carcasa para facilitar la unión o ligación de la nueva banda de rodamiento con la carcasa.

Tabla XIII. Ficha técnica cementadora

Dato	s técnicos
Nombro	Cementadora, bomba y aplicadora de
Nombre	cemento
Marca	Bandag
Modelo	
Cantidad	1
Número de máquina	12
Presión de trabajo	120 PSI
CFM	50

1.8.6. Área de rellenado

Mediante el rellenado de las averías preparadas se nivela con la superficie de la carcasa, para tener un área uniforme para que posteriormente se instale la nueva banda.

Tabla XIV. Ficha técnica extrusora

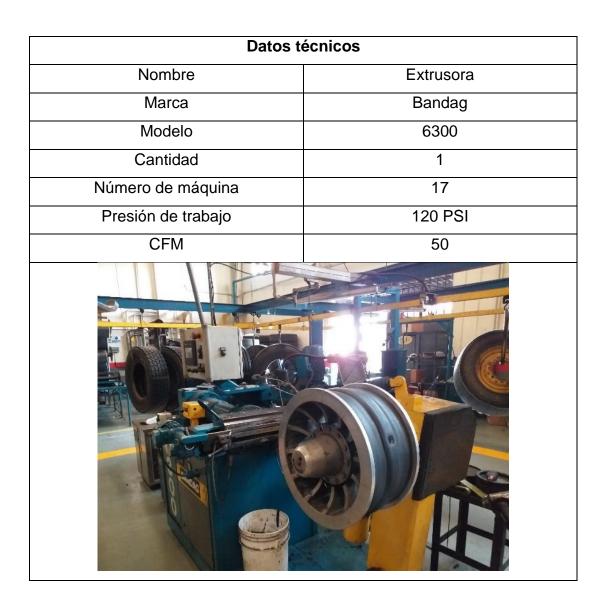


Tabla XV. Ficha técnica spinners área de rellenado

Datos técnicos	
Nombre	Spinner
Marca	Bandag
Modelo	1100
Cantidad	2
Número de máquina	18 y 36
Presión de trabajo	120 PSI
CFM	5

1.8.7. Área de embandado

Se coloca a la carcasa la nueva banda de rodamiento, para ello se debe centralizar y fijar la nueva banda de rodamiento en la carcasa y con la ayuda de los rodillos neumáticos se debe trabajar desde el centro hacia los bordes, eliminando el aire contenido bajo la banda de rodamiento.

Tabla XVI. Ficha técnica cortadora de bandas

Datos técnicos	
Nombre	Cortadora de bandas circular
Marca	Bandag
Modelo	191
Cantidad	1
Número de máquina	19
Presión de trabajo	120 PSI
CFM	80

Tabla XVII. Ficha técnica embandadora 5350

Datos técnicos	
Nombre	Embandadora
Marca	Bandag
Modelo	5350
Cantidad	1
Número de máquina	21
Presión de trabajo	120 PSI
CFM	65

Tabla XVIII. Ficha técnica embandadora 5110

Datos técnicos	
Nombre	Embandadora
Marca	Bandag
Modelo	5110
Cantidad	1
Número de máquina	35
Presión de trabajo	120 PSI
CFM	65

Tabla XIX. Ficha técnica embandadora manual

Datos t	técnicos
Nombre	Embandadora Manual
Marca	Bandag
Modelo	221C
Cantidad	1
Número de máquina	20
Presión de trabajo	120 PSI
CFM	65

1.8.8. Área de cobertores

En esta etapa se colocan cobertores internos y externos, de esta forma se facilita la aplicación técnica de vacío, para luego ser sometidos a presión para iniciar con el proceso de vulcanización.

Tabla XX. Ficha técnica aplicador de cobertores

Datos técnicos	
Nombre	Aplicador de cobertores
Marca	Bandag
Modelo	1240
Cantidad	1
Número de máquina	22
Presión de trabajo	120 PSI
CFM	5

Tabla XXI. Ficha técnica lifter monorriel

Datos técnicos	
Nombre	Lifter monorriel
Marca	Bandag
Modelo	93
Cantidad	1
Número de máquina	23
Presión de trabajo	120 PSI
CFM	5

Tabla XXII. Ficha técnica levantadora de neumáticos ARC

Datos técnicos		
Nombre	Levantador de neumáticos ARC	
Marca	Bandag	
Modelo	1120	
Cantidad	1	
Número de máquina	24	
Presión de trabajo	120 PSI	
CFM	5	

Tabla XXIII. Ficha técnica probadora de cobertores

Datos técnicos		
Nombre	Probador de cobertores	
Marca	Bandag	
Modelo	1190	
Cantidad	2	
Número de máquina	19 y 25	
Presión de trabajo	120 PSI	
CFM	5	
	RANCAG	

1.8.9. Área de vulcanización

Consiste en la adhesión entre la nueva banda de rodamiento y la carcasa mediante la vulcanización del cojín, se debe verificar que no haya infiltración de aire entre el cobertor y la carcasa. Se introducen los neumáticos en la autoclave conectando la manguera de inflado en el tubo de curación y la manguera de

retirada de aire en el sobre o cobertor. El tiempo de vulcanización es de 200 minutos.

Tabla XXIV. Ficha técnica cámaras de vulcanización

Fuente: elaboración propia.

1.8.10. Área de descargue y desarmado

Utilizan lifter monorriel descrito en la tabla XXI. para descargar las llantas después del vulcanizado.

1.8.11. Área de inspección final

En este proceso el producto terminado es examinado en la parte interna y externa, verificando, que no existan desplazamientos, sopladuras o gomas sueltas y otras no conformidades que impidan la liberación del producto.

Tabla XXV. Ficha técnica abridora de llantas modelo 396

Datos técnicos		
Nombre	Abridora de llantas	
Marca	Bandag	
Modelo	396	
Cantidad	2	
Número de máquina	31 y 32	
Presión de trabajo	120 PSI	
CFM	70	

Tabla XXVI. Ficha técnica pintadora de llantas

Datos técnicos	
Nombre	Pintadora de llantas
Marca	Bandag
Modelo	con-plc-tp-5
Cantidad	1
Número de máquina	30
Presión de trabajo	120 PSI
CFM	15

1.8.12. Herramientas neumáticas utilizadas durante el reencauche de llantas de camión y llantas OTR

En la siguiente tabla se describen todas las herramientas neumáticas utilizadas en la planta de reencauche, con su respectiva figura y el caudal necesario en CFM para su funcionamiento.

Tabla XXVII. Ficha técnica herramientas neumáticas

Herramienta	Figura	CFM
Turbina de altas revoluciones 4 000 rpm		15
Turbina de bajas revoluciones 3 000 rpm	HELEN PERMIT	15
Aspiradora		15
Soplador		5
Pistola cementadora miniextrusora		15
Engrapadora	We we will also the second of	1

1.9. Proceso de reencauche OTR

A continuación, se presenta la maquinara utilizada para el reencauche de llantas en área de OTR.

1.9.1. Área de inspección inicial manual OTR

En esta área se realiza inspección visual del neumático por lo complicado del manejo de estos neumáticos, en algunos casos es necesario el uso de montacargas, en esta área no se utiliza aire comprimido ni ninguna maquinaria neumática para esta inspección.

1.9.2. Área de raspado OTR

Con la raspadora se retira la banda de rodamiento desgastada respetando los perfiles y espesores recomendados por los fabricantes, a fin de obtener una precisa geometría y textura de la superficie raspada, permitiendo la colocación de una nueva banda de rodamiento.

Tabla XXVIII. Ficha técnica raspado de llanta OTR

Datos técnicos		
Nombre	Raspadora de llanta OTR	
Marca	IMS	
Modelo	IMS52	
Cantidad	1	
Número de máquina		
Presión de trabajo	120 PSI	
CFM	5	
CFM 5		

Tabla XXIX. Ficha técnica raspado de llanta OTR agrícola

Datos to	écnicos
Nombre	Raspadora de llanta OTR Agrícola
Marca	Bandag
Modelo	
Cantidad	1
Número de máquina	
Presión de trabajo	120 PSI
CFM	5
CFM 5	

1.9.3. Área de cardeo OTR

En esta área se utiliza aire comprimido para herramientas neumáticas para reparaciones y textura, herramientas utilizadas como turbinas de alta y bajas revoluciones. Y para motor neumático para spinner OTR.

Tabla XXX. Ficha técnica spinner cardeo OTR

Datos técnicos		
Nombre	Spinner OTR, pedestales de	
Nombre	neumáticos	
Marca		
Modelo		
Cantidad	1	
Número de máquina		
Presión de trabajo	120	
CFM	5	
CFM 5		

1.9.4. Área de rellenado OTR

En esta área se utiliza aire comprimido solamente en herramientas de trabajo y sopleteado de partículas que se encuentra en el interior y exterior del neumático.

Tabla XXXI. Ficha técnica spinner rellenado OTR

Datos	técnicos
Manakas	Spinner OTR, Pedestales de
Nombre	neumáticos
Marca	
Modelo	
Cantidad	2
Número de máquina	
REL	ENADO VFRO CUIDADOT Maquina peligros Min Will Cuida ti

Tabla XXXII. Ficha técnica molino OTR

Datos técnicos	
Nombre	Molino para hule
Marca	
Modelo	
Cantidad	1
Número de máquina	
Presión de trabajo	120 PSI
CFM	5

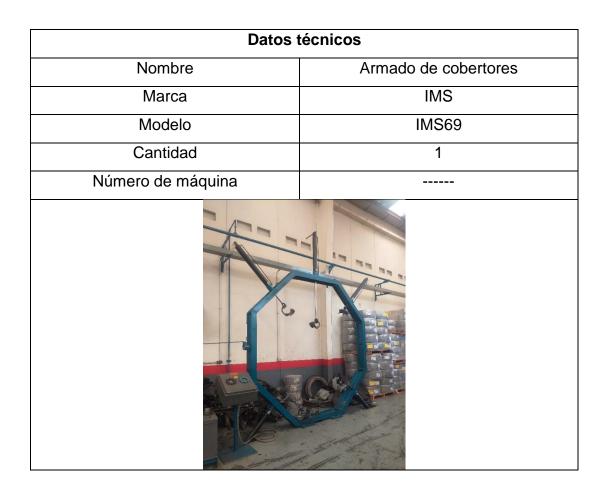
1.9.5. Área de embandado

Herramienta utilizada turbina de baja revolución para eliminar residuos que deja la regrabadora en el neumático.

Tabla XXXIII. Ficha técnica regrabadora OTR

Datos técnicos	
Nombre	Regrabadora
Marca	
Modelo	
Cantidad	1
Número de máquina	

Tabla XXXIV. Ficha técnica embandadora y sticher OTR


Datos técnicos		
Nombre	Embandadora y sticher	
Marca		
Modelo		
Cantidad	1	
Número de máquina		
Presión de trabajo	120 PSI	
CFM	5	

1.9.6. Área de cobertores OTR

Esta máquina para armado de cobertores utiliza cilindros hidráulicos y no neumáticos, se agrega para seguir el seguimiento a la línea de producción.

Tabla XXXV. Ficha técnica armado de cobertores OTR

1.9.7. Área de vulcanización OTR

En esta área es la unión definitiva de la banda, los productos crudos y la carcasa, durante la vulcanización se deben controlar parámetros indispensables como presión y temperatura los cuales garantizan la correcta fijación de la nueva banda de rodamiento. A diferencia de las cámaras de vulcanización de las llantas de camión utilizan resistencias, en el área de OTR se utiliza vapor.

Tabla XXXVI. Ficha técnica cámara de vulcanizado modelo 231

Datos	técnicos		
Nombre	Cámara de vulcanizado 72'		
Marca	Bandag		
Modelo	231		
Cantidad	1		
Número de máquina			
Presión de trabajo	120 PSI		
CFM	65		
VULCANIZACION			

Tabla XXXVII. Ficha técnica cámara de vulcanizado neumático vapor
OTR

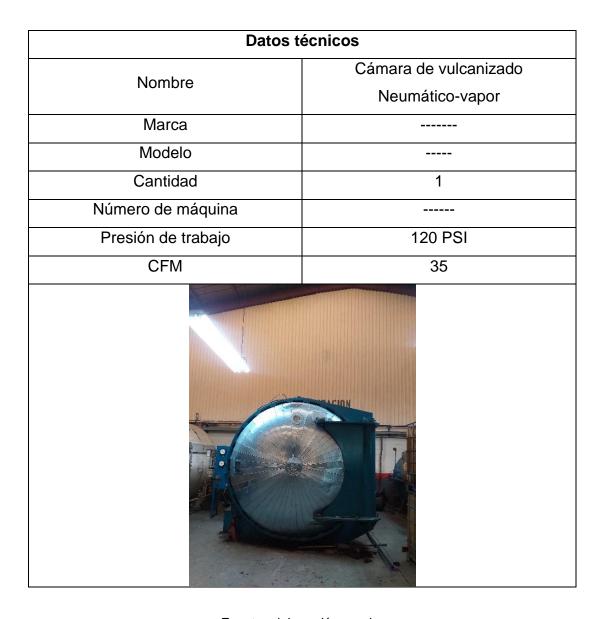
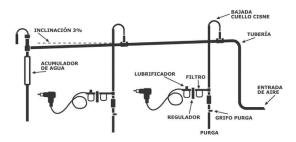


Tabla XXXVIII. Ficha técnica cámara de vulcanizado IMS

Datos técnicos						
Nombre	Cámara de vulcanizado					
Marca	IMS 96"X120"					
Modelo	12208					
Cantidad	1					
Número de máquina						
Presión de trabajo	120 PSI					
CFM	65					


1.10. Consideraciones en el diseño de la tubería de aire

- No debe usarse tubería de PVC.
- Un circuito cerrado de la alimentación neumática principal significa la mayor eficiencia del flujo de aire ya que minimiza posibilidad de las caídas de presión en ciertos puntos del sistema. Debe de ser instalada a una altura de 3,00 metros.
- Un alto porcentaje de plantas son planeadas desde el inicio con ampliaciones a futuro. Aún y cuando los equipos no sean instalados en corto plazo, debe tomarse en consideración al instalar en la línea de aire principal: tubería de 2", 3" ó 4", según sea el caso con reducción a ¾" ó ½" y un tapón al final. No considerarlo representará trabajos posteriores y parón en la producción.
- Cuando son utilizadas las mangueras flexibles de aire comprimido para conectar los equipos, su longitud debe restringirse a la mínima necesaria.
 Debe ser de una especificación de operación de 300 PSI.
- Las tuberías galvanizadas deben estar lo más cerca de los equipos para evitar alimentarlos con mangueras flexibles ya que éstas crean resistencia adicional con los acoples de conexión y causan caídas de presión. Se recomienda conectar los equipos con tubería rígida hasta donde sea posible.
- Se recomienda que la tubería principal tenga una pendiente hacia abajo hasta las trampas de agua que se colocan al final del circuito en la dirección del flujo del aire comprimido. Esto permitirá que los agentes

contaminantes en las líneas; agua, aceite y residuos sólidos sean removidos en las trampas de agua. La pendiente en la tubería principal debe ser al menos de 1" por cada 10'.

- Instalar válvulas de espera en cada línea derivada de la tubería principal que va hacia los equipos.
- Siempre instalar derivaciones tipo cuello de ganso desde la tubería principal tal como se muestra en la figura.

Figura 12. **Diseño red de aire comprimido**

Fuente: *Red de aire comprimido*. https://tecnicayateismo.wordpress.com/tag/neumatica/.

Consulta: 20 de agosto de 2021.

- Una trampa de agua debe ser instalada en la parte baja de cada una de las líneas verticales para recolectar los agentes contaminantes, o bien; al menos instalar una válvula de esfera y un tramo de 25 cm de tubería para drenar diariamente cada línea independiente.
- El ingeniero de servicio debe proveer la información para considerar las salidas para alimentar los elevadores del monorriel de proceso de acuerdo al layout.

Conectar un sistema de filtro-regulador-lubricador, F.R.L, a excepción de lo que se indique en los siguientes puntos, ya que algunos equipos Bandag cuentan con estos FRL de fábrica y por su consumo requiere otro tipo de tubería.

2. FASE DE INVESTIGACIÓN

2.1. Diagnóstico general del sistema de iluminación en los centros de servicios

VIFRIO, S.A., cuenta con centros de servicios automotriz en área metropolitana como en el interior del país, en los centros de servicios el cliente encontrará limpieza, ambiente agradable y estética, por lo que el sistema de iluminación debe prestar las condiciones necesarias para que el cliente encuentre un ambiente agradable y confortable en su visita.

2.1.1. Diagnóstico general de iluminación

Se visitó cada centro de servicio en el área metropolitana, siendo VIFRIO Petapa, VIFRIO Aguilar Batres, VIFRIO Américas y VIFRIO San Cristóbal. Los centros de servicios cuentan iluminación natural como la artificial, cuenta con sótanos utilizados para bodega y para el servicio automotriz. El horario laboral es de 7:00 a 17:00 horas de lunes a viernes y sábado de 7:00 a 12:00 horas.

2.1.2. Tipos de luminarias utilizadas en las oficinas de centros de servicios

En la siguiente tabla se muestran las luminarias utilizadas actualmente en los centros de servicio.

Tabla XXXIX. Luminarias instaladas actualmente en centros de servicios

Descripción luminarias	Fotografía
Lámpara 2'x4' 4x40 t-12 empotrar con difusor luxlite. con tubos fluorescentes de 40 y 32 W.	
Lámpara 2'x4' 4x40 t-8 colgante con difusor	
Lámpara 2'x2' 4x20 t-8 empotrar con difusor. Con tubos fluorescentes de 20 W y 17 W	
Lámpara 2x32 t-8 liston Sylvania 2x40 t-12 largo de 4'	E
Lámpara 2x40 t-12 rs industrial Sylvania largo de 4'	THE STATE OF THE S
Lámpara 1x21 t-5 tipo gabinete luxlite.	
Lampara 2x32 t-8 contra humedad y polvo Sylvania, largo de 4'	
Lámpara 2x20 T-8 contra humedad y polvo largo de 2'	

Continuación tabla XXXIX.

Tubo fluorescente 32 W t-8 color 6500k Sylvania	Option of the second of the se
Lámpara 2x75 t-12 rs industrial Sylvania largo de 96"	
Lampara 2'x8' 4x75 W tipo industrial largo de 96"	- Trans
Lampara 2'x2' 2x40 Rs U Empotrar sin difusor Sylvania	
Tubo de 32 W tipo U	
Lampara para pared circular 20 W	
Lampara metal halide, sodio grande cuadrada de pared 400 W	
Bombilla ahorradora espiral 20 W dl luxlite	
Bombilla ahorradora espiral 105 W 240 V rosca mogul luxlite -	

Continuación tabla XXXIX.

Reflector de intemperie para 38 75 W, 120 V flood luxlite	
Lámpara ojo de buey dirigible	
Bombilla dicroica 20 W, 120 V mr16 Luxlite	
Bombilla 75 W,120 V opaca Sylvania	STUDANTA B
Lámpara metal-halide, high bay 400 W campana de acrílico de 22"	
Lámpara metal-halide, high bay 200 W campana de aluminio 16"	
Lámpara de metalarc 400 W, 240 V reflector Sylvania	SYLVANIA
Lux0033 Lamp Reflector 200 W, 240 V	
Lámpara de halógeno 100 W, 120 V t/reflector	

2.2. Tipos de iluminación en los centros de servicio

Dentro del diagnóstico se encontró que predomina la iluminación natural sobre la artificial, debido a que los centros de servicios son amplios, sin embargo, en los sótanos es donde se utiliza la iluminación artificial

2.2.1. **Natural**

El edificio cuenta con iluminación natural en todo el entorno, lo que significa que aquellos puestos de trabajo ubicados en el perímetro reciben en dos de los cuatro lados dicha iluminación de forma directa y en los otros dos de forma indirecta, ya sea por la mañana o por la tarde. Esto hace necesario bloquear la radiación solar por medio de persianas y cortinas, lo cual reduce la iluminación y obliga el uso de luz artificial durante ciertos períodos del día.

2.2.2. Artificial

La iluminación artificial de los centros de servicio está compuesta por una gran cantidad de lámparas fluorescentes y bombillas ahorradoras y lámparas de halógeno que generan un alto consumo, en los sótanos son utilizados toda la jornada laboral, por lo que es indispensable hacer el cambio a sistema Led para disminuir el consumo energético.

2.3. Consumos energéticos generados actualmente en los centros de servicios

En este capítulo se evaluarán los consumos energéticos en cada centro de servicio, por lo que se realizó un análisis en cada centro de servicio de las condiciones de las luminarias.

2.3.1. Consumo generado por luminarias instaladas

En las siguientes tablas se detallan el consumo de kWh al mes de cada centro de servicio con las horas aproximadas de uso.

Tabla XL. Consumo generado por luminarias instaladas actualmente en el Centro de Servicio Petapa

	CDS PETAPA									
Área	Tipo de luminaria	Cantidad instalada	Cantidad focos/tubos	Watt (c/u)	Horas de uso	kWh	kWh- mes			
Servicio automotriz	Lámpara metal-halide high bay 400 W campana de acrílico de 22"	3	3	400	2	2,4	57,6			
	Lámpara 2x75 t-12 rs exterior industrial largo de 96" sylvania	4	8	75	5	3	72			
Comedor	Lámpara 2'x4' 4x40 t- 12 empotrar con difusor luxlite	1	4	40	4	0,64	15,36			
Pasillo	Lámpara 2'x4' 4x40 t- 12 empotrar con difusor luxlite	1	4	40	5	0,8	19,2			
Pestaña de entrada	Lámpara 2'x2' 2x32 rs U empotrar sin difusor sylvania	2	4	32	2	0,256	6,144			

Continuación tabla XL.

Pasillo				ı			
	Lámpara Oct40 ± 40 ···						
comedor –	Lámpara 2x40 t-12 rs	3	6	40	10	2,4	57,6
cuarto	industrial sylvania						
compresores							
Cuarto de	Lámpara 2'x4' 4x40						
compresores	t12 empotrar con	1	4	40	4	0,64	15,36
	difusor luxlite						
Baños	Lámpara 2'x4' 4x40						
	t12 empotrar con	2	8	40	5	1,6	38,4
trabajadores	difusor luxlite						
	Lámpara metal-halide						
	high bay 400 W	0		400	0	4.0	00.4
Servicio	campana de acrílico	2	2	400	2	1,6	38,4
centro	de 22"						
camionero	Reflector de						
	intemperie par38	2	2	75	3	0,45	10,8
	75 W, 120 V						
Oficina	Lámpara 2'x4' 4x40						
centro	t12 empotrar con	1	4	40	8	1,28	30,72
camionero	difusor luxlite						
	Lámpara 2'x4' 4x40						
Sala de	t12 empotrar con	3	12	40	10	4,8	115,2
espera	difusor luxlite					,-	
Baños para	Bombilla ahorradora					2.12	
clientes	espiral 20 W	2	2	20	4	0,16	3,84
	Lámpara 2'x4' 4x40						
Oficina	t12 empotrar con	1	4	40	5	0,8	19,2
reuniones	difusor luxlite						
	Lámpara ojo de buey						
Entrada sala	dirigible p/caja oct.	1	1	20	2	0,04	0,96
de espera	Negro tecno lite						•
	3]	Total	20,866	500,784
						_5,555	,

Tabla XLI. Consumo generado por luminarias instaladas actualmente en el Centro de Servicio Aguilar Batres

CDS AGUILAR BATRES								
Área	Tipo luminaria	Cantidad	Cantidad	Watt (c/u)	Uso	kWh	kWh-	
	P	instalada	focos/tubos	(,	(horas)		mes	
	Lámpara 2x20 t-8							
	contra humedad y	5	10	20	10	2	48	
Recepción	polvo largo de 2'							
	Bombilla ahorradora	1	1	20	10	0,2	4,8	
	espiral 20 W dl luxlite	'	ı	20	10	0,2	4,0	
Bodega	Bombilla ahorradora	1	1	20	3	0,06	1,44	
Войеда	espiral 20 W dl luxlite	ļ	l	20	3	0,06	1,44	
Baños	Lámpara 2'x2' 4x20 t-8	2	0	20	4	0.64	15.00	
clientes	empotrar con difusor	2	8	20	4	0,64	15,36	
	Lámpara metal-halide							
Dorgues	high bay 400 W	4	4	400	2	2.0	76.0	
Parqueo	campana de acrílico	4	4	400	2	3,2	76,8	
	de 22"							
Cuarto de	Bombilla ahorradora	4	4	20	4	0.00	4.00	
compresores	espiral 20 W dl luxlite	1	1	20	4	0,08	1,92	
	Lámpara 2x40 t-12		4	40		0.0	40.0	
Baños	listón sylvania	2	4	40	5	0,8	19,2	
trabajadores	Bombilla ahorradora	5		20		0.5	40	
	espiral 20 W dl luxlite	5	5	20	5	0,5	12	
C	Lámpara 2x40 t-12	1	2	40		0.4	0.0	
Comedor	listón sylvania	1	2	40	5	0,4	9,6	
Oficina	Lámpara 2'x4' 4x40 t-							
segundo	12 empotrar con	3	12	40	6	2,88	69,12	
nivel	difusor luxlite							
	Bombilla ahorradora			9-	-		0.5-	
Lavadero	espiral 20 W dl luxlite	1	1	20	2	0,04	0,96	
	Lámpara 2'x4' 4x40 t-							
Centro de	12 colgante con	14	56	40	2	4,48	107,52	
servicio	difusor							
0/:	Lámpara 2x75 t-12 rs						15-	
Sótano	industrial sylvania	3	6	75	10	4,5	108	
	5,							

Continuación tabla XLI.

Bodega sótano	Bombilla ahorradora espiral 105 W, 240 V rosca mogul luxlite	2	2	105	10	2,1	50,4
	Lámpara 2x75 t-12 rs industrial 96" sylvania	4	8	75	10	6	144
	Lámpara 2'x8' 4x75 W tipo industrial	3	12	75	10	9	216
	Lámpara de metalarc 400 W, 240 V t/reflector	2	2	400	4	3,2	76,8
Entrada cds	Lámpara de halógeno 100 W, 120 V reflector	11	11	100	4	4,4	105,6
cas	Lámpara metal halide sodio grande cuadrada de pared 400 W multivoltaje	6	6	400	2	4,8	115,2
				•	Total	49,28	1 182,72

Tabla XLII. Consumo generado por luminarias instaladas actualmente en el Centro de Servicio Américas

	CDS AMERICAS									
Área	Tipo luminaria	Cantidad instalada	Cantidad focos/tubos	Watt (c/u)	Uso (horas)	kWh	kWh-Mes			
	Bombilla ahorradora espiral 20 W DL Luxlite	1	1	20	4	0,08	1,92			
Comedor	Bombilla 75 W, 120 V opaca Sylvania	1	1	75	4	0,3	7,2			
	Lámpara para pared circular 20 W	6	6	20	3	0,36	8,64			
Baño	Lámpara 2x40 T-12 listón Sylvania	1	2	40	5	0,4	9,6			
comedor	Lámpara 2x32 T-8 listón Sylvania	1	2	32	5	0,32	7,68			

Continuación tabla XLII.

	Lámpara 2x40 T-12						
	RS industrial	4	8	40	10	3,2	76,8
	Sylvania				. •	0,2	. 0,0
Sótano	Bombilla ahorradora						
	espiral 20 W DL	4	4	20	10	0,8	19,2
	Luxlite	4	4	20	10	0,8	19,2
	Lámpara ojo de buey						
Recepción	dirigible p/caja oct.	1	1	20	2	0,04	0,96
	negro tecno lite						
Sala de	Lampara 1x21 T-5	4	4	32	10	1,28	30,72
ventas	tipo gabinete luxlite	·	·	02	. •	.,_0	00,.2
Oficina sala	Bombilla ahorradora						
de ventas	espiral 20 W DL	1	1	20	10	0,2	4,8
de ventas	Luxlite						
Daãa Cala	Bombilla ahorradora						
Baño Sala	espiral 20 W DL	2	2	20	4	0,16	3,84
de ventas	Luxlite						
	Lámpara 2x32 T-8	_	_		_		
Elevador	listón Sylvania	2	2	32	2	0,128	3,072
	Bombilla ahorradora						
	espiral 20 W DL	7	7	20	10	1,4	33,6
Sótano 2	Luxlite	•				,	00,0
	Bombilla 75 W, 120						
	V opaca Sylvania	1	1	75	10	0,75	18
Sala de	Lámpara 2x32 T-8						
espera CDS	listón Sylvania	9	18	32	10	5,76	138,24
Baños sala	Lámpara 2x32 T-8						
	listón Sylvania	2	4	32	4	0,512	12,288
de espera Cuarto de	•						
	Bombilla 75 W, 120	1	1	75	3	0,225	5,4
compresores	V opaca Sylvania						
	Lámpara metal-						
	halide high bay	4	4	400	2	3,2	76,8
	400 W campana de	•			_	-,-	,-
Centros de	acrílico de 22"						
servicio	Lámpara metal-				2		38,4
	halide, high bay	4	4	200		1,6	
	200 W campana de	+	+				
	aluminio 16"						
	L		l	l			

Continuación tabla XLII.

	Lámpara de metalarc						
	400 W, 240 V	4	4	400	4	6,4	153,6
	t/reflector Sylvania						
	Reflector de						
Rotulo	intemperie par38	2	2	75	4	0,6	14,4
	75 W, 120 V flood	2	2	75	4	0,0	14,4
	'Luxlite'						
	Lámpara de halógeno	4	4	100	4	1,6	38,4
	100 W,120 V reflector	4	7	100		1,0	50,4
	1		1	1	TOTAL	29,315	703,56

Tabla XLIII. Consumo generado por luminarias instaladas actualmente en el Centro de Servicio San Cristóbal

CDS SAN CRISTÓBAL							
Área	Tipo luminaria	Cantidad instalada	Cantidad focos/tubos	Watt (c/u)	Uso (horas)	kWh	kWh- Mes
Centro de servicio	Lámpara 2x32 T-8 contra humedad y polvo Sylvania largo de 4'	6	12	32	2	0,768	18,432
	Lámpara 2x32 T-8 contra humedad y polvo Sylvania largo de 4'	7	14	32	2	0,896	21,504
Rotulo	Lux0033 lámp reflector 200 W MH 240 V i/bomb	1	1	200	4	0,8	19,2
Rotulo	Reflector de intemperie par38 75 W, 120 V flood Luxlite	4	4	75	4	1,2	28,8
Parqueo motos	Reflector de intemperie par38 75 W, 120 V flood Luxlite	2	2	75	4	0,6	14,4
Comedor	Lámpara 2'x2' 4x20 T-8 empotrar con difusor	5	20	20	5	2	48
Lavandería	Lámpara 2'x2' 4x20 T-8 empotrar con difusor	1	4	20	3	0,24	5,76
Baño mujeres trabajadoras	Lámpara 2'x2' 4x20 T-8 empotrar con difusor	1	4	20	4	0,32	7,68
Baño trabajadores y duchas	Lámpara 2'x2' 4x20 T-8 empotrar con difusor	5	20	20	5	2	48
Lavamanos	Bombilla ahorradora espiral 20 W DL Luxlite	2	2	20	5	0,2	4,8

Continuación tabla XLII.

Cuarto de compresor y bodega de Car Wash	Lámpara 2x32 T-8 listón sylvania	4	8	32	4	1,024	24,576
Sala de espera	SE IMPLEMENTO LUMINARIA LED POR REMODELACIÓN						
Baño clientes	Lámpara 2'x2' 4x20 T-8 empotrar con difusor	2	8	20	4	0,64	15,36
Administración	Lámpara 2'x2' 4x20 T-8 empotrar con difusor	1	4	20	10	0,8	19,2
					TOTAL	11.488	275.712

Fuente: elaboración propia.

2.4. Costos de consumos de energía eléctrica

En este capítulo se evaluarán los costos de consumo de energía eléctrico en cada centro de servicio, si se considera que el costo de energía eléctrica es de Q 1,30 por kWh.

2.4.1. Costo promedio mensual de consumo eléctrico total

El costo mensual del consumo electro se obtienen multiplicando el valor de kWh-mes de cada centro de servicio por el costo de la energía eléctrica, según se muestra en la siguiente tabla XLIV.

Tabla XLIV. Costo mensual de consumo eléctrico actual en luminarias

CDS	Luminaria actual kWh-mes	Costo mensual (Q)
Petapa	500,784	651,01
Aguilar Batres	1 182,72	1 537,53
Américas	703,56	914,62
San Cristóbal	275,712	358,42

2.4.2. Vidas útiles de luminarias instaladas en los centros de servicios

La vida útil de las luminarias instaladas en cada centro de servicio varía según el tipo, el modelo y el fabricante. Esta, en realidad tiende a ser menor que la establecida por el fabricante debido al número de veces que se encienden y apagan, mientras que durante las pruebas de los fabricantes estás permanecen encendidas hasta presentar alguna falla.

Tabla XLV. Vidas útiles luminarias instaladas

Descripción luminarias	Vida útil
Lámpara 2'x4' 4x40 t-12 empotrar con difusor 'luxlite'. Con tubos fluorescentes de 40 W y 32 W	15 000
Lámpara 2'x4' 4x40 t-8 colgante con difusor	10 000
Lámpara 2'x2' 4x20 t-8 empotrar con difusor. Con tubos fluorescentes de 20 W y 17 W	10 000
Lámpara 2x32 t-8 liston sylvania / 2x40 t-12 largo de 4'	10 000
Lámpara 2x40 t-12 rs industrial sylvania largo de 4'	10 000
Lámpara 1x21 t-5 tipo gabinete luxlite	8 000
Lámpara 2x32 t-8 contra humedad y polvo sylvania largo de 4'	10 000
Lámpara 2x20 t-8 contra humedad y polvo largo de 2'	8 000
Tubo fluorescente 32 W t-8 color 6500k sylvania	10 000
Lámpara 2x75 t-12 rs industrial sylvania largo de 96"	10 000
Lámpara 2'x8' 4x75 W tipo industrial largo de 96"	10 000
Lámpara 2'x2' 2x40 rs U empotrar sin difusor sylvania	8 000
Tubo de 32 W tipo U	8 000
Lámpara para pared circular 20 W	5 000
Lámpara metal halide sodio, grande cuadrada de pared 400 W multivoltaje	10 000
Bombilla ahorradora espiral 20 W dl luxlite	12 000
Bombilla ahorradora espiral 105 W 240 V rosca mogul luxlite	11 000
Reflector de intemperie par38 75 W, 120 V flood luxlite	6 000

Continuación tabla XLV.

Lámpara ojo de buey dirigible p/caja oct. Negro tecno lite	6 000
Bombilla dicroica 20 W, 120 V mr16 luxlite	6 000
Bombilla 75 W, 120 V opaca sylvania	10 000
Lámpara metal-halide, high bay 400 W campana de acrílico de 22"	10 000
Lámpara metal-halide, high bay 200 W campana de aluminio 16"	10 000
Lámpara de metalarc 400 W, 240 V t/reflector c/bomb. sylvania	10 000
Lux0033 lamp reflector 200 W, 240 V bomb	10 000
Lámpara de halógeno 100 W, 120 V reflector	10 000

Fuente: elaboración propia.

2.5. Propuesta para la implementación de la iluminación con tecnología Led

La tecnología Led promete ser una alternativa eficiente debido a que las características fundamentales que están haciendo tan interesantes los Led para la iluminación son el bajo consumo y la alta eficiencia por lo que una gran parte de la energía que consumen es transformada en luz.

Se pretende obtener beneficios adicionales, logrando disminuir la corriente sobre el cableado existente con esto el consumo eléctrico y la temperatura en los conductores disminuyen, aumentando de esa manera la vida útil de las luminarias.

2.5.1. Luminarias Led equivalente a instalar

En la siguiente tabla se muestra las equivalencias de las luminarias actuales y la de led con el cual se busca un ahorro energético en los centros de servicios.

Tabla XLVI. Luminarias equivalentes actuales y Led

Luminaria existente	Luminaria led		
Tubo fluorescente 40 W 4'	Tubo Led T-8 48" de vidrio frost 18 W		
Tubo fluorescente 32 W 4'	Tubo Led T-8 48" de vidrio frost 18 W		
Tubo fluorescente 20 W 2'	Tubo Led T-8 24" de vidrio frost 9 W		
Tubo fluorescente 75 W 96"	Tubo Led T-8 96" aluminio 36 W claro y 36 W frost		
Tubo fluorescente 32 W tipo U	Lámpara 2'x2' empotrar sin difusor p/4 tubos Led T-8 sylvania		
Bombilla ahorradora espiral 20 W dl luxlite	Bombilla Led clásica 10 W dl light-tec		
Bombilla ahorradora espiral 105 W,	Bombilla Led 50 W rosca		
240 V rosca mogul luxlite	mediana/mogul tecno lite		
Reflector de intemperie par38 75 W,	Bombilla Led tipo reflector par38 16 W		
120 V flood luxlite	dl luxlite		
Bombilla dicroica 20 W, 120 V mr16 lux	Bombilla Led mr16 5 W, 120 V dl		
Bombilla 75 W, 120 V opaca sylvania	Bombilla Led clásica 10 W dl light-tec		
Lámpara metal-halide, high bay 400 W campana de acrílico de 22"	Highbay eco 150 W		
Lámpara metal-halide, high bay 200 W campana de aluminio 16"	Highbay eco 100 W		
Lámpara de metalarc 400 W, 240 V	Reflector led 150 W		
t/reflector c/bomb sylvania			
Lux0033 lamp reflector 200 W, 240 V	Reflector led 100 W		
i/bomb	Treffector fed 100 VV		
Lámpara de halógeno 100 W, 120 V t/reflector	Reflector led 10 W		

2.5.2. Consumo eléctrico teórico de luminarias equivalentes a instalar

En las siguientes tablas se describen el consumo que generaría la luminaria Led en cada centro de servicio, el cual es evidente que el consumo es menor comparado con la actual.

Tabla XLVII. Consumo generado por luminarias Led en el Centro de Servicio Petapa

CDS PETAPA LED							
Área	Tipo luminaria	Cantidad instalada	Cantidad focos/tubos	Watt (c/u)	Uso (horas)	kWh	kWh- Mes
	Highbay eco 150 W	3	3	150	2	0,9	21,6
Servicio Automotriz	Tubo led T-8 96" slim aluminio 36 W claro y 36 W frost	4	8	36	5	1,44	34,56
Comedor	Tubo led T-8 48" de vidrio frost 18 W	1	4	18	4	0,288	6,912
Pasillo	Tubo led T-8 48" de vidrio frost 18 W	1	4	18	5	0,36	8,64
Pestaña de entrada	Lampara 2'x2' empotrar sin difusor p/4 tubos T-8 led sylvania	2	8	9	2	0,144	3,456
Pasillo comedor – Cuarto compresores	Tubo led T-8 48" de vidrio frost 18 W	3	6	18	10	1,08	25,92
Cuarto de compresores	Tubo led T-8 48" de vidrio frost 18 W	1	4	18	4	0,288	6,912
Baños trabajadores	Tubo led T-8 48" de vidrio frost 18 W	2	8	18	5	0,72	17,28
Servicio	Highbay eco 150 W	2	2	150	2	0,6	14,4
centro camionero	Bombilla led tipo reflector par38 16 W dl luxlite	2	2	16	3	0,096	2,304

Continuación tabla XLVII.

Oficina centro camionero	Tubo led T-8 48" de vidrio frost 18 W	1	4	18	8	0,576	13,824
Sala de espera	Tubo led T-8 48" de vidrio frost 18 W	3	12	18	10	2,16	51,84
Baños para clientes	Bombilla led clásica 10 W dl light-tec	2	2	10	4	0,08	1,92
Oficina reuniones	Tubo led T-8 48" de vidrio frost 18 W	1	4	18	5	0,36	8,64
Entrada Sala de espera	Ojo de buey con Bombilla led mr16 5 W 120 V dl light-tec	1	1	5	2	0,01	0,24
					TOTAL	9,102	218,448

Tabla XLVIII. Consumo generado por luminarias Led en el Centro de Servicio Aguilar Batres

CDS AGUILAR BATRES LED							
Área	Tipo luminaria	Cantidad instalada	Cantidad focos/tubos	Watt (c/u)	Uso (horas)	kWh	kWh- Mes
Recepción	Tubo led T-8 24" de vidrio frost 9 W	5	10	9	10	0,9	21,6
Recepcion	Bombilla led clásica 10 W dl light-tec	1	1	10	10	0,1	2,4
Bodega	Bombilla led clásica 10 W dl light-tec	1	1	10	3	0,03	0,72
Baños clientes	Tubo led T-8 24" de vidrio frost 9 W	2	8	9	4	0,288	6,912
Parqueo	Highbay eco 150 W	4	4	150	2	1,2	28,8
Cuarto de compresores	Bombilla led clásica 10 W dl light-tec	1	1	10	4	0,04	0,96
Baños	Tubo led T-8 48" de vidrio frost 18 W	2	4	18	5	0,36	8,64
trabajadores	Bombilla led clásica 10 W dl light-tec	5	5	10	5	0,25	6

Continuación tabla XLVIII.

	I = 1 1 1 = 0 10"		1		1	1	
Comedor	Tubo led T-8 48" de vidrio frost 18 W	1	2	18	5	0,18	4,32
Oficina segundo nivel	Tubo led T-8 48" de vidrio frost 18 W	3	12	18	6	1,296	31,104
Lavadero	Bombilla led clásica 10 W dl light-tec	1	1	10	2	0,02	0,48
Centro de servicio	Tubo led T-8 48" de vidrio frost 18 W	14	56	18	2	2,016	48,384
Sótano	Tubo led T-8 96" aluminio 36 W claro y 36 W frost	3	6	36	10	2,16	51,84
	Bombilla led 50 W mv dl rosca mediana/mogul tecno lite	2	2	50	10	1	24
Bodega Sótano	Tubo led T-8 96" aluminio 36 W claro y 36 W frost	4	8	36	10	2,88	69,12
	Tubo led T-8 96" aluminio 36 W claro y 36 W frost	3	12	36	10	4,32	103,68
	Reflector led 150 W	2	2	150	4	1,2	28,8
Entrada	Reflector led 10 W	11	11	10	4	0,44	10,56
CDS	Lámpara canasta led integrado 40 W dl light tec	6	6	40	2	0,48	11,52
			·		TOTAL	19,16	459,84

Tabla XLIX. Consumo generado por luminarias Led en el Centro de Servicio Américas

CDS AMERICAS LED										
Área	Tipo Iuminaria	Cantidad instalada	Cantidad focos/tubos	Watt (c/u)	Uso (horas)	kWh	kWh-Mes			
	Bombilla led clásica 10 W dl light-tec	1	1	10	4	0,04	0,96			
Comedor	Bombilla led clásica 10 W dl light-tec	1	1	10	4	0,04	0,96			
	Bombilla led clásica 10 W dl light-tec	6	6	10	3	0,18	4,32			
Baño	Tubo led T-8 48" de vidrio frost 18 W	1	2	18	5	0,18	4,32			
comedor	Tubo led T-8 48" de vidrio frost 18 W	1	2	18	5	0,18	4,32			
Sótano	Tubo led T-8 48" de vidrio frost 18 W	4	8	18	10	1,44	34,56			
Gotano	Bombilla led clásica 10 W dl light-tec	4	4	10	10	0,4	9,6			
Recepción	Ojo de buey con Bombilla led mr16 5 W 120 V dl light- tec	1	1	5	2	0,01	0,24			
Sala de ventas	Tubo led T-8 24" de vidrio frost 9 W	4	4	9	10	0,36	8,64			
Oficina sala de ventas	Bombilla led clásica 10 W dl light-tec	1	1	10	10	0,1	2,4			
Baño Sala de ventas	Bombilla led clásica 10 W dl light-tec	2	2	10	4	0,08	1,92			
Elevador	Tubo led T-8 48" de vidrio frost 18 W	2	2	18	2	0,072	1,728			
Sótano 2	Bombilla led clásica 10 W dl light-tec	7	7	10	10	0,7	16,8			
Sulatio 2	Bombilla led clásica 10 W dl light-tec	1	1	10	10	0,1	2,4			
Sala de espera CDS	Tubo led T-8 48" de vidrio frost 18 W	9	18	18	10	3,24	77,76			
Baños sala de espera	Tubo led T-8 48" de vidrio frost 18 W	2	4	18	4	0,288	6,912			
Cuarto de compresores	Bombilla led clásica 10 W dl light-tec	1	1	10	3	0,03	0,72			

Continuación tabla XLIX.

Centros de	Highbay eco 150 W	4	4	150	2	1,2	28,8
servicio	Highbay eco 100 W	4	4	100	2	0,8	19,2
	Reflector led 150 W	4	4	150	4	2,4	57,6
Rotulo	Bombilla led tipo reflector par38 16 W dl luxlite	2	2	16	4	0,128	3,072
	Reflector led 10 W	4	4	10	4	0,16	3,84
					TOTAL	12,128	291,072

Tabla L. Consumo generado por luminarias Led en el Centro de Servicio San Cristóbal

	CDS SAN CRISTÓBAL LED								
Área	Tipo luminaria	Cantidad instalada	Cantidad focos/tubos	Watt (c/u)	Uso (horas)	kWh	kWh- Mes		
Centro de	Tubo led T-8 48" de vidrio frost 18 W	6	12	18	2	0,432	10,368		
servicio	Tubo led T-8 48" de vidrio frost 18 W	7	14	18	2	0,504	12,096		
Rotulo	Reflector led 100 W	1	1	100	4	0,4	9,6		
Rotulo	Bombilla led tipo reflector par38 16 W dl luxlite	4	4	16	4	0,256	6,144		
Parqueo motos	Bombilla led tipo reflector par38 16 W dl luxlite	2	2	16	4	0,128	3,072		
Comedor	Tubo led T-8 24" de vidrio frost 9 W	5	20	9	5	0,9	21,6		
Lavandería	Tubo led T-8 24" de vidrio frost 9 W	1	4	9	3	0,108	2,592		
Baño mujeres trabajadoras	Tubo led T-8 24" de vidrio frost 9 W	1	4	9	4	0,144	3,456		
Baño trabajadores y duchas	Tubo led T-8 24" de vidrio frost 9 W	5	20	9	5	0,9	21,6		
Lavamanos	Bombilla led clásica 10 W dl light-tec	2	2	10	5	0,1	2,4		

Continuación tabla L.

Cuarto de compresor y bodega de Car Wash	Tubo led T-8 48" de vidrio frost 18 W	4	8	18	4	0,576	13,824
Baño clientes	Tubo led T-8 24" de vidrio frost 9 W	2	8	9	4	0,288	6,912
Administración	Tubo led T-8 24" de vidrio frost 9 W	2	4	9	10	0,36	8,64
Sala de espera SE IMPLEMNTO LUMINARIA LED DURANTE LA REMODELACION DE SALA DE VENTAS							VENTAS
					TOTAL	5,096	122,304

Fuente: elaboración propia.

2.5.3. Tipos de luminarias seleccionadas para la implementación

En la siguiente tabla se describen las luminarias seleccionadas para la implementación del sistema, en donde se espera que la implementación genere un ahorro para la empresa. Las iluminancias teóricas de los modelos de las luminarias propuestas a instalar son las especificaciones técnicas obtenidas en las pruebas de laboratorio que el fabricante realiza, las cuales varían en la práctica debido a las condiciones en el ambiente donde se pretende serán instaladas.

Tabla Ll. Luminarias seleccionadas para la implementación

Descripción luminarias	Fotografía
Tubo Led 48"de vidrio frost 18 W	
Tubo Led 24" de vidrio frost 9 W	
Tubo Led 96" slim aluminio 36 W claro y 36 W Frost	

Continuación tabla LI.

Lampara 2'x2' empotrar sin difusor p/4 tubos led sylvania	
Bombilla led clásica 10 W dl light-tec	
Bombilla led 50 W mv dl rosca mediana/mogul tecno lite	
Bombilla Led tipo reflector par38 16 W dl luxlite	
Bombilla led mr16 5 W, 120 V dl light-tec	O have the
Highbay eco 150 W	
Highbay eco 100 W	40
Reflector Led 150 W	0 100
Reflector Led 100 W	
Reflector Led 10 W	
Lámpara canasta Led integrado 40 W dl 'light tec'	1

2.6. Eficiencia energética

De acuerdo con la capacidad instalada en iluminación se espera reducir un 50 % el consumo en cada centro de servicio.

2.6.1. Vida útil de luminaria a utilizar

Las vidas útiles de las luminarias Led a instalar se obtuvieron del tiempo establecido por el fabricante. De acuerdo con la dimensión del disipador de calor entre más pequeña es la luminaria más pequeña será este, por lo cual, en algunos casos, la vida útil se ve reducida

Tabla LII. Vida útil de luminaria led

Luminaria Led	Vita útil (horas)
Tubo Led T-8 48"de vidrio frost 18 W	20 000
Tubo Led T-8 48" de vidrio frost 18 W	20 000
Tubo Led T-8 24" de vidrio frost 9 W	20 000
Tubo Led T-8 24" de vidrio frost 9 W	20 000
Tubo Led T-8 96" slim aluminio 36 W claro y 36 W frost	50 000
Lámpara 2'x2' empotrar sin difusor p/4 tubos led T-8	20 000
sylvania	20 000
Bombilla Led clásica 10 W dl light-tec	20 000
Bombilla Led 50 W mv dl rosca mediana/mogul tecno	20 000
lite	20 000
Bombilla Led tipo reflector par38 16 W dl luxlite	18 000
Bombilla Led mr16 5 W, 120 V dl light-tec	20 000
Highbay eco 150 W	30 000

Continuación tabla LII.

Highbay eco 100 W	30 000
Reflector Led 150 W	40 000
Reflector Led 100 W	40 000
Reflector Led 10 W	40 000
Lámpara canasta Led integrado 40 W dl 'light tec'	50 000

Fuente: elaboración propia.

De acuerdo con la tabla anterior la vida útil promedio de las lámparas a utilizar en este edificio se calculó y es de 28 625 horas

2.6.2. Costo aproximado de la implementación

El costo aproximado de la implementación de iluminación con tecnología Led incluye el costo de las luminarias, costo de materiales y costo de mano de obra. A continuación, se muestran los detalles de los costos.

2.6.2.1. Costo de iluminaria a instalar

Estos precios fueron obtenidos de la cotización realizada en Celasa luego de realizar las equivalencias respectivas.

Tabla LIII. Costo de Iuminarias Led en el Centro de Servicio Petapa

CDS PETAPA					
Tipo de luminaria	Vida útil	Cantidad de tubos	Precio unitario (Q)	Precio total (Q)	
Tubo Led T-8 48" de vidrio frost 18 W	20, 000	46	24	1 104,00	
Lampara 2'x2' empotrar sin difusor p/4 tubos T-8	20 000	1	150,14	150,14	
Tubo Led T-8 24" de vidrio frost 9 W	20 000	8	26,71	213,68	
Tubo led T-8 96" aluminio 36 W claro y 36 W frost	50 000	8	160,75	1286,00	
Highbay eco 150 W	30 000	5	1 563,70	7 818,50	
Bombilla Led tipo reflector par38 16 W	18 000	2	65,13	130,26	
Bombilla Led clásica 10 W dl light-tec	20 000	2	11,25	22,5	
Bombilla Led mr16 5 W, 120V dl light-tec	20 000	1	11,75	11,75	
Promedio vida útil	24750		Total	10 736,83	

Tabla LIV. Costo de Iuminarias Led en el Centro de Servicio Aguilar
Batres

CDS AGUILAR BATRES						
Tipo de luminaria	Vida útil	Cantidad de tubos	Precio unitario (Q)	Precio total (Q)		
Tubo Led T-8 48"de vidrio frost 18 W	20 000	74	24	1 776,00		
Tubo Led T-8 24" de vidrio frost 9 W	20 000	18	26,71	480,78		
Tubo Led T-8 96" slim aluminio 36 W claro y 36 W frost	50 000	26	160,75	4 179,50		
Highbay eco 150 W	30 000	4	1563,70	6 254,80		

Continuación tabla LIV.

Bombilla Led 50 W mv dl rosca mediana/mogul tecno lite	20 000	2	120,75	241,50
Bombilla Led clásica 10 W dl light-tec	20 000	9	11,25	101,25
Lámpara canasta Led integrado 40 W dl light tec	50 000	6	308,75	1852,50
Reflector Led 150 W	40 000	2	1044,00	2088,00
Reflector Led 10 W	40 000	11	61,22	673,42
Promedio vida útil	32222		TOTAL	17 647,75

Tabla LV. Costo de luminarias Led en el Centro de Servicio Américas

CDS AMÉRICAS					
Tipo de Iuminaria	Vida útil	Cantidad de tubos	Precio unitario (Q)	Precio total (Q)	
Tubo Led T-8 48" de vidrio frost 18 W	20 000	36	24	864,00	
Tubo Led T-8 24" de vidrio frost 9 W	20 000	4	26,71	106,84	
Highbay eco 150 W	30 000	4	1 563,70	6 254,8	
Bombilla Led clásica 10 W dl light-tec	20 000	24	11,25	270	
Highbay eco 100 W	30 000	4	1 273,72	5 094,88	
Reflector Led 150 W	40 000	4	1 044,00	4 176,00	
Reflector Led 10 W	40 000	4	61,22	244,88	

Continuación tabla LV.

Bombilla Led mr16 5 W, 120 V dl light-tec	20 000	1	11,25	11,25
Bombilla Led tipo reflector par38 16 W dl luxlite	18 000	2	65,13	130,26
Promedio	26444		Total	17 152,91

Fuente: elaboración propia.

Tabla LVI. Costo de luminarias Led en el Centro de Servicio San Cristóbal

CDS SAN CRISTOBAL					
Tipo de Iuminaria	Vida útil	Cantidad de tubos	Precio c/u (q)	Precio total (q)	
Tubo Led t-8 48"de vidrio frost 18 W	20 000	34	24	816,00	
Tubo Led t-8 24" de vidrio frost 9 W	20 000	60	26,71	1 602,6	
Reflector Led 100 W	30 000	1	566,48	566,48	
Bombilla Led clásica 10 W dl light-tec	20 000	2	11,25	22,5	
Bombilla Led tipo reflector par38 16 W dl luxlite	18 000	6	65,13	390,78	
Promedio vida útil	21 600		Total	3 398,36	

2.6.2.2. Costo de materiales a utilizar

Se reutilizarán las bases de lámparas fluorescentes, por lo que solo se necesitara modificar la conexión de las lámparas y eliminando el balastro que existe en las lámparas fluorescentes. Lo que se busca es un mayor ahorro por lo que los cables de lámparas highbay y reflectores se reutilizarán.

Tabla LVII. Costo de materiales a utilizar

Material	Cantidad	Costo unitario (Q)	Costo total (Q)
Cinta super 33+ 3/4″x66′ grande 3m'	4	35,94	143,76
Tornillos busca rosca ½"	100	0,25	25,00
Cable #14	20 metros	2,75	55,00
		Total	223,76

Fuente: elaboración propia.

2.6.2.3. Costo aproximado para la implementación del sistema Led

El costo aproximado de la implementación en cada centro de servicio se detalla en la siguiente tabla LVIII, el costo de las luminarias se le suma el costo de materiales a utilizar para que nos quede el costo total de la implementación que es de Q 49 830,89.

Tabla LVIII. Costo aproximado para la implementación Led

CDS	Costo luminaria	Costos materiales	Total
Petapa	10 736,83	223,76	10 960,59
Aguilar Batres	17 647,75	223,76	17 871,51
Américas	17 152,91	223,76	17 376,67
San Cristóbal	3 398,36	223,76	3 622,12
		Total	49 830,89

2.7. Análisis financiero

Realizar el análisis financiero permitirá tener una visión más amplia de los beneficios económicos de llevar a cabo la implementación del sistema. Un análisis financiero contiene varias herramientas que permiten alertar si una determinada inversión conllevará perdidas, y por lo tanto el inversionista puede decidir no ejecutarlo.

Para determinar el ahorro kWh-mes se calcula con la diferencia del consumo actual con la del consumo Led, los detalles se muestran en la siguiente tabla.

Tabla LIX. Ahorro kWh-mes en centros de servicios

CDS	Luminaria actual kWh-mes	Luminaria led kWh-mes	Ahorro kWh-mes
Petapa	500,784	218,448	282,336
Aguilar Batres	1182,72	459,84	722,88
Américas	703,56	291,072	412,488
San Cristóbal	275,712	122,304	153,408

Para determinar el ahorro mensual en quetzales se multiplica el valor de ahorro kWh-mes por el costo de la energía eléctrica. A la empresa Llantas VIFRIO, S.A. se le distribuye electricidad por el costo de Q 1,30 por kWh.

Tabla LX. Ahorro para Llantas VIFRIO, S.A. por la implementación de luminaria led en los centros de servicios del área metropolitana mensualmente

CSD	Ahorro mensual (Q/mes)
Petapa	367,0368
Aguilar Batres	939,744
Américas	536,2344
San Cristóbal	199,4304

Fuente: elaboración propia.

2.7.1. Período de recuperación inversión

Para calcular el período de recuperación de la inversión, se tiene como único dato real la medición de energía mensual de cada centro de servicio, para determinar el periodo se utiliza la siguiente ecuación:

Tiempo de recuperación inversión:
$$\frac{Inversión(Q)}{Ahorro(Q/mes)}$$

Donde:

- Inversión: es el costo de la implementación del sistema de iluminación
- Ahorro: es el ahorro mensual por mes

Entonces se tienen los datos establecidos en tablas anteriores para calcular el tiempo de recuperación de la inversión, en la siguiente tabla se observa el tiempo en mes y en años.

Cálculo para centro de servicio Petapa:

Tiempo de recuperación inversión:
$$\frac{\text{Q 10 960,59}}{367,0368 \frac{\text{Q}}{\text{mes}}} = 29,86 \text{ meses}$$

Luego de este período el ahorro generado se considerará como utilidad para la empresa.

Tabla LXI. Tiempo recuperación de la inversión en cada centro de servicio

CDS	Meses	Años
Petapa	29,86	2,48
Aguilar Batres	19,01	1,58
Américas	32,40	2,70
San Cristóbal	18,16	1,51

Fuente: elaboración propia.

2.7.2. Vida útil sistema de iluminación Led

Para el inversionista es de carácter básico conocer el tiempo estimado de funcionamiento del sistema en el cual invertirá: Por lo que se calcula con la siguiente ecuación:

$$Vida \ title{util} = rac{Promedio \ de \ vida \ title{util} \ de \ luminarias}{Horas \ de \ uso \ anuales \ según \ horario \ laboral}$$

Para calcular la vida útil del sistema Led en Centro de servicio Petapa, tomando el dato de horas de uso 6 horas y 24 días laborales al mes:

$$Vida \, \acute{\text{util}} = \frac{24\,750\,\textit{Horas}}{6\,\textit{horas}*24\,\textit{d\'{\text{uas}}}\frac{\textit{laborales}}{\textit{mes}}*12\frac{\textit{meses}}{\textit{a\~{\text{no}}}}$$

$$Vida \, útil = 14,32 \, A \tilde{n}os$$

El período de obtención de utilidad será aquel en el cual la empresa únicamente empezará a obtener los ahorros del sistema instalado. Por lo que el tiempo en el que se generaran utilidades será la diferencia entre la vida útil del sistema y el periodo de recuperación de la inversión.

Conociendo el período de utilidad mensual y el tiempo en el que se generarán ahorros se puede calcular el ahorro total estimado al llevar a cabo la instalación del sistema de iluminación con tecnología Led.

Ganancia neta = Período de utilidad * utilidad anual

$$Ganancia\ neta = 11,88\ A\|os * 367,0368 \frac{Q}{mes} * 12 \frac{meses}{a\|o}$$

$$Ganancia\ neta = Q\ 52\ 324,76$$

Tabla LXII. Vida útil de sistema de luminaria Led

CDS	Horas de uso aproximado laboral	Promedio de vida útil de luminarias (hora)	Vida útil en años	Período de utilidad en años	Ganancia (Q)
Petapa	6	24750	14,32	11,88	52 324,76
Aguilar Batres	8	32 222	13,98	11,94	134 646,52
Américas	7	26 444	13,11	9,64	62 031,59
San Cristóbal	6	21 600	12,50	10,64	25 463,27

3. FASE TÉCNICO PROFESIONAL

3.1. Estado del aire comprimido actual

En este capítulo se procederá a inspeccionar la red de aire comprimido, que está dividida en dos procesos de reencauche y son los siguientes: reencauche de llantas de camión y reencauche de llantas OTR, llantas tipo agrícolas y de mineras. Los procesos están divididos en: inspección inicial, raspado, cardeo, reparaciones, cementado, rellenado, embandado, área de cobertores, proceso de vulcanización y el área de inspección final.

Debido al crecimiento de la empresa Llantas VIFRIO, S.A., ha provocado una mayor demanda de aire comprimido, pero en estos momentos no hay una capacidad para abastecer la demanda, estos problemas son porque no se hace un estudio posterior y se agregan equipos y derivaciones en la línea principal a contrarreloj, ya que no pueden dejar de operar por periodos largos ya que significa una pérdida para la empresa. esto genera una reducción de presión y una baja eficiencia en la maquinara y herramienta neumática. El rediseño se hará con el fin de bajar costos de producción del mismo y asegurar una capacidad de que permita en un futuro hacer ampliaciones en la capacidad de generación que sean realmente funcionales.

El principal problema en la red son las caídas de presión, esto se debe al arranque de las cámaras de vulcanización ya que estos equipos son los mayores consumidores de aire, y lo operarios arrancan 2 a 3 cámaras simultáneamente y con esto los compresores son sobrecargados. Falta de mantenimiento en la red genera fugas en el sistema y la corrosión en tubería dificulta el traslado del aire

comprimido. El rediseño se hará con el fin de bajar costos de producción del mismo y asegurar una capacidad de que permita en un futuro hacer ampliaciones en la capacidad de generación que sean realmente funcionales.

3.1.1. Diagnóstico actual de la red de aire comprimido de la planta de producción

El aire generado por tres compresores circula por un circuito cerrado de 3" de diámetro alimentando la planta de reencauche de camión, en este circuito se deriva otra red que es para el proceso de rencauche OTR con una reducción de 3" a 2" de diámetro que alimenta todo el proceso de llantas agrícolas y cámaras de vulcanización OTR provocando una pérdida de presión por reducciones. Las vueltas innecesarias generan pérdidas por fricción y estas se deben de eliminar, en la red se puede observar que no se respeta el diámetro de la tubería con respecto al caudal y presión.

Dicha instalación es insuficiente para satisfacer la demanda de aire comprimido de ambas áreas, y además de que no facilita su operación y mantenimiento, mantiene un nivel bajo de la eficiencia de los compresores y de la distribución del aire; generando con ello mayores costos del pie cúbico por minuto, CFM, del aire comprimido. Las redes de distribución se han ido ampliando sin tomar en cuenta la perdida de eficiencia que le causan a las mismas, ni posibles expansiones futuras de la capacidad de generación de un sistema centralizado. Los compresores están instalados por interconexión, pero esto no evita la caída de presión al momento de operar al máximo. Al mantener una interconexión de los compresores, se puede mantener una producción más estable de aire comprimido, debido a que no todas las plantas tienen en los mismos instantes el máximo de demanda.

Se deben de facilitar la ejecución de programas de mantenimiento preventivo para que sean realmente eficientes y contribuyan a reducir los costros de reparación de los equipos, redes de distribución y alargar con ello la vida útil de los equipos neumáticos.

- La eficiencia de la red es baja a causa de las siguientes razones:
 - Pérdidas por fugas en tuberías: las fugas en las líneas de aire comprimido deben ser inaceptables, porque es dinero perdido. Ya que, en la fuga pierde caudal CFM y de ser demasiada la fuga en la tubería, provoca caídas de presión adicional al del sistema mismo, con lo cual aumentan los costos de generación del aire comprimido y baja la eficiencia de los equipos neumáticos. Y principalmente se debe a la improvisación en la instalación de algunas líneas de servicio, para poder satisfacer la demanda de la planta.
 - Caídas de presión: estas caídas de presión se deben a la falta de planificación adecuada en la instalación de compresores y redes de aire comprimido; para satisfacer la demanda de las plantas, ya que las instalaciones se han hecho sin un estudio de la red, por lo que las tomas se hacen en puntos no adecuados y con accesorios que provocan excesivas pérdidas y desbalances en el caudal de aire comprimido.
 - Mal diseño de tuberías: este punto se une a los anteriores, ya que varias de las tuberías están mal dimensionadas y diseñadas, con lo cual se causan excesivas pérdidas en la red, pérdidas de presión y por lo tanto baja eficiencias de los equipos. Los compresores tienen

que trabajar forzadamente para poder cumplir con la demanda, pero a costa de consumir mayor energía eléctrica lo que eleva el costo por CFM de aire comprimido generado.

- Mala selección del material: una mala selección de material, y un mal tratamiento de aire pueden provocar corrosión y oxidación del material, lo cual puede provocar picaduras en el material y por lo tanto, el aparecimiento de fugas en la red. Además, una mala selección provoca excesivas pérdidas y caídas de presión, junto con la contaminación del aire y por lo tanto el daño de los equipos neumáticos, entonces este es un factor importante en la calidad del aire y también en una corta vida útil de la tubería, incrementándose con ellos el costo de la instalación.
- Exceso de humedad y corrosión en la red: el exceso de aire condensado en la red provoca que la tubería tenga una gran cantidad de corrosión y afecta la operación de los equipos, por lo que evitando esto aumenta la vida útil de los equipos.

Muchos ingenieros seleccionan tuberías de entrada galvanizadas para el transporte de 100 PSI. Este revestimiento ayuda a las tuberías de entrada de acero negro a no oxidarse tanto comparado con las estándar *Schedule* 40. Con el paso del tiempo, sin embargo, cuando hay señales de corrosión, el material galvanizado empieza a desprenderse. En consecuencia, las tuberías de entrada se convierten en una fuente de contaminantes potencialmente destructivos que pueden afectar a la integridad mecánica del compresor de aire.

3.1.1.1. Consumo de aire comprimido por área

Para determinar el consumo o demanda de aire comprimido por máquina y/o herramienta, se utiliza la siguiente ecuación:

$$Q_c = Q_1(\frac{F * I}{t * 60})$$

Donde:

 Q_c = consumo aire comprimido

 Q_1 = caudal de la maquina o herramienta según manual del fabricante

F = frecuencia utilización, número de veces por jornada. Este dato es equivalente al número de llantas que pasan por la máquina al día

I = intensidad de uso, tiempo que se utiliza la maquina o herramienta por llanta

t = tiempo jornada de trabajo

Para determinar la intensidad de uso, se supervisó a cada operario de maquinaria tomando el tiempo de uso por cada llanta, se determinaron 3 tiempos y se realizó un promedio para determinar un dato más exacto.

Tabla LXIII. Consumo de aire comprimido de maquinaria de planta de reencauche VIFRIO, S.A.

No. Máquina	Maquinaria	Cantidad	Modelo	Área	Cantidad Ilantas por día	Intensidad de uso en minutos	Q₁ (CFM)	Q₅ (CFM)
1	Abridora de Ilantas	1	396		88	1,3419	35	8,6105
2	Abridora de Ilantas	1	396	Inspección inicial	88	1,3419	35	8,6105
33	Analizadora de Ilantas insight	1	7400	miciai	176	0,6667	15	3,6669
3	Raspadora agrícola	1	231		20	5	10	2,0833
4	Raspadora automatica	1	8400	Raspadora	88	5,2068	10	9,5458
5	Raspadora manual	1	8120		88	1,8656	10	3,4203
6	Spinner	1	1100		30	2,0188	50	6,3088
7	Spinner	1	1100		30	2,0188	50	6,3088
8	Spinner	1	1100		30	2,0188	50	6,3088
9	Spinner	1	1100		30	2,0188	50	6,3088
10	Spinner	1	1100	Cardeo	30	2,0188	50	6,3088
11	Spinner	1	1100		30	2,0188	50	6,3088
12	Cementadora, bomba y pistola aplicadora de cemento	1			176	1	35	12,8333
13	Abridora de Ilantas	1	372		36	2,1397	10	1,6048
14	Abridora de Ilantas	1	372		36	2,1397	10	1,6048
15	Abridora de Ilantas	1	372	Reparaciones	36	2,1397	10	1,6048
16	Abridora de Ilantas	1	372		36	2,1397	10	1,6048
37	Abridora de Ilantas	1	372		36	2,1397	10	1,6048
17	Extrusora	1	6300		176	2,0208	50	37,0480
18	Spinner	1	1100	Cementado	88	0,75	50	6,8750
36	Spinner	1	1100		88	0,75	50	6,8750
19	Cuchilla circular y aplicado de cojin	1	191	Corte	176	0,1891	55	3,8135
20	Embandadora	1	221c		30	2,5	65	10,1563
21	Embandadora	1	5350	Embandado	88	2,6656	35	17,1043
35	Embandadora	1	5110		88	2,9167	35	18,7155

Continuación tabla LXIII.

			1		1	1	1	
22	Aplicador de cobertores	1	1240		176	0,1419	5	0,2602
23	Lifter Monorriel armado y desarmado	5	93		352	0,1009	5	0,3700
24	Levantador de neumáticos ARC	1	1120	Armado de cobertores	130	0,1026	5	0,1389
19	Probador de cobertores	1	1190		88	0,6993	5	0,6410
25	Probador de cobertores	1	1190		88	0,6993	5	0,6410
27	Cámara de vulcanización	1	4150		2	60	200	50,0000
28	Cámara de vulcanización	1	4150] ,, , , ,	2	60	200	50,0000
29	Cámara de vulcanización	1	4150	- Vulcanizado	2	60	200	50,0000
30	Cámaras de vulcanización	1	4150		2	60	200	50,0000
	Pintadora de Ilantas	1			176	0,25	25	2,2917
	Reparador de cobertores	1		Inspección	50	1	5	0,5208
31	Abridora de Ilantas	1	396	final	88	1,5922	35	10,2166
32	Abridora de Ilantas	1	396		88	1,5922	35	10,2166
			•	OTR			•	
	Raspadora IMS52	1			1	240	5	2,5000
	Raspadora Bandag OTR Agricola	1		Raspado	1	240	5	2,5000
	Spinner OTR	1		Cardeo	1	180	5	1,8750
	Molino para hule	1		- Embandado	1	180	5	1,8750
	Embandadora y sticher	1		Embandado	1	180	5	1,8750
	Cámara de vulcanización 231 bandag 72"	1			1	60	65	8,1250
	Cámara de vulcanización Neuático-Vapor 96"	1		Vulcanizado	1	60	65	8,1250
	Cámara de vulcanización 96" IMS 12208	1			1	60	65	8,1250
							Total	446,9208

Tabla LXIV. Consumo de aire comprimido de herramientas de planta de reencauche VIFRIO, S.A.

Cantidad	Herramienta neumática	Área	Cantidad de Ilantas	Intensidad de uso en minutos	Q₁ (CFM)	Q _c (CFM)
1	Turbina de alta revolución	Inspección	88	0,5	15	1,3750
1	Turbina de baja revolución	inicial	88	0,5	15	1,3750
1	Soplador	Raspadora agricola	4	1	5	0,0417
1	Turbina de baja revolución		88	0,5833	15	1,6041
1	Soplador	Raspadora automática	4	1,6808	5	0,0700
1	Lifter monorriel		88	0,2564	15	0,7051
1	Soplador	Raspadora	4	1	5	0,0417
1	Lifter monorriel	manual	88	0,2564	15	0,7051
1	Turbina de alta revolución	Cardeo	30	2,5	15	2,3438
1	Turbina de baja revolución	Cardeo	30	2,5	15	2,3438
1	Turbina de alta revolución		36	3	15	3,3750
1	Turbina de baja revolución	Reparaciones	36	3	15	3,3750
5	Aspiradora		36	0,5	15	0,5625
1	Mini extrusora	F. str. 10 or 0	176	0,7492	15	4,1206
1	Lifter monorriel	Extrusora	176	0,2564	15	1,4102
1	Mini extrusora	Spinner	88	0,9758	15	2,6835
1	Mini extrusora	Spinner	88	0,9758	15	2,6835
1	Turbina de alta revolución	Corte de bandas	176	1	15	5,5000
1	Engrapadora	Embandadora	176	0,0833	1	0,0305
1	Lifter monorriel	221c	176	0,2564	15	1,4102
1	Engrapadora	Embandadora	176	0,0833	1	0,0305
1	Lifter monorriel	5350	176	0,2564	15	1,4102
1	Engrapadora	Embandadora	176	0,0833	1	0,0305
1	Lifter monorriel	5110	176	0,2564	15	1,4102
1	Lifter monorriel		176	0,2564	15	1,4102
1	Turbina de baja revolución	Cobertores	100	1	15	3,1250
1	Turbina de baja revolución		100	1	15	3,1250
1	Manguera	Multiuso	75	1	15	2,3438
1	Turbina de alta revolución		176	1	15	5,5000
1	Turbina da baja revolución	Inspección final	176	1	15	5,5000
1	Engrapadora inspección final		176	0,0833	1	0,0305
1	Manguera	Mantenimiento	30	1	5	0,3125

Continuación tabla LXIV.

			OTR				
1	Turbina raspado oms	Raspadora oms	1	120		15	3,7500
1	Turbina raspado bandag	Raspadora bandag	1	120		15	3,7500
1	Turbina de baja revolución	Spinner cardeo otr	1	180		15	5,6250
1	Servicio de aire comprimido	Área de cobertor	50	1		15	1,5625
1	Turbina de baja revolución	Cardeo otr	1	180		15	5,6250
1	Turbina de alta revolución	Rellenado	1	120		15	3,7500
1	Turbina de baja revolución	Reliellado	1	60		15	1,8750
1	Turbina regrabadora	Regrabado	1	120		15	3,7500
1	Turbina de alta revolución	Embandado	1	120		15	3,7500
1	Turbina de baja revolución	Embandado	1	60		15	1,8750
1	Servicio de aire comprimido	Área de	50	1		15	1,5625
1	Servicio de aire comprimido	molinos	50	1		15	1,5625
1	Servicio de aire comprimido	Parqueo	50	1		15	1,5625
					To	otal	99,9846

Fuente: elaboración propia.

3.1.1.2. Cálculo de eficiencia del sistema actual

Como se menciona en incisos anteriores si las perdidas por fricción están en el 3 % al 6 % el sistema es eficiente para el transporte del aire comprimido. Se harán cálculos matemáticos utilizando ecuaciones y tablas en capítulos anteriores, se realizará un despliegue de datos ya que se explicarán detalladamente más adelante.

Tabla LXV. Porcentaje de pérdida de presión en ramificaciones y diámetros de tuberías

1	No. Máquina	Área	Porcentaje pérdida ramificación (%)	Diámetro tubería (")
33				·
3 Raspado Agrícola 0,0205 1/2° 4 Raspado Automática 0,2553 1/2° 5 Raspador manual 0,0225 1/2° 6 0,0857 1/2° 7 Cardeo 0,0857 1/2° 10 y 11 0,3636 1/2° 37 0,061 1/2° 13 y 14 Reparaciones 0,2258 1/2° 15 y 16 0,3488 1/2° 12 Cementado 0,013 1° 17 Rellenado 0,013 1° 18 y 36 Herramienta 1 0,016 1/2° 18 y 36 Herramienta 1 0,01449 1/2° Herramienta 2 0,0186 1/2° 19 y 20 Corte 0,1123 1° 21 Embandado 0,0476 3/4° 35 Embandado 0,00562 3/4° 21 Embandado 0,0099 1/2° 22 Cobertores 0,0135 1/2° </td <td>2</td> <td>Inspección inicial</td> <td>0,1603</td> <td>1/2"</td>	2	Inspección inicial	0,1603	1/2"
4 Raspado Automática 0,2553 1/2" 5 Raspador manual 0,0225 1/2" 6 0,0857 1/2" 7 0,0857 1/2" 8 y 9 0,365 1/2" 10 y 11 0,3636 1/2" 37 0,061 1/2" 13 y 14 Reparaciones 0,2258 1/2" 15 y 16 0,3488 1/2" 12 Cementado 0,013 1" 17 Rellenado 0,16 1/2" 18 y 36 Herramienta 0,016 1/2" 18 y 36 Herramienta 0,01449 1/2" 18 y 36 Herramienta 0,0511 1/2" 19 y 20 Corte 0,1123 1" 21 Embandado 0,0476 3/4" 35 Lifter embandado 0,0476 3/4" 21 Lifter embandado 0,0099 1/2" Pintadora 0,0135 1/2" 22 <t< td=""><td>33</td><td></td><td>0,0292</td><td></td></t<>	33		0,0292	
5 Raspador manual 0,0225 1/2" 6 0,0857 1/2" 7 Cardeo 0,0857 1/2" 8 y 9 0,365 1/2" 10 y 11 0,3636 1/2" 37 0,061 1/2" 13 y 14 Reparaciones 0,2258 1/2" 15 y 16 0,3488 1/2" 12 Cementado 0,013 1" 17 Rellenado 0,16 1/2" 18 y 36 Herramienta 1 0,0511 1/2" Herramienta 2 0,0186 1/2" 19 y 20 Corte 0,1123 1" 21 Embandado 0,0476 3/4" 35 Lifter embandado 0,0476 3/4" Pintadora 0,0131 1/2" Lifter 0,0135 1/2" 22 Cobertores 0,0108 1/2" 19, 23 y 24. 0,0246 1/2" 25 y turbinas 0,0992 1"		Raspado Agrícola		
6 0,0857 1/2" 7 0,0857 1/2" 8 y 9 0,365 1/2" 10 y 11 0,3636 1/2" 37 0,061 1/2" 13 y 14 Reparaciones 0,2258 1/2" 15 y 16 0,3488 1/2" 12 Cementado 0,013 1" 17 Rellenado 0,16 1/2" 18 y 36 Herramienta 1 0,0511 1/2" Herramienta 2 0,0186 1/2" Herramienta 2 0,0186 1/2" 19 y 20 Corte 0,1123 1" 21 Embandado 0,0476 3/4" 35 Embandado 0,0476 3/4" 21 Embandado 0,0099 1/2" Pintadora 0,0131 1/2" Lifter embandado 0,0131 1/2" 22 Cobertores 0,0135 1/2" 19,23 y 24. 0,0108 1/2" 25 y tu	•		· · · · · · · · · · · · · · · · · · ·	-
Total Sy 9 Cardeo 0,0857 1/2" 10 y 11 0,365 1/2" 37 0,061 1/2" 13 y 14 Reparaciones 0,2258 1/2" 15 y 16 0,3488 1/2" 12 Cementado 0,013 1" 17 Rellenado 0,16 1/2" 18 y 36 Herramienta 1 0,016 1/2" 18 y 36 Herramienta 2 0,0186 1/2" 19 y 20 Cote 0,1123 1" 21 Embandado 1,0476 3/4" 35 Eifter embandado 0,0562 3/4" Pintadora 0,0476 3/4" Lifter 0,0131 1/2" 22 Cobertores 0,0135 1/2" 19,23 y 24. 25 y turbinas 0,047 1/2" 27 0,1384 1" 28 0,0992 1" 29 0,0992 1" 30 0,0992 <td< td=""><td></td><td>Raspador manual</td><td>· ·</td><td></td></td<>		Raspador manual	· ·	
Cardeo 0,365 1/2" 10 y 11 0,3636 1/2" 37 0,061 1/2" 13 y 14 Reparaciones 0,2258 1/2" 15 y 16 0,3488 1/2" 12 Cementado 0,013 1" 17 Rellenado 0,16 1/2" 18 y 36 Herramienta 1 0,0511 1/2" Herramienta 2 0,0186 1/2" 19 y 20 Corte 0,1123 1" 21 Embandado 0,0476 3/4" 35 Embandado 0,0476 3/4" 21 Embandado 0,0099 1/2" Pintadora 0,0131 1/2" Lifter 0,0135 1/2" 22 Cobertores 0,0108 1/2" 19, 23 y 24. 0,0246 1/2" 25 y turbinas 0,047 1/2" 28 0,0992 1" 29 0,0992 1"			0,0857	•
8 y 9 0,365 1/2" 10 y 11 0,3636 1/2" 37 0,061 1/2" 13 y 14 Reparaciones 0,2258 1/2" 15 y 16 0,3488 1/2" 12 Cementado 0,013 1" 17 Rellenado 0,16 1/2" 18 y 36 Herramienta 1 0,016 1/2" Herramienta 2 0,0186 1/2" 19 y 20 Corte 0,1123 1" 21 Embandado 0,0476 3/4" 35 Lifter embandado 0,00476 3/4" Pintadora 0,0131 1/2" Lifter 0,0135 1/2" 22 Cobertores 0,0108 1/2" 19, 23 y 24. 0,0246 1/2" 25 y turbinas 0,047 1/2" 27 0,1384 1" 28 0,0992 1" 29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4"	7	Cardeo	0,0857	1/2"
13 y 14 Reparaciones 0,061 1/2" 13 y 14 Reparaciones 0,2258 1/2" 15 y 16 0,3488 1/2" 12 Cementado 0,013 1" 17 Rellenado 0,16 1/2" 18 y 36 Herramienta 1 0,0511 1/2" 1/2" 19 y 20 Corte 0,1123 1" 1" 19 y 20 Corte 0,1123 1" 1" 12" 19 y 20 Corte 0,0186 1/2" 19 y 20 Corte 0,0476 3/4" 35 Lifter embandado 0,0099 1/2" 1	8 y 9		0,365	1/2"
13 y 14	10 y 11		0,3636	1/2"
15 y 16 0,3488 1/2" 12 Cementado 0,013 1" 1" 17 Rellenado 0,1449 1/2" 18 y 36 Herramienta 1 0,0511 1/2" 1/2" 19 y 20 Corte 0,1123 1" 1" 21 Embandado 0,0476 3/4" 35 Lifter embandado 0,0099 1/2"	37		0,061	1/2"
12 Cementado 0,013 1" 17 Rellenado 0,16 1/2" 18 y 36 0,1449 1/2" Herramienta 1 0,0511 1/2" Herramienta 2 0,0186 1/2" 19 y 20 Corte 0,1123 1" 21 Embandado 0,0476 3/4" 35 Embandado 0,0476 3/4" Pintadora 0,0562 3/4" Lifter embandado 0,0099 1/2" Pintadora 0,0131 1/2" 22 Cobertores 0,0135 1/2" 19, 23 y 24. 0,0246 1/2" 25 y turbinas 0,047 1/2" 27 0,1384 1" 28 0,0992 1" 29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4"	13 y 14	Reparaciones	0,2258	1/2"
17	15 y 16		0,3488	1/2"
Rellenado	12	Cementado	0,013	1"
18 y 36	17	5	0,16	1/2"
Herramienta 2	18 y 36	Rellenado	0,1449	1/2"
19 y 20 Corte 0,1123 1" 21 Embandado 0,0476 3/4" 35 Lifter embandado 0,0562 3/4" Pintadora 0,0131 1/2" Lifter 0,0135 1/2" 22 Cobertores 0,0108 1/2" 19, 23 y 24. 0,0246 1/2" 25 y turbinas 0,047 1/2" 27 0,1384 1" 28 0,0992 1" 29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 0,117 3/4"		Herramienta 1	0,0511	1/2"
21 Embandado 0,0476 3/4" 35 Lifter embandado 0,0562 3/4" Pintadora 0,0131 1/2" Lifter 0,0135 1/2" 22 Cobertores 0,0108 1/2" 19, 23 y 24. 0,0246 1/2" 25 y turbinas 0,047 1/2" 27 0,1384 1" 28 0,0992 1" 29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 Inspección final 0,117 3/4"		Herramienta 2	0,0186	1/2"
Embandado 0,0562 3/4"	19 y 20	Corte	0,1123	1"
Section Sect	21	Cash an de de	0,0476	3/4"
Pintadora 0,0131 1/2" Lifter 0,0135 1/2" 22 0,0108 1/2" 19, 23 y 24. 0,0246 1/2" 25 y turbinas 0,047 1/2" 27 0,1384 1" 28 0,0992 1" 29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 0,117 3/4"	35	Embandado	0,0562	3/4"
Lifter Cobertores 0,0135 1/2" 19, 23 y 24. 0,0108 1/2" 25 y turbinas 0,0246 1/2" 27 0,047 1/2" 28 0,0992 1" 29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 0,117 3/4"		Lifter embandado	0,0099	1/2"
22 Cobertores 0,0108 1/2" 19, 23 y 24. 0,0246 1/2" 25 y turbinas 0,047 1/2" 27 0,1384 1" 28 0,0992 1" 29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 0,117 3/4"	Pintadora		0,0131	1/2"
19, 23 y 24. 25 y turbinas 0,047 1/2" 27 28 Cámaras 0,0992 1" 30 0,0992 1" 31 Inspección final 1,12" 0,1384 1" 0,0992 1" 3,14" 1,17 3,14"	Lifter		0,0135	1/2"
25 y turbinas 0,047 1/2" 27	22	Cobertores	0,0108	1/2"
27 0,1384 1" 28 0,0992 1" 29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 0,117 3/4"	19, 23 y 24.		0,0246	1/2"
28 Cámaras 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 3/4"	25 y turbinas		0,047	1/2"
29 Cámaras 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 0,117 3/4"	27		0,1384	1"
29 0,0992 1" 30 0,0992 1" 31 Inspección final 0,117 3/4" 31 0,117 3/4"	28	Cámaras	0,0992	1"
31 Inspección final 0,117 3/4" 3/4"	29	Callialas	0,0992	1"
31 Inspección final 0,117 3/4"	30		0,0992	1"
31 0,117 3/4"	31	Inspección final	0,117	3/4"
TOTAL 3,5763	31	inspection illiai	0,117	3/4"
		TOTAL	3,5763	

Tabla LXVI. Porcentaje de pérdida de presión en tubería secundaria y diámetros de tuberías

Área	Porcentaje de pérdida (%)	Diámetro tubería (")
Inspección inicial	0,0085	2"
Cardeo y reparaciones	3,3692	1"
Rellenado	0,3759	1"
Embandado	0,1336	1"
Cobertores	0,4543	1/,"
Cámaras	0,1689	2"
Inspección final	0,0045	2"
Total	4.5149	

Tabla LXVII. Porcentaje de pérdida de presión en tubería secundaria y de servicio en área OTR y diámetros de tuberías

Máquina	Porcentaje pérdida (%)	Diámetro tubería (")
Tubería secundaria	0,1937	2"
Raspadora Bandag	0,0115	3/4"
Raspadora OMS	0,0115	3/4"
Spinner cardeo	0,0182	3/4"
Turbina cardeo	0,0081	3/4"
Servicio aire	0,0048	3/4"
Molino y rellenado	0,0686	3/4"
Embandado y sticher	0,0192	3/4"
Molinos	0,0107	3/4"
Cámara 76"	0,0422	3/4"
Cámara 96"	0,0051	1"
Cámara 96"	0,0046	1"
Servicio parqueo	0,0093	3/4"
TOTAL	0,4075	

Tabla LXVIII. Porcentaje de pérdida de presión en tubería principal y diámetro de tubería

Área	Porcentaje de pérdida (%)	Diámetro tubería (")
Anillo principal	2,7296	3"
Total	2,7296	

Tabla LXIX. Porcentaje de pérdida de presión en planta de reencauche VIFRIO, S.A.

Área	Porcentaje de pérdida (%)
Anillo principal	2,7296
Secundaria	4,5149
Ramificaciones	3,5763
OTR	0,4075
Total	11,2283

Fuente: elaboración propia.

Según la tabla LXIX el porcentaje de pérdida total en las tuberías de la planta de reencauche es de 11,2283 %, este valor supera el parámetro permisible de perdidas establecido en los incisos anteriores, por lo que el sistema no es eficiente y es necesario el rediseño de la red de aire comprimido.

Existen muchos factores por el cual el sistema no es eficiente como las fugas de aire en la red, la humedad excesiva, vueltas innecesarias, el diámetro de las tuberías. Todos estos puntos pueden ser corregidos, identificando el origen de las deficiencias como sellar las fugas de aire comprimido en las tuberías, maquinara y herramientas.

Actualmente en la planta se reencauchan 88 llantas diarias, con un precio de Q 1 500,00 c/u, quiere decir que por hora se cuenta con una producción de

Q16 500,00 equivalente a 11 llantas. Si al mes se laboran 22 días que es equivalente a 192 horas y se tiene un cierto promedio de paros, el cual el 75 % son problemas del aire comprimido, si tienen un promedio de paro al mes de 10 horas 5,25 % de la producción total, esto representa 5 horas al mes que es equivalente a 55 llantas con un valor de Q 82 500,00 si se maneja un factor de utilidad del 40 % se tiene una perdida al mes de Q 33 000,00 mensuales.

3.1.2. Diagrama del sistema actual

En la figura 13, se observa el sistema de aire comprimido actual, identificando los puntos críticos de color rojo según los cálculos anteriores.

SIMBOLOGIA

Area de DTR

Ramificaciones

Area de molinos

OTR

Area de molinos

Area de molinos

OTR

Area de respensado y compresado y

Figura 13. Diagrama del sistema actual de aire comprimido

Fuente: elaboración propia, empleando AutoCAD.

3.1.3. Sistema de tubería

Como se observa en la figura la red de aire comprimido en la planta de reencauche es un circuito mixto, red abierta y cerrada, por lo que cuenta con demasiadas vueltas innecesarias y un exceso de condensado en la red por falta de purgas, las reducciones bruscas de la tubería principal generan una gran pérdida de presión y las adaptaciones realizadas sin previo estudio hacen que el sistema de aire comprimido sea ineficiente.

La tubería principal no tiene una pendiente hacia abajo, ni trampas de agua que deben ser instaladas al final del circuito en la dirección del flujo de aire comprimido, lo recomendado que tenga una pendiente de por lo menos 1" por cada 10' de largo según especificaciones Bandag. Esto permite que los agentes contaminantes en las líneas; agua, aceite y residuos sólidos sean removidos en las trampas de agua. Por lo que al rediseñar la red se debe aprovechar la mayor cantidad de tubería y accesorios al momento de removerlos.

Se debe considerar que un día normal a 24 °C y con un 75 % de humedad relativa, un compresor puede introducir hasta 18 galones de agua por día por cada 100 CFM de aire comprimido. Actualmente el aire comprimido que se genera contiene impurezas y vapor de agua, los cuales son dañinos tanto para el equipo de generación de aire, como también para todos los equipos utilizado en los puntos de aplicación.

La tubería utilizada en la red de aire comprimido es hierro galvanizado, HG, estos tubos tienen uniones roscadas y por lo tanto con el correr del tiempo son propensos a la aparición de fugas. La resistencia por fricción en su interior genera grandes pérdidas de presión a lo largo de la red. Realizar modificaciones en estas

redes es complicado por la necesidad de mano de obra calificada y el herramental requerido. El tamaño de estos tubos llega a las 6".

Las derivaciones hacia cada área de trabajo no cuentan con la derivación cuello de ganso desde la tubería principal, esto aumenta la humedad en la tubería y genera corrosión, en las siguientes tablas se describe el problema en las distintas áreas de trabajo.

Tabla LXX. Fotografías línea principal y ramificaciones

Ubicación y descripción	Fotografía
Línea principal de aire comprimido que sale de cuarto de compresores a los depósitos de aire comprimido. Esta tubería está expuesta al sol.	
Adaptaciones de tubería para almacenamientos de aire, demasiadas vueltas innecesarias.	
Ramificación para taller eléctrico sin cuello de ganso	
Ramificación para maquinaria de embandado, tubería de ramificación sin cuello de ganso y pendiente hacia arriba sin purga, ramificación con el diámetro de tubería no optimo, por los cálculos anteriores esta área es crítica por lo que genera una gran pérdida de presión. Demasiadas modificaciones y vueltas innecesarias.	
Ramificación para área de pintadora de llantas sin cuello de ganso y sin purgador que aumenta la humedad en la red.	

Continuación tabla LXX.

Ramificación en área de inspección final sin cuello de ganso	
Reducción en tubería principal de 3" a tubería de 1 ¾ esto genera una caída de presión.	
Ramificación sin cuello de ganso para área de inspección final, ramificación situada en tubería de 1 3/4 "	
Ampliación de tubería de 1 ¾ "para tubería de 2" esta tubería va para deposito auxiliar de aire.	
Ramificación sin cuello de ganso para área de cardeo, según los cálculos anteriores esta área es crítica porque el diámetro de la tubería no es el óptimo para suministrar aire comprimido a las maquinarias. Demasiadas modificaciones y vueltas innecesarias.	
Ramificación sin cuello de ganso para raspadora manual, no cuenta con purgador ya que las máquinas de raspado necesitan de un cuidado especial.	
Ramificación sin cuello de ganso para raspadora automática, no cuenta con purgador ya que las máquinas de raspado necesitan de un cuidado especial.	
Ramificación sin cuello de ganso para raspadora agrícola, la ramificación tiene una vuelta innecesaria. Y la maquina no cuenta con F.R.L.	

Continuación tabla LXX.

Ramificación para cámara inspeccionadora INSIGHT con manguera de hule, para ser una maquina muy delicada debe estar alimentado por tubería de HG.	
Ramificación en área de cámaras de vulcanización, sin cuello de ganso.	
Ramificación para área de embandado y reparaciones con el diámetro de tubería no óptima para alimentar esta área, como se evaluaron en los cálculos anteriores.	
Se determina que el diseño no es el correcto para alimentar las cámaras de vulcanización, al arranque simultaneas de las cámaras se genera la caída de presión en la red y produce paros en la producción. Se trata de apoyar con un depósito de aire que de igual manera su adaptación no ha sido la correcta.	

Fuente: elaboración propia.

En la tabla anterior se evaluó el estado de la red de aire comprimido, por lo que se determinaron los puntos críticos según los cálculos anteriores, por lo que hay que dimensionar correctamente el diámetro de la tubería en cada sección. En el área de OTR se amplió la red hace unos años por lo que son muy escasas las fugas y vueltas innecesarias y la mayoría de ramificaciones cuentan con cuello de ganso para evitar que el condensado llegue a la maquinaria y herramienta. Se realizó una reducción de diámetro de la línea principal del circuito de 3" a 2".

La desventaja de la red actual se debe a la improvisación y falta de buen diseño, por lo que las derivaciones y manipulaciones de la red de tubería llevaron a:

- La línea principal ha sufrido pandeos hacia abajo por técnicos que se apoyaron en la tubería para realizar nuevas ramificaciones
- No se puede drenar por la falta de pendiente hacia debajo de la línea principal hacía en los purgadores, esto genera corrosión en la red y desgaste en los equipos.
- Falta de mantenimiento de la red de tubería se debe a que no existe un plan de mantenimiento y planificación para realizar el mismo, un problema de fugas de aire en mangueras es una de las causas principales de que la red no sea eficiente.

3.1.4. Cuarto de compresores

El cuarto de compresores es utilizado como bodega por lo que se solicitó el desalojo de materiales y herramientas.

Figura 14. **Cuarto de compresores**

Tabla LXXI. Cuarto de compresores

Compresor	Tipo	Potencia (HP)	Caudal (CFM)	Presión Máxima (PSI)
Ingersoll Rand	Tornillo	50	215	125
Kaeser AS 30	Tornillo	30	143	125
Kaeser ASD 25	Tornillo	25	112	125

Fuente: elaboración propia.

Son tres compresores encargados de suministrar aire comprimido en la planta de reencauche VIFRIO, S.A., compresores de tronillo que se describen en la anterior tabla.

Figura 15. Compresor Ingersoll Rand 50 HP

Figura 16. Compresor Kaeser AS 30 – 30 HP

Figura 17. Compresor Kaeser ASD 25

3.1.4.1. Secador

Tabla LXXII. Características técnicas principales secador Kaeser TD 61

Modelo	CFM máximo	Presión de trabajo máximo	Tipo de secador	Refrigerante	Pérdida de presión (PSI)
TD 61	240	232	Refrigerante	R 134a	2,1

Figura 18. Secador Kaeser TD 61

3.1.4.2. Depósitos de aire

El aire comprimido generado pasa por 2 depósitos de aire principal, que sirve para soporte para la red, conservando la presión adecuada en los puestos de trabajo de los operarios y cuenta con un depósito auxiliar para alimentar las cámaras de vulcanización, las características se muestran en la siguiente tabla:

Tabla LXXIII. Detalles de los depósitos de aire

Accesorio	Cantidad	Capacidad (Galones US)	Diámetro (pies)	Longitud cilindro (pies)	Capacitad total (Pies³)
Depósito de aire	3	650	3,45	8	86,3420

Figura 19. **Depósitos de aire**

3.2. Detección de pérdidas de aire comprimido en la red

En este capítulo se evaluarán las deficiencias del sistema de aire comprimido, las fugas deben ser inaceptables en un sistema de aire comprimido por su costo de generación, con una simple inspección se puede asegurar que la red y la maquinaria tienen deficiencias por fugas de aire comprimido.

Al momento del arranque de las cámaras de vulcanización la presión de la red sufre una baja considerablemente a pesar de que el sistema cuenta con tres depósitos de aire, la caída de presión en la planta sucede debido a una gran cantidad de fugas que son una pérdida de aire continua.

3.2.1. Detección de fugas por el método Bandag

Un día no laborable, pero dejando todas las máquinas, herramientas y útiles neumáticos conectados se hace la medición. Se toma como patrón de medida la capacidad de entrega de caudal del o los compresores, se pone en marcha el

compresor y se deja funcionando hasta que llene de aire toda la instalación a la presión de trabajo 125 PSI.

Una vez alcanzada esta presión el compresor se dispara automáticamente y se mide con un cronómetro el tiempo que el compresor trabaja en vacío, se le llamará tiempo T. Como consecuencia de las fugas de aire existentes en el circuito, ya que no hay nada en funcionamiento, baja la presión hasta el punto mínimo al que este regulada la válvula piloto de carga y descarga de compresor a 100 PSI aproximadamente y este empieza a trabajar nuevamente comprimiendo aire. Se tiene que anotar también el tiempo que tarda el compresor en volver a dispararse, se le llamará tiempo, t, este será el tiempo exacto de reposición por pérdida de aire comprimido por fugas.

Si la cantidad de aire suministrada, Q, por el compresor es q = pie cúbico/minuto y el tiempo promedio de fuga t, resulta entonces que la pérdida por fuga es:

$$Q = \frac{(q * t)}{T}$$

Donde:

Los minutos que el compresor trabaja al año, T₁, la pérdida de caudal por fuga, Q, y el gasto de potencia en el compresor P, kWh/pie³, se puede calcular los kWh que se están consumiendo de más por fugas de aire al año:

kWh (Perdidos por año) = T1(minutos) * Q(pie3/minuto) * P(Kwh/pie3)

Si se multiplica este valor por el costo del kW/hora vigente, se obtendrá la cantidad de dinero que se está perdiendo por fugas de aire al año. Asumiendo que se trabaja 288 días, 12 horas laborales, por lo que el compresor se queda trabajando después del horario laboral para vulcanizar las llantas.

En las siguientes tablas se muestran los datos recolectados durante este ensayo, si se repite esta operación varias veces se obtendrá un tiempo promedio de fuga, t, más preciso.

Tabla LXXIV. Tiempo de carga y descarga compresor Kaeser 25 HP

No.	Caída de presión (∆P)	Tiempo de carga en minutos (t)	Tiempo de descarga en minutos (T)
1	125-115	2,0670	12,1496
2	125-115	2,0906	12,1866
3	125-115	2,0628	12,0605
	PROMEDIO	2,0734	12,1322

Fuente: elaboración propia.

Tabla LXXV. Tiempo de carga y descarga compresor Kaeser 30 HP

No.	Tiempo de carga en minutos (t)	Tiempo de descarga en minutos (T)	Caída de presión (∆P)
1	1,9493	10,7456	120-110
2	2,0640	10,3433	120-110
3	1,9531	10,5926	120-110
	1,9888	10,5605	PROMEDIO

Tabla LXXVI. Tiempo de carga y descarga compresor Ingersoll Rand
50 HP

No.	Tiempo de carga en minutos (t)	Tiempo de descarga en minutos (T)	Caída de presión (∆P)
1	0,1348	0,8425	125-115
2	0,1406	0,8763	125-115
3	0,1903	0,8206	125-115
	0,1552	0,8464	PROMEDIO

Tabla LXXVII. Costo de fugas por año planta de reencauche VIFRIO, S.A.

Compreso	Potenci a (HP)	Potenci a (kW)	Cauda I (CFM)	Promedi o \bar{t} (min)	Promedi o \overline{T} (min)	Caudal perdida por fuga (pies³/min)	Perdidas por año (kWh)	Costo de fugas por año (Q)
Ingersoll Rand	50	37,25	215	0,1552	0,8464	39,4234	23 605,63	30,687,3215 5
Kaeser AS 30	30	22,35	143	1,9888	10,5605	26,9303	14 546,4297 9	18,910,3587 3
Kaeser ASD 25	25	18,625	112	2,0734	12,1322	19,1408	11 000,6385 6	14,300,6385 6
					•	•	Total	63 898,31884

Durante un año se tiene una pérdida de Q 63 898,31 solamente en fugas en el sistema de aire comprimido, en el próximo capítulo se detectarán las fugas en los equipos y herramientas.

3.2.2. Fugas en el sistema de tubería de aire comprimido

Normalmente las fugas de aire comprimido se deben al deterioro de las mangueras y equipo, por lo que en la siguiente tabla se muestran las modificaciones necesarias que se harán durante el rediseño y los puntos donde sellar las fugas.

Tabla LXXVIII. Fugas de aire comprimido en mangueras y acoples rápidos

No. Maquinaria	Maquinaria	Área	Modelo	Observaciones
1	Abridora de Ilantas	Inspección inicial	396	- Manguera rajada en adaptación de acople rápido.
2	Abridora de Ilantas	Inspección inicial	396	- Acople rápido con fuga al momento de manipular.
33	Analizadora de cascos, insight	Inspección inicial	7400	- Agregar una ramificación de aire comprimido al rediseñar la red.
3	Raspadora agrícola	Raspado	231 y 23	- Al rediseñar la red agregar válvula de paso y reparación de acople rápido para entrada de aire comprimido al equipo.
4	Raspadora automática	Raspado	8400	- Reparar manguera de lona en entrada de acople rápido.
5	Raspador manual	Raspado	8120	 Cambio de manguera de lona por manguera de hule en la adaptación entre ramificación y máquina. Cambio de acople rápido por deterioro.
6	Spinner	Cardeo	1100	- Cambio de manguera de lona por manguera de hule.
7	Spinner	Cardeo	1100	- Manguera dañada por mala reparación.
8	Spinner	Cardeo	1100	- Manguera deteriorada para adaptar acople rápido.
9	Spinner	Cardeo	1100	- Solicitud para fijar tubería ramificada
10	Spinner	Cardeo	1100	- Solicitud para fijar tubería ramificada y manguera de hule rajada al adaptar acople rápido.
11	Spinner	Cardeo	1100	- Solicitud para fijar tubería ramificada y manguera con adaptaciones de hule y lona con fuga, cambio por manguera
12	Abridora de Ilantas	Reparaciones	372	- Fuga en acople rápido cambio de empaque, y manguera mal reparada con uniones. En el rediseño agregar válvula.

Continuación tabla LXXVIII.

14	Abridora de Ilantas	Reparaciones	372	- Cambio de abrazadera de herramienta y en el rediseño agregar válvula de paso.
15	Abridora de Ilanta	Reparaciones	372	- En el rediseño agregar válvula de paso.
16	Abridora de Ilantas	Reparaciones	372	- Cambio de abrazaderas de herramienta y en el rediseño agregar válvula de paso.
18	Spinner	Rellenado	1100	- Cambio de abrazadera en ramificación y manguera. - Fuga en manguera para acople rapido, reparar e instalar abrazadera.
21	Embandadoras	Embandado	5350	- Ramificación de manguera de lona deteriorada.
35	Embandadoras	Embandado	5110	- Ramificación con extensión de manguera de lona deteriorada.
22	Aplicadores de cobertores	Cobertores	Olson 750 y Bandag 1240	- Cambio de acople rápido para herramienta neumática.
24	Levantador de neumáticos ARC	Armado cámaras	1120	- Manguera de ramificación rota y diseñar ramificación.
30	Pintadora de Ilantas	Pintadora de Ilantas	CON- PLC-TP-5	- Cambio de abrazadera.
ÁREA DE OTR				
	Mini extrusora	Rellenado		- Acople rápido dañado de mini extrusora.
	Embandador y sticher	Embandado		- cambio de acople rápido para adaptar sticher.
	Reparaciones	Reparaciones		- Acople rápido dañado para adaptar turbina en el áre a de reparaciones.
	Spinner OTR	Cardeo		- Manguera de lona dañada por deterioro para alimentar motor neumatico para spinner OTR.
	Cámara de vulcanización	Vulcanizado	Bandag	- Fuga existente en adaptador universal en ramificación, para alimentar cámara de vulcanización.

Fuente: elaboración propia.

3.2.3. Fugas en maquinaria

Se determinaron por inspección las fugas en maquinaria, examinando el sistema neumático de cada una de ellas, por lo que se encontraron varios detalles que generan una pérdida de aire comprimido en la red.

3.2.3.1. Fugas por inspección

En la tabla LXXIX se detallan las fallas en la maquinaria por inspección VOSO; ver, oír, sentir y oler. Que indica de una forma rápida y sencilla el estado de los equipos.

Tabla LXXIX. Fugas de aire comprimido en maquinaria

No. Maquinaria	Maquinaria	Modelo	Observaciones		
1	Abridora de llantas	396	 Revisando el sistema F.R.L. se encontró que el lubricador esta dañado, sufriendo rajadura en el vaso. Por lo que se solicitó cambiar el lubricador. 		
3	Raspadora agrícola	231 y 23	 Se encontró una fuga en el mando de control de la raspadora (joystick) y fuga existente en acople rápido en la entrada de la máquina. 		
4	Raspadora automática	8400	 Fuga existente en el mando de lifter monorriel y la tubería espiral para el mando. 		
5	Raspadora manual	8120	 El lubricador se encuentra dañado por rajaduras en el vaso y fuga existente en tubería espiral para mando de lifter monorriel. 		
6	Spinner	1100	- Fuga existente en lubricador.		
7	Spinner	1100	- Fuga existente en lubricador.		
8	Spinner	1100	- Fuga existente en lubricador.		
17	Extrusora	6300	- Fuga existente en tubería espiral para mando de lifter monorriel.		
18	Spinner	1100	 Regulador de aire comprimido dañado. 		
21	Embandadoras	5350	 Fuga existente en lubricador de lifter monorriel y en fiting de engrapadora. 		
35	Embandadoras	5110	 Fuga existente en el mando de lifter monorriel y la tubería espiral para el mando. 		
32	Abridora de llantas	396	 Fuga existente en el fiting de engrapadora. 		
			Area de OTR		
·	Raspadora	IMS50	- Filtro dañado produce gran cantidad de fuga de aire.		
	Raspadora	Bandag	 Mando de control dañado que produce fuga. 		
	Cámara de vulcanización	Bandag	- Fuga en filtro de aire.		

Fuente: elaboración propia.

3.2.3.2. Fugas por deterioro de maquinaria

Se examino cada máquina y se evaluó el estado de cada una, por lo cual se solicitaron los repuestos necesarios para reducir las fugas por deterioro de los componentes de cada maquinaria.

Tabla LXXX. Fugas de aire por deterioro de maquinaria

No. Maquinaria	Maquinaria	Área	Modelo	Observaciones
4	Raspadora automática	Raspado	8400	- Soplador obsoleto genera fugas sin estar en operación.
5	Raspador manual	Raspado	8120	 Monifold dañado genera figas en conjunto de válvulas.
6	Spinner	Cardeo	1100	 Cilindro levantador de neumáticos dañado por deterioro de empaques de cilindro.
7	Spinner	Cardeo	1100	 Motor neumático genera fugas por deterioro de empaques.
8	Spinner	Cardeo	1100	 Motor neumático genera fugas por deterioro de empaques.
9	Spinner	Cardeo	1100	 Motor neumático genera fugas por deterioro de empaques.
18	Spinner	Rellenado	1100	 Motor neumático genera fugas por deterioro de empaques
36	Spinner	Rellenado	1100	 Motor neumático genera fugas por deterioro de empaques.
19	Cuchilla circular y aplicado de cojin	Corte de Bandas	191 y 188	 Fuga en válvula de 3 vías para accionamiento de cuchilla circular.
20	Embandadora	Embandado	221C	- Fuga existente en rin expandible al momento de operación y deteriorado por años en operación.
21	Embandadoras	Embandado	5350	- Fuga existente en rin expandible al momento de operación y deteriorado por años en operación.
35	Embandadoras	Embandado	5110	- Fuga existente en rin expandible al momento de operación y deteriorado por años en operación.

3.2.3.3. Fugas por mal uso del aire comprimido por el operario

Asumiendo una velocidad máxima de aire de 15 m/s, con un diámetro de tubería de $\frac{1}{2}$ ", se obtiene un caudal de 4 CFM.

Tabla LXXXI. Fugas por mal uso del aire comprimido por el operario

Operario	No. operario	Actividad Tiempo (min)		Cantidad de veces al día	Tiempo total (min)
Inspección inicial	4	Limpieza de área de trabajo con sopleteo	0,5	3	6
Raspadora	3	Limpieza de área de trabajo con sopleteo	1	3	9
Spinner	6	Sopleteo en ropa y área de trabajo	1,34	4	32
Reparaciones	4	Sopleteo en ropa y area de trabajo	0,75	4	12
Varios operarios	20	Sopleteo en ropa para eliminar residuos de caucho	0,5	4	40
Encargado de limpieza planta	1	Sopleteo para juntar residuos de caucho en el piso	2	10	20
Mantenimiento	1	Limpieza de maquinaria	0,75	3	2,25
_	•	•		TOTAL	121,25

Asumiendo que se trabajan 288 días laborales el total de minutos al año usando incorrectamente el aire comprimido es de 34,905,6 minutos, en la siguiente tabla se determina los costos del aire comprimido al año por el mal uso de los operarios.

Tabla LXXXII. Costo aire comprimido por mal uso de los operarios

Compresor	Potencia (HP)	Potencia (kW)	Caudal utilizado (CFM)	Costo por año (Q)
Ingersoll Rand	50	37,25	4	524,12
Kaeser AS 30	30	22,35	4	472,81
Kaeser ASD 25	25	18,625	4	503,06
			TOTAL	1 499,99

3.3. Eliminación de pérdidas de aire comprimido

Para reducir las fugas de aire comprimido es necesario hacer un estudio en la red, en la maquinaria y el uso que le dan los operarios, por lo que en un archivo Excel proporcionado por Bandag se determinaron los repuestos y precios de cada maquinaria, esto por el número de serie que tiene cada pieza, este número de serie se encuentran en el manual de cada máquina.

3.3.1. Repuestos y costos

Al introducir los códigos de cada repuesto nos proporcionan una breve descripción y el costo en dólares, asumiendo que el dólar está a Q 7,75.

Tabla LXXXIII. Repuestos y costos determinados por inspección en maquinaria

No. Máquina	Maquinaria	Área	Modelo	Código repuesto	Descripción repuesta	Costo en dólares (\$)	Costo quetzales (Q)
1	Abridora de Ilanta	Inspección inicial	396	902016	- Vaso de lubricador (A) .37 NPT	62,15	481,66
3	Raspadora agrícola	Raspado	231	937999	Joystick, interruptor 4pos w / 4 n.a.	109,82	851,10
4	Raspadora	Raspado	9400	131613	 - Mando de control lifter monorriel, levantador de neumáticos 	243,62	1 888,05
4	automática	Kaspauo	905107	Tubo espiral de polietileno para mando de control lifter monorriel	46,77	362,46	
				902376	- Lubricador 50 NPT	61,92	479,88
5	Raspador manual	Raspado	8120	905107	Tubo espiral de polietileno para mando de control lifter monorriel	46,77	362,46
6	Spinner	Cardeo	1100	902017	- Lubricador	38,31	296,90
7	Spinner	Cardeo	1100	902017	- Lubricador	38,31	296,90
8	Spinner	Cardeo	1100	902017	- Lubricador	38,31	296,90
17	Extrusora	Rellenado	6300	905107	Tubo espiral de polietileno para mando de control lifter	46,77	362,46

Continuación tabla LXXXIII.

18	Spinner	Rellenado	1100	901493	- Regulador de aire 25 NPT	17,00	131,75
21	Embandadora	Embandado	5350	902017	- Lubricador lifter monorriel	38,31	296,90
21	Embandadora	Embandado	5550	902049	- Adaptador engrapadora	2,00	15,5
35	Embandadora	Embandado	5110	131613	- Mando de control lifter monorriel, levantador de neumáticos	243,62	1 888,05
35	Embandadora	Embandado	5110	905107	Tubo espiral de polietileno para mando de control lifter monorriel	46,77	362,46
32	Inspección final	Abridora de llantas	396	902049	 Adaptador engrapadora 	2,00	15,5
			Área de (OTR			
	Raspadora	IMS	IMS50	902428	- Filtro de aire 37. NPT	73,30	568,07
	Raspadora agrícola	Bandag		937999	- Joystick, interruptor 4pos w / 4 n.a.	109,82	851,10
	Cámara de vulcanización	Bandag	103A	902014	- Regulador de aire .37 NPT	49,00	379,75
						TOTAL	10 187,85

Tabla LXXXIV. Repuestos y costos por deterioro de maquinaria

No. Máquina	Maquinaria	Área	Modelo	Código repuesto	Descripción repuesta	Costo en dólares (\$)	Costo en quetzales (Q)
4	Raspadora automática	Raspado	8400		- Soplador	19,35	150
5	Raspador manual	Raspado	8120	133006	- Manifold, conjunto de válvulas de 6 estaciones 8120	778,00	6 029,5
6	Spinner	Cardeo	1100	901033	Kit de reparación de cilindro	30,25	234,43
7	Spinner	Cardeo	1100	939065	- Kit de reparación de motor, air gast	48,70	377,42

Continuación tabla LXXXIV.

8	Spinner	Cardeo	1100	939065	- Kit de reparación de motor, air gast	48,70	377,42
9	Spinner	Cardeo	1100	939065	- Kit de reparación de motor, air gast	48,70	377,42
18	Spinner	Rellenado	1100	939065	- Kit de reparación de motor, air gast	48,70	377,42
36	Spinner	Rellenado	1100	939065	- Kit de reparación de motor, air gast	48,70	377,42
19	Cuchilla circular y aplicado de cojín	Corte de bandas	191	903013	- Válvula de 3 vía. 12 NPT	15,55	120,51
20	Embandadora	Embandado	221C	915063	- Rin expandible 13- 16" x 5,0" anchura de talón (Standard)	930,00	7 207,5
21	Embandadora	Embandado	5350	915059	- Rin expandible 22"-24,5"X9,0"	1398,00	10 834,5
35	Embandadora	Embandado	5110	915062	- Rin expandible 22"X24,5"X13,0"	1629,00	12 624,75
						Total	39 088,29

Fuente: elaboración propia.

Con base a lo planteado en el capítulo anterior se muestran los detalles de accesorios necesarios para evitar fugas en el sistema de tubería.

Tabla LXXXV. Repuestos y costos de mangueras y accesorios de tuberías

Accesorios	Cantidad	Precio unitario (Q)	Precio total (Q)	Descripción
Manguera de hule de ½"	60 pies	Q 12,25 por pie	Q 735,00	Manguera de hule solicitada por mayor durabilidad, para cambio de mangueras deterioradas para alimentación de maquinaria.
Manguera de hule de 1/4"	36 pies	Q 4,28 por pie	Q 154,08	Manguera de hule solicitada para mayor durabilidad, para sustituir

Continuación tabla LXXXV.

Abrazadera de ½"	24 unidades	Q 4,00	Q 96,00	Abrazaderas para sujetar manguera en acoples rápidos y en fiting de ramificaciones.
Abrazaderas de	24 unidades	Q 2,00	Q 48,00	Abrazaderas para sujetar manguera en acoples rápidos para alimentación de herramienta neumática.
Kit de acoples rápidos	50 unidades	Q 76,85	Q 3 842,5	El kit incluye 50 unidades, por lo que se solicita para dejar en bodega para futuras reparaciones
	•	Total	O 4 875 58	

Fuente: elaboración propia.

3.3.2. Recuperación de fugas selladas

En la siguiente tabla se muestra los datos de pérdidas por fugas de aire comprimido en el sistema y la inversión necesaria para sellar las fugas del sistema.

Tabla LXXXVI. Costo por fugas anuales

Descripción	Costo (Q)
Costo de fugas por año en sistema	63,898,31884
Costo por mal manejo de operarios al año.	1 499,99
Total	65.398.30

Fuente: elaboración propia.

Tabla LXXXVII. Inversión para eliminar fugas

Descripción	Costo (Q)
Repuestos en maquinaria	10 187,85
Repuestos por deterioro	39 088,29
Repuestos en mangueras y acoples rápidos	4 875,58
Total	54 151,72

3.3.3. Tiempo de recuperación inversión

Para determinar el tiempo de recuperación de la inversión se utiliza la

siguiente ecuación, y utilizando los datos de ahorro anual y de la inversión para

sellar las fugas.

Para determinar el tiempo de recuperación de la inversión se utiliza la

siguiente ecuación:

$$Tiempo \ de \ recuperación = \frac{Inversión \ (Q)}{Ahorro \ (Q/a\~no)}$$

Donde:

Inversión (Q): el costo de los repuestos

Ahorro (Q/año): El ahorro anual si no existieran fugas

Entonces; utilizando datos de las tablas LXXXVI y LXXXVIII.

Tiempo de recuperación =
$$\frac{Q 54 151,72}{65 398,30 \text{ O/año}} = 0,82 \text{ años}$$

El resultado de la ecuación indica que el tiempo de recuperación de la

inversión es de 0,82 años, expresado en meses son aproximadamente 10 meses,

así en los próximos años se tendrá un ahorro de Q 65 398,30.

3.4. Rediseño de la red de aire comprimido VIFRIO, S.A.

En este capítulo se desarrollarán los cálculos para determinar un sistema

de aire comprimido eficiente para satisfacer las necesidades de la empresa.

134

3.4.1. Requerimiento de la red

Para el cálculo de los diámetros de la tubería a principal, secundaria y de servicio, inicialmente se necesita el caudal máximo, la caída de presión y la presión de trabajo del sistema de aire comprimido. Se determinó el consumo de aire comprimido por área de trabajo por un grado de utilidad o de simultaneidad que nos ayuda a obtener unos datos más exactos del consumo real teórico.

Tabla LXXXVIII. Resumen requerimiento de la red

Área	Caudal (CFM)	Presión de trabajo (PSI)
Maquinaria	446,9208	120
Herramientas	99,9846	120
Total aproximado	547	

Fuente: elaboración propia.

3.4.2. Flujo volumétrico de anillo principal

Obteniendo el dato del consumo por área y de las herramientas neumáticas se obtiene el dato del caudal total. La suma total será el dato a utilizar en la ecuación expuesta en capítulos anteriores, dando como resultado el valor útil de caudal Q_{total} .

$$Q_{total} = Q + 5 \% perdidas + 10 \% errrores de calculos$$

$$Q_{total} = 547 \ CFM + 547 \ CFM * 5 \% + 547 \ CFM * 10 \%$$

$$Q_{total} = 630 \, CFM$$

3.4.3. Caída de presión en anillo principal

El dato de presión de trabajo es un dato muy importante, según la franquicia Bandag la presión de trabajo en toda la planta debe ser de 120 PSI, con este valor obtenido y mediante la ecuación descrita en el capítulo 1,7.11 el cual determina un valor teórico de presión de trabajo en las líneas de distribución. Caída de presión permisible del 3 % al 6 %.

La presión y el caudal son dos variables importantes de establecer para el dimensionamiento de la línea de tubería y para el cálculo de la caída de presión admisible en el sistema. Para calcular la demanda de presión se debe de sumar la presión prescrita a la herramienta, la caída de presión que se presentara en la línea y los accesorios, obteniendo así la presión al inicio de la línea principal.

$$P_2 = P_1 + P$$

$$P_2 = 120 PSI + 120 * 6 \%$$

$$P_2 = 127,2 PSI$$

Mediante el cálculo anterior se obtuvo que, la presión de trabajo requería 127,2 PSI. Con este dato se calculará las pérdidas ocasionadas por la presión, nombrada factor R.

3.4.4. Longitud nominal de anillo principal

El cálculo de la longitud de la tubería de aire comprimido se realizará midiendo el anillo principal en metros, a través de estos datos se establecerá la

longitud principal y secundaria. Por lo tanto, la longitud de todo el circuito de aire comprimido.

Tabla LXXXIX. Longitud tubería principal

Tubería	Descripción	Longitud (m)	Longitud (Pies)
Principal	Del cuarto de compresores a tuberías de distribución	142,191 m	466,3864

Fuente: elaboración propia.

3.4.5. Cálculo para el anillo principal

Para el cálculo del dimensionamiento de tuberías y accesorios se debe seguir el procedimiento descrito en el capítulo 1,7.10 así como utilizar las tablas descritas en dicho capitulo. Se utilizarán los datos establecidos de requerimientos de la red en los incisos anteriores. Para determinar si la perdida de presión es admisible se utilizará un diámetro arbitrario, el cual será de una tubería principal de 4" de diámetro.

Se calcula el factor de pérdida, F, que se determina mediante la tabla V, utilizando para ello el diámetro de la tubería en pulgadas y el caudal de aire requerido por las instalaciones en CFM.

Tabla XC. Tabla factores de cálculo de pérdidas de presión debidas a la fricción en tuberías para cualquier presión inicial

CFM	4"
600	6,2
630	6,89
700	8,5

Fuente: ÁVILA PINZÓN, Álvaro Antonio. Folleto instalaciones mecánicas. p. 12.

Por medio de una interpolación se calculó que el factor de pérdida, F, es de 6,89.

Para la pérdida producida por accesorios se calculará a continuación, convirtiendo esta pérdida en longitudes equivalentes expresadas en pies.

Tabla XCI. Accesorios para tubería principal de diámetro de 4"

Accesorios	Cantidad	Le (pies)	Le total (pies)
Codo	12	10	120
Tee	19	6,67	126,73
Válvula de globo	4	113,33	453,32
Válvula de paso	2	50	100
Reductor	2	1,65	3,3
Válvula de paso 2"	3	28,7	86,10
Codo 2"	Codo 2" 2		10,34
		Total	899,79

Fuente: elaboración propia.

Sumando los totales de las tablas LXXXIX y XCI se obtiene la longitud equivalente de 1366,1764 pies.

Con los datos obtenidos se calcula la pérdida de presión en la tubería y posteriormente el porcentaje de pérdida de presión en la tubería principal.

$$P\'{e}rdidas = \frac{6,8940 * 1366,1764}{9,6530 * 1000} = 0,9751 Psi$$

Porcentaje de pérdidas =
$$\frac{0.9751 * 100}{127.2}$$
 = 0.7665 %

3.4.6. Flujo volumétrico para ramificaciones

El caudal necesario para alimentar cada área de trabajo se calcula mediante una suma del caudal de la maquinaria y herramientas de trabajo, en este caso se realizará el cálculo del área de inspección inicial.

Tabla XCII. Flujo volumétrico inspección inicial

Maquinaria	Caudal (CFM)	Caudal herramientas (CFM)
Abridora de llantas	8,6105	2,75
Abridora de llantas	8,6105	2,75
Analizadora Insight	3,6669	
TOTAL	20,8879	5,5

Fuente: elaboración propia.

Al sumar el caudal de maquinaria y caudal de herramientas se tiene un total de 26,3879 CFM, este es el caudal total del área de inspección inicial.

3.4.7. Longitud nominal de ramificaciones

Se determina la longitud de la tubería secundaria en el área de inspección final:

Tabla XCIII. Longitud nominal en tubería área de inspección final

Tubería	Descripción	Longitud (m)	Longitud (Pies)
Área de inspección Secundaria inicial		10,65	34,9320

Para la pérdida producida por accesorios se calculará a continuación, convirtiendo esta pérdida en longitudes equivalentes.

Tabla XCIV. Accesorios para tubería secundaria en área de inspección inicial de diámetro de 2"

Accesorios	Cantidad	Le (pies)	Le total (pies)
Tee	3	2,07	6,21
Reductor	1	0,33	0,33
Válvula de paso	1	28,7	28,7
		Total	35,24

Fuente: elaboración propia.

Sumando los totales de las tablas XCIII y XCIV se obtiene la longitud equivalente de 70,1720 pies

3.4.8. Cálculo de diámetro de tubería secundaria en área de inspección inicial

Se calcula el factor de pérdida, F, que se determina mediante la tabla V, utilizando para ello el diámetro de tubería de 2" y el caudal de aire de 26,3879 CFM.

Tabla XCV. Factores de cálculo de pérdidas de presión debidas a la fricción en tuberías para cualquier presión inicial

CFM	2"
20	
26,3879	1,5
30	

Fuente: ÁVILA PINZÓN, Álvaro Antonio. Folleto instalaciones mecánicas. p. 12.

Por falta de datos en la tabla V se aproxima el valor de F y se sigue con la secuencia de datos.

3.4.9. Caídas de presión en ramificaciones

Con los datos obtenidos se calcula la pérdida de presión en la tubería y posteriormente el porcentaje de pérdida de presión en la tubería secundaria.

$$P\'{e}rdidas = \frac{1,50 * 70,1720}{9,6530 * 1000} = 0,0109 PSI$$

Porcentaje de pérdidas =
$$\frac{0,0109 * 100}{127,2}$$
 = 0,0085 %

Se determinará si el sistema rediseñado es eficiente sumando los porcentajes de pérdidas del anillo principal, secundario y líneas de servicio, se muestra en las siguientes tablas:

Tabla XCVI. Porcentaje de pérdida de presión en tuberías secundarias y diámetros de tuberías

Área	Porcentaje de perdida de presión (%)	Diámetro tubería (")
Inspección inicial	0,0085	2"
Cardeo y reparaciones	0,1106	2"
Rellenado	0,0475	1 ½"
Embandado	0,0170	1 ½"
Cobertores	0,0843	3/4"
Cámaras	0,0264	3"
Inspección final	0,0045	2"
TOTAL	0,2988	

Tabla XCVII. Porcentaje de pérdida de presión en ramificaciones y diámetros de tuberías

Maquina	Área	Porcentaje pérdida (%)	Diámetro tubería (")
1		0,0345	3/4"
2	Inspección inicial	0,0345	3/4"
33		0,0292	1/2"
3	Raspado Agrícola	0,0205	1/2"
4	Raspado Automático	0,0508	3/4"
5	Raspador manual	0,0032	3/4"
6	·	0,0857	1/2"
7	0	0,0857	1/2"
8 y 9	Cardeo	0,0735	3/4"
10 y 11		0,0732	3/4"
37		0,061	1/2"
13 y 14	Reparaciones	0,0459	3/4"
15 y 16	·	0,0646	3/4"
12	Cementado	0,0130	1"
17	Dallarada	0,1600	3/4"
18 y 36	Rellenado	0,0294	3/4"
,	Herramientas	0,0511	1/2"
	Herramienta pistola	0,0186	1/2"
19 y 20	Corte	0,1123	1"
21	Embandado	0,0476	3/4"
35	Embandado	0,0562	3/4"
	Lifter embandado	0,0099	1/2"
Pintadora		0,0131	1/2"
Lifter		0,0135	1/2"
22	Cobertores	0,0108	1/2"
19, 23 y 24.		0,0246	1/2"
25 y turbinas		0,0470	1/2"
27		0,1384	1"
28	Cóm a rac	0,0992	1"
29	Cámaras	0,0992	1"
30		0,0992	1"
31	lana anai far final	0,117	3/4"
31	Inspección final	0,117	3/4"
		1,9394	

Tabla XCVIII. Porcentaje de pérdida de presión en tubería principal y diámetro de tubería

Área	Porcentaje de pérdida (%)	Diámetro tubería (")
Anillo principal	0,7665	4"
Total	0,7665	

Tabla XCIX. Porcentaje de pérdida de presión en rediseño de la red de aire comprimido en la planta de reencauche VIFRIO

Área	Porcentaje de pérdida (%)
Anillo principal	0,7665
Secundarias	0,2988
Ramificaciones	1,9394
OTR	0,4075
Total	3,4122

Fuente: elaboración propia.

Al analizar los cálculos obtenidos con los diámetros establecidos se determinó un porcentaje de pérdida es de 3,4122 %, el dimensionamiento de los diámetros se mantiene en los valores aceptables de caída de presión. Por lo que el sistema diseñado es eficiente.

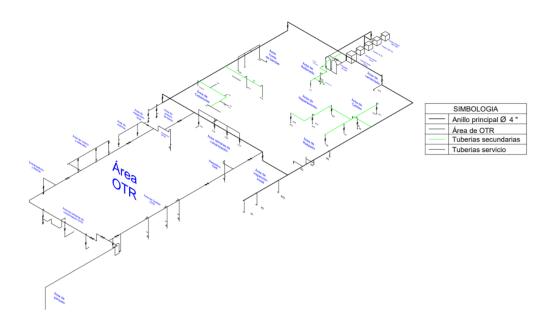
3.4.10. Selección de compresor

El compresor seleccionado debe ser capaz de producir 160 CFM y de proveer una presión aproximadamente de 125 PSI. Como un compresor

convencional produce 4 CFM por cada HP. La potencia necesaria para un compresor de 160 CFM sería de 40 HP.

Tabla C. Características compresor Kaeser SIGMA ASD 40S

Capacidad volumétrica (CFM)	Presión de servicio (PSI)		
162	125		
127	175		
106	217		
Potencia del motor	40 HP		
DATOS ADICIONALES			
Voltaje 230/460v/3 fase/60 HZ			
Conexión de descarga de aire comprimido:	1 1/4" NPT		
Dimensiones: (L x A x H)	1,46m x 0,9m x 1,53m		
Peso: 755 Kg	Peso: 755 Kg		
Nivel de ruido: 67 dB(A)	Nivel de ruido: 67 dB(A)		


Fuente: elaboración propia.

Para complementar el caudal necesario para que la planta trabaje con eficiencia se requiere un compresor con esta ficha técnica, así se logra cubrir los 630 CFM necesarios para tener una mejor producción. Se seleccionó este tipo de compresor por su alta eficiencia y por su nivel bajo de mantenimiento y ruido, y por su capacidad de entregar aire comprimido sin tener altas fluctuaciones en la presión.

3.5. Diagrama rediseño de la red

A continuación, se presenta el diagrama del rediseño de la red.

Figura 20. Rediseño de la red de aire comprimido Llantas VIFRIO, S.A.

Fuente: elaboración propia, empleando AutoCAD.

3.6. Análisis financiero

Realizar el análisis financiero permitirá tener una visión más amplia de los beneficios económicos de llevar a cabo la implementación del sistema. Asimismo, un análisis financiero contiene varias herramientas que permiten alertar si una determinada inversión conllevará pérdidas, y por lo tanto el inversionista puede decidir no ejecutarlo.

3.6.1. Costos para la implementación

En las siguientes tablas, las cotizaciones fueron realizadas con proveedores de la empresa, la tubería seleccionada es HG.

Tabla CI. Costo tubería para red principal y secundaría

	Anillo princi	pal		1
Cantidad	Descripción	Proveedor	Precio unitario (Q)	Precio total (Q)
24	Tubería anillo principal de 4" de diámetro con longitud de 6 m de longitud	Ferretería la nueva	1 358,00	32 592,00
10	Codo 4"	Ferretería la nueva	229,00	2 290,00
19	Tee 4"	Ferretería la nueva	329,00	6 251,00
4	Válvula globo 4"	Ferretería la nueva	1 300,00	5 200,00
2	Válvula de paso 4"	Ferretería la nueva	987,00	1 974,00
2	Reductor 4" a 3"	Ferretería la nueva	163,00	326,00
3	Válvula de paso 2"	Ferretería la nueva	247,00	741,00
2	Codo 2"	Ferretería la nueva	41,30	82,60
	Cardeo y repara		l .	L
5	Tubería secundaria de 2" de diámetro con 6 m de longitud	Ferretería la nueva	552,00	2 760,00
5	Codo 2"	Ferretería la nueva	41,30	206,50
6	Tee 2"	Ferretería la nueva	68,00	408,00
2	Válvula paso 2"	Ferretería la nueva	247,00	494,00
1	Reductor de 4" a 3"	Ferretería la nueva	163,00	163,00
1	Reductor de 3" a 2"	Ferretería la nueva	92,00	92,00
	Rellenado		l .	1
2	Tubería secundaria de 1 ½" de diámetro con 6 m de longitud	Ferretería la nueva	458,00	916,00
3	Codo 1 ½"	Ferretería la nueva	29,30	87,90
5	Tee 1 ½"	Ferretería la nueva	43,70	218,50
1	Reductor de 4" a 3"	Ferretería la nueva	163,00	163,00
1	Reductor de 3" a 2"	Ferretería la nueva	92,00	92,00
1	Reductor de 2" a 1 ½"	Ferretería la nueva	35,00	35,00
1	Válvula de paso 1 ½"	Ferretería la Nueva	161,00	161,00
	Embandad			
2	Tubería secundaria de 1 ½" de diámetro con 6 m de longitud	Ferretería la Nueva	458,00	458,00
2	Tee 1 ½"	Ferretería la Nueva	43,70	87,40
2	Codo 1 ½"	Ferretería la Nueva	29,30	58,60
1	Reductor 4" a 3"	Ferretería la Nueva	163,00	163,00
1	Reductor 3" a 2"	Ferretería la Nueva	92,00	92,00

Continuación tabla CI.

1	Reductor 2" a 1 ½ "	Ferretería la Nueva	35,00	35,00
1	Válvula de paso 1 ½"	Ferretería la Nueva	161,00	161,00
<u>.</u>	Cobertores	S		
2 1	Fubería secundaria de ¾" de diámetro con 6 m de longitud	Ferretería la Nueva	196,50	393,00
1	Codo ¾"	Ferretería la Nueva	8,50	8,50
5	Tee ¾ "	Ferretería la Nueva	14,00	70,00
1	Reductor de 4" a 3"	Ferretería la Nueva	163,00	163,00
1	Reductor de 3" a 2"	Ferretería la Nueva	92,00	92,00
1	Reductor de 2" a 1 ½"	Ferretería la Nueva	35,00	35,00
1	Reductor de 1 ½" a 1"	Ferretería la Nueva	23,00	23,00
1	Reductor de 1" a ¾"	Ferretería la Nueva	10,10	10,10
2	Válvula paso ¾"	Ferretería la Nueva	56,50	56,50
	Cámaras			
2	Tubería secundaria de 3" de diámetro con 6 m de longitud	Ferretería la Nueva	960,00	1920,00
1	Reductor de 4" a 3"	Ferretería la Nueva	163,00	163,00
3	Codo	Ferretería la Nueva	133,50	400,50
3	Tee	Ferretería la Nueva	189,00	567,00
1	Válvula de paso	Ferretería la Nueva	680,00	680,00
			TOTAL	60 890,10

Tabla CII. Costo tubería de servicio

Accesorios y tubería de ½ "					
Cantidad	Descripción	Proveedor	Precio unitario	Precio total	
6	Tubo de ½" con longitud de 6 m	Ferretería la Nueva	131,00	786,00	
22	Codo	Ferretería la Nueva	4,70	103,40	
15	Válvulas de paso	Ferretería la Nueva	40,00	600,00	
31	Reductores ¾" a ½"	Ferretería la Nueva	6,00	186,00	
8	Tee	Ferretería la Nueva	7,30	58,40	

Continuación tabla CII.

	Accesorios y tubería de ¾"						
8	Tubo de ¾" con longitud de 6 m	Ferretería la Nueva	196,50	1572,00			
28	Codo	Ferretería la Nueva	8,50	238,00			
21	Válvula de paso	Ferretería la Nueva	56,50	1186,50			
36	Reductores 1" a ¾"	Ferretería la Nueva	10,10	363,60			
17	Tee	Ferretería la Nueva	14,00	238,00			
	Ad	ccesorios y tubería de 1"		1			
3	Tubo de ¾" con longitud de 6 m	Ferretería la Nueva	273,00	819,00			
6	Codo	Ferretería la Nueva	13,50	81,00			
5	Válvula de paso	Ferretería la Nueva	93,00	465,00			
9	Reductores 1 ½" a 1"	Ferretería la Nueva	23,00	207,00			
			TOTAL	6 903,9			

Fuente: elaboración propia.

Tabla CIII. Costo total del proyecto

Descripción	Precio (Q)	
Tubería Principal y secundaria	60 890,10	
Tubería de servicio	6 903,90	
Compresor Kaeser ASD 40 S	50 000,00	
Total	117 794,00	

Fuente: elaboración propia.

Anteriormente se analizó que las pérdidas debido a la ineficiencia del sistema son 55 llantas al mes que son alrededor de Q 33 000,00 mensuales y anualmente asciende a Q 396 000,00, si el sistema es eficiente el dato anterior se toma como el ahorro anual. Si con el rediseño se espera un ahorro del 25 % anual la margen seria de Q 99 000,00

Para determinar el tiempo de recuperación de la inversión se utiliza la siguiente ecuación:

$$Tiempo de recuperación = \frac{Inversión (Q)}{Ahorro (Q/año)}$$

Donde:

Inversión (Q): Inversión total del proyecto

Ahorro (Q/año): El ahorro anual de la producción

Entonces; utilizando el dato de la Tabla CIII, se obtiene el siguiente dato:

Tiempo de recuperación =
$$\frac{Q\ 117\ 794,00}{99\ 000\ Q/año}$$
 = 1,18 años

El resultado de la ecuación indica que el tiempo de recuperación de la inversión es de 1,18 años, expresado en meses son aproximadamente 15 meses, por lo que el proyecto de rediseño es rentable.

4. FASE DOCENCIA

4.1. Presentación de mejoras

La presentación de mejoras se realizó a los encargados del área, en la cual se presentaron los beneficios y costos de inversión para realizar el proyecto.

Con el estudio realizado se determinó que las pérdidas de presión se deben a las fugas y falta de mantenimiento preventivo y correctivo de la maquinara y la red de tuberías. Las tuberías y vueltas innecesarias generan una gran pérdida de presión en el sistema.

4.1.1. Importancia de la eliminación de fugas de aire comprimido en la industria

La energía neumática es la segunda más usada después de la energía eléctrica y por ello es importante que esa energía en lo posible sea transmitida a su punto de uso con las menores pérdidas posibles en su recorrido por el sistema de aire comprimido. Hoy los estándares de calidad para procesos industriales y máquinas neumáticas no admiten un aire comprimido sucio, con rastros de aceite y con humedad. Ahora se exige que el aire comprimido en su punto de entrega sea un aire libre de aceite, seco y por su puesto limpio. A este tipo de aire, generalmente se le llama aire de instrumentación.

Un sistema de aire comprimido que logra entregar un aire de instrumentación está compuesto por los siguientes componentes: compresor, postenfriadores, tanque pulmón, secador, filtros y la tubería que sirve de medio

de transporte al aire comprimido hasta el punto de uso. Ahora bien, el aire comprimido que es descargado por el compresor, tiene una determinada energía medida a través de su presión, lo ideal sería que esa presión se mantuviera constante a través de todo el sistema hasta llegar a su punto de uso, pero en un sistema real, esa presión comienza a disminuir por la fricción del aire con las paredes internas de la tubería por donde se traslada hasta el punto de uso y por el esfuerzo de ese aire comprimido en pasar por todos esos componentes que le ayudarán a ser un aire de mejor calidad. Las siguientes son las causas más comunes de pérdidas de energía que se presentan en un sistema de aire comprimido ya existente:

Fugas de aire

Es la pérdida de energía más común en un sistema de aire comprimido, lastimosamente el aire no tiene olor, no es visible y no incomoda cuando las fugas son pequeñas, caso contrario, por ejemplo, con el gas propano, con el agua o el aceite a presión que son visibles y que tienen un costo de por sí, pero el aire, aunque no tiene costo alguno, una vez comprimido, ya lo tiene. En los sistemas de aire comprimido se tolera pérdidas de 5 a 15 % del caudal de entrega del compresor.

Estas pérdidas deberán ser solo por fugas en los equipos o herramientas que usan este aire comprimido, mas no en el sistema, el porcentaje a considerar dependerá de la dimensión del sistema.

Tuberías mal dimensionadas

Una tubería de diámetro menor a lo requerido, origina una mayor pérdida de presión, debido a la mayor fricción causada por el aumento de la velocidad del aire que pasa a través de ella. Las velocidades máximas recomendadas para calcular los diámetros de estas tuberías en aire comprimido son 8 m/s para tuberías principales y 15 m/s para tuberías de servicio o ramales. No es económico montar tuberías de menor diámetro, sin tener en consideración las pérdidas de presión que estas puedan originar durante su operación y el equivalente en costo de energía por ello, para la mayoría de los sistemas, se debe considerar que la caída de presión solo en tuberías no debe pasar de 9 PSI desde el punto de descarga del equipo compresor hasta su punto de aplicación.

Alta presión de operación

Muchas veces el personal no se percata de cuál es la presión real que requieren los procesos, equipos o herramientas neumáticas que usan el aire comprimido siendo esto el origen de pérdidas de energía innecesaria. Es importante que se conozca la presión de trabajo de cada equipo o herramienta que usa el aire comprimido con el fin de determinar la menor presión a la que pueden trabajar sin que las operaciones de estos sean afectadas.

Localización de fugas y control

Dado que las fugas de aire no constituyen una contaminación del medio ambiente, suele no tomarse en serio la solución de este problema. Antes de eliminar las fugas hay que localizarlas primero. Uno de los métodos más difundidos para hacerlo, consiste en aplicar lejía jabonosa en los lugares sospechosos. Si se forman burbujas, es fácil encontrar el orificio que causa la

fuga de aire. Pero también puede recurrirse a métodos de medición para localizar las fugas.

Aparatos conectados a la red 18%

Racores 26%

Tubería 8%

Actuadores 1%

Otros 25%

Figura 21. Distribución de las fugas en la red de aire comprimido

Fuente: CUXIL GARCÍA, Nancy Paola. *Mantenimiento y factores de seguridad industrial en redes de aire comprimido*. p. 80.

Localización mediante ultrasonido

El aire se escapa por las fugas a gran velocidad y produciendo un sonido inaudible para el ser humano. Sin embargo, con sensores si es posible detectar ese sonido y transformar su frecuencia para que si lo perciba el ser humano.

Utilizando auriculares es posible localizar la fuga detectando el sonido que ocasiona, en este método se aprovecha el sentido de orientación del hombre. Además, también es posible digitalizar las señales, con este método es posible

localizar muy rápidamente cualquier fuga en bridas, acoplamientos, válvulas o tubos.

La ineficiencia del aire comprimido no se limita al propio funcionamiento termodinámico de las máquinas, pues en muchas ocasiones las rutinas descuidadas agravan la situación. A continuación, se relacionan algunas prácticas muy comunes en el manejo del aire, que son irracionales desde el punto de vista energético:

- Selección de una presión excesiva para el trabajo realizado por el aire comprimido.
- Excesivo tiempo de funcionamiento en vacío de los compresores.
- o Inadecuada capacidad de reserva de aire para puntas de consumo.
- Redes de aire inadecuadamente mantenidas con fugas muy elevadas.
- Utilización del aire comprimido para la limpieza personal o de suelos.

4.1.2. El uso responsable y adecuado del aire comprimido

Mal uso del aire comprimido

Este concepto depende de la reglamentación de la planta en el uso del aire del sistema, pues se ha observado en muchos casos, que el aire comprimido no es usado en actividades para la cual fue instalado, causando un incremento de demanda clandestina y por ende un mayor gasto de energía en cubrir esa demanda. Unos ejemplos de este uso indebido del aire comprimido son:

- Soplado de la ropa de trabajo
- Soplado del piso del área de trabajo
- La corrección de estas causas no requiere grandes costos y aunque así lo fuera, el ahorro de energía asegura su retorno.

Control de presión

Con el fin de utilizar el aire comprimido de la forma más eficaz, es necesario reducir la presión hasta precisamente el valor requerido para esa aplicación particular. Todos los equipos neumáticos poseen una presión de trabajo óptima, su utilización a una presión mayor causa un desgaste excesivo. Si el aire comprimido se almacena a su valor de presión mayor y se utiliza exactamente al valor mínimo requerido para la aplicación, el depósito de almacenamiento o el receptor sólo necesitan llenarse desde un nivel aproximadamente intermedio hasta su capacidad completa, lo cual es más eficiente.

Con el fin de alcanzar esta utilización óptima, el compresor trabaja normalmente entre dos niveles de presión, esto es, el receptor posee normalmente un presostato ajustado para cerrar el compresor al alcanzar el nivel de presión requerido, así como un nivel menor normalmente alrededor del 10 – 20 % por debajo. Esta cifra puede optimizarse cuando se consideren el tamaño del receptor, la demanda de caudal del sistema y el nivel de salida del compresor. Como resultado a esta disposición, el compresor no está en marcha de forma continua: utiliza un exceso de energía que produce más calor, el cual a su vez genera agua.

Esta debe ser eliminada para suministrar una presión para los requerimientos del sistema que resulta excesiva y origina un gran desgaste sin ningún incremento en el rendimiento. Por lo tanto, una válvula reductora de presión puede generar ahorros de coste superiores a su precio en un tiempo muy breve.

Las válvulas reductoras de presión o los reguladores poseen dos características principales que deben ser consideradas a la hora de determinar cuál de ellas escoger, como son su capacidad de mantener la presión de salida constante, independientemente de la presión de entrada e independientemente del caudal de salida. Unas características de regulación pobres se traducirán en una variación en la presión de salida, aunque, en el conjunto de las aplicaciones de aire comprimido, las presiones de entrada son bastante constantes, de forma que este hecho supone pocos problemas.

La penalización por unas características de caudal pobres se traduce en una caída de presión que se refleja directamente en costes de energía. Cada regulador está sometido a un cierto nivel de caída de presión, de forma que para un buen diseño del sistema esta es la propiedad más importante a analizar.

Tipos de reguladores

La mayoría de los reguladores de aplicación general son del tipo de diafragma. Estos reguladores suelen ser más sensibles que los reguladores de tipo pistón, que tienen tendencia a poseer una mejor capacidad de caudal para un tamaño dado.

En la mayoría de los sistemas de aire comprimido, el requerimiento principal es su respuesta, más que su compacticidad para un determinado tamaño de tubería, con lo que aquí los reguladores de tipo diafragma son los más comunes.

Los reguladores pueden ser con escape o sin escape. La característica de escape permite que la presión del sistema se pueda ajustar de un mayor nivel a otro menor sin necesidad de actuar sobre el equipo aguas abajo.

Generalmente este orificio de purga es muy pequeño en relación a las conexiones principales del regulador, por lo que no puede conseguirse un gran caudal de escape, lo que no será considerado como un dispositivo de descarga total y ni siquiera un dispositivo de seguridad.

- Reglas elementales de seguridad:
 - Antes de la acometida
 - La purga de las conducciones de aire.
 - La verificación del estado de los tubos flexibles y de los manguitos de empalme.
 - Examinar los tubos flexibles: que no existan bucles, codos o dobleces que obstaculicen el paso del are.
 - No conectar nunca una máquina neumática a una fuente de suministro de oxígeno, existe peligro de explosión.

Durante el trabajo

- Las mangueras de aire comprimido se deben situar de forma que no se tropiece con ellas, un sistema para impedir todo esto es el de colocar las mangueras en soportes elevados.
- No usar la manguera de aire comprimido para limpiar el polvo de la ropa, se pueden producir lesiones graves en los ojos, oídos y boca.
- Al usar herramientas neumáticas siempre debe cerrarse la llave del aire antes de abrir la de la manguera. Verificar las fugas de aire que pueden producirse por las juntas, acoplamientos defectuosos o roturas de mangueras o tubos.
- Nunca se debe doblar la manguera para cortar el aire cuando se cambie la herramienta, hay que cortar la fuente de alimentación.
- No debe apoyarse todo el peso del cuerpo sobre la herramienta neumática, ya que puede deslizarse y caer uno sobre la superficie que se esté trabajando. Se debe adoptar una postura segura.
- Siempre que se trabaje con herramientas neumáticas se deben usar gafas, guantes, calzado de seguridad y protección para los oídos.

- Aun cuando no trabaje la máquina neumática no deja de tener peligro si está conectada a la manguera de aire, es lo mismo que una pistola cargada. Cualquier movimiento accidental del gatillo puede ser causa de lesiones.
- Debe ser rigurosamente prohibido el método de expulsar la herramienta con la presión del equipo neumático portátil, en lugar de quitarla con la mano.

o Después de utilizarla

- Cerrar la válvula de alimentación del circuito del aire.
- Abrir la llave de admisión de aire de la máquina, de forma que se purgue el circuito.
- Desconectar la máquina.

4.1.3. Ventajas y desventajas de un sistema de iluminación Led

Además de influir positivamente en el clima interior, todas las fuentes de luz deben permitir, por supuesto, diversos trabajos y actividades mediante el suministro de luz. A la hora de elegir una fuente de luz, no sólo es decisiva la potencia luminosa.

El consumo de electricidad también está adquiriendo cada vez más importancia en esta época de aumento de los costes energéticos. Debido a la prohibición de las lámparas incandescentes y a su gradual abolición, la bombilla clásica ha sido prohibida en el mercado.

Ventajas de las lámparas Led

- Muy bajo consumo de energía, 6 veces menos que una bombilla convencional.
- Sin mercurio y otras sustancias nocivas.
- Alta eficacia de luminosidad.
- Fácil cambio gracias a la uniformidad de los bastidores.
- Larga vida de las lámparas Led, hasta 50,000 horas.
- Sin demora de encendido.
- No se elimina como un residuo peligroso.

La baja eficacia luminosa era el mayor problema de los Led en el pasado. Por esta razón, las lámparas de bajo consumo han ocupado durante mucho tiempo una posición dominante en el mercado. Pero los acontecimientos se desarrollaban a toda velocidad y muchos consumidores han pasado de las lámparas de bajo consumo a los Led. Hay muchas razones para ello.

Muchos modelos no podían seguir el ritmo del espectro de luz de la bombilla clásica. La situación es ahora diferente con los Led. La eficacia luminosa se ha mejorado significativamente y la tecnología también ha cambiado para mejor. Sin embargo, los cambios ópticos son particularmente llamativos. Hace años, los Led sólo se conocían como el típico pequeño diodo emisor de luz. Actualmente las fuentes de luz económicas se parecen mucho a las lámparas de bajo consumo y pueden atornillarse en tomas de corriente convencionales. Esto, a su vez, facilitó el reemplazo y aumentó de la demanda de lámparas Led.

La lámpara convence por su larga vida útil y su mínimo consumo. En comparación, las Led ofrecen la mayor eficiencia energética. Compensan las desventajas de las lámparas de bajo consumo y devuelven el confort de las bombillas incandescentes. Por ejemplo, los usuarios de las lámparas Led modernas ya no tienen que preocuparse por los retrasos en el encendido.

Los Led se encienden inmediatamente y proporcionan una intensidad luminosa completa sin necesidad de una fase de arranque. Por esta razón, las lámparas también se pueden utilizar en cualquier lugar. El uso de lámparas de ahorro de energía se limitó a determinados lugares debido a los retrasos y al número limitado de ciclos de conmutación. En el caso de los pasillos o aseos, se descartaron desde el principio, ya que el encendido y apagado frecuentes reducía drásticamente la vida útil.

Desventajas de las lámparas Led

La desventaja de las lámparas Led sigue siendo el precio. En comparación con las bombillas convencionales, las lámparas Led tienen un costo mucho más elevado. Sin embargo, hay ejemplos de alta calidad disponibles por menos de diez euros, por eso tiene sentido probar las lámparas Led en lugar de las lámparas de bajo consumo para comprobar sus ventajas.

Ofrecen la máxima eficiencia y un equilibrio ecológico más positivo. El potencial de ahorro es enorme. Debido a la creciente presión del mercado entre fabricantes, que se ve alimentada además por el aumento de la demanda, los precios caerán progresivamente.

- Precio más elevado que las bombillas tradicionales
- No son tan potentes como, por ejemplo, los halógenos
- Las lámparas Led baratas pierden su intensidad de luz y calidad con relativa rapidez
- La capacidad de regulación es complicada

4.1.4. Evaluación de resultados

En el diseño actual de la red hay muchos puntos críticos que hacen que el sistema no sea eficiente, según el análisis realizado se debe al mal dimensionamiento de las tuberías principal y líneas de servicio. Con el rediseño se asumieron varios diámetros y se eligió el óptimo en cada área, el diámetro elegido fue el tuviese el menor porcentaje de pérdida de presión, tomando en

cuenta los costos de la tubería y accesorios ya que mientras más grande el diámetro más costoso será el proyecto.

Si se lograran eliminar las fugas mencionadas anteriormente; las herramientas trabajarían de mejor manera, ya que trabajaran a una presión adecuada gracias a los filtros reguladores instalados, los cuales se mantienen a 120 PSI, presión recomendada por la franquicia Bandag.

La presión en la red se mantendría dado que el diámetro de la tubería se aumenta de manera que la perdida por fricción no afectara la presión en las conexiones más alejadas del compresor como lo son las cámaras de vulcanización, problema principal de las caídas de presión. Así mismo el cuarto de compresores utilizado como bodega se procedió a retirar todo el material y reubicarla en otro sitio, ahora en el cuarto de compresores se tiene suficiente espacio para que los compresores respiren aire más limpio, se recomendó que solo los técnicos tengan acceso al área para evitar que el personal no autorizado modifique la configuración del compresor.

Se deben instalar unidades de mantenimiento F.R.L., en todas las líneas de servicio a excepción de las maquinarias que ya incluyen F.R.L. En el rediseño de aire comprimido se empleó la derivación en cuello de ganso para evitar que la condensación llegue a las herramientas, habilitando tuberías para purga en lugares específicos de la red para drenar el condensado.

La producción aumentaría al rediseñar la red por lo que se cumplirá la demanda de los clientes y obtener mejores ganancias. El proyecto es rentable, según el apartado 3.6.1 el tiempo para recuperar la inversión sería de 15 meses, al cumplir con este tiempo son ganancias netas para la empresa. El mantenimiento es un parte muy importante para que la red de aire comprimido

sea eficiente desde los compresores hasta las tuberías de servicio, en el siguiente apartado se explica de mejor manera este tema.

4.1.5. Plan de mantenimiento para red de tuberías

Mantenimiento

El mantenimiento produce un bien real, es la capacidad de producir con calidad, seguridad y rentabilidad. Para nadie es un secreto la exigencia que plantea una economía globalizada, mercados altamente competitivos y un entorno variable donde la velocidad de cambio sobrepasa en mucho nuestra capacidad de respuesta. En este panorama se están inmersos y vale la pena considerar algunas posibilidades que siempre han estado, pero ahora cobran mayor relevancia.

El mantenimiento fue, un problema. que surgió al querer producir continuamente, de ahí que fue visto como un mal necesario, una función subordinada a la producción cuya finalidad era reparar desperfectos en forma rápida y barata.

Sin embargo, se sabe que la curva de mejoras incrementales después de un largo período es difícilmente sensible, a esto se une la filosofía de calidad total, y todas las tendencias que trajo consigo que evidencian, sino que requiere la integración del compromiso y esfuerzo de todas sus unidades.

Esta realidad ha volcado la atención sobre un área relegada: la participación del mantenimiento en el éxito o fracaso de una empresa incide en:

- Costos de producción.
- Calidad del producto servicio.
- o Capacidad operacional, el cumplimiento de plazos de entrega.
- Seguridad e higiene industrial.
- Calidad de vida de los colaboradores de la empresa.
- Imagen y seguridad ambiental de la compañía.

La labor del departamento de mantenimiento está relacionada en la prevención de accidentes y lesiones en el trabajador ya que tiene la responsabilidad de mantener en buenas condiciones, la maquinaria, herramienta, equipo de trabajo, lo cual permite un mejor desenvolvimiento y seguridad evitando en parte riesgos en el área laboral.

Objetivos del mantenimiento

El mantenimiento su organización e información debe estar encaminada a la permanente consecución de los siguientes objetivos:

- Optimización de la disponibilidad del equipo productivo.
- Disminución de los costos de mantenimiento.
- Optimización de los recursos humanos.

- Maximización de la vida de la máquina.
- Evitar, reducir, y en su caso, reparar, las fallas sobre los bienes precitados.
- Disminuir la gravedad de las fallas que no se lleguen a evitar.
- Evitar detenciones inútiles o paro de máquinas.
- Evitar accidentes e incidentes y aumentar la seguridad para las personas.
- Conservar los bienes productivos en condiciones seguras y preestablecidas de operación.
- Balancear el costo de mantenimiento con el correspondiente al lucro cesante.
- Alcanzar o prolongar la vida útil de los bienes.

El mantenimiento adecuado, tiende a prolongar la vida útil de los bienes, a obtener un rendimiento aceptable de los mismos durante más tiempo y a reducir el número de fallas. Se dice que algo falla cuando deja de brindar el servicio o cuando aparecen efectos indeseables, según las especificaciones de diseño con las que fue construido o instalado el bien en cuestión.

Ventajas del mantenimiento en una red de aire comprimido

En la práctica, la calidad del aire comprimido desempeña un papel primordial, tanto en algunas aplicaciones de producción propiamente dicha como por ejemplo el sector de alimentos, como en la parte del mantenimiento y conservación de los equipos y accesorios de la red de aire comprimido.

Impurezas

Las impurezas en forma de partículas de suciedad u óxido, residuos de aceite lubricante y humedad dan origen muchas veces a averías en las instalaciones neumáticas y a la destrucción de los elementos neumáticos. Para evitar las impurezas, se debe procurar un filtrado correcto del aire aspirado por el compresor, la utilización de compresores exentos de aceite es una buena alternativa. Limpiar los filtros reutilizables y sustituir los desechables tanto en la aspiración como en la impulsión, pre y post filtros. Los filtros sucios incrementan el consumo energético y el consumo de aire.

Conservación de las unidades de mantenimiento

Es necesario efectuar en intervalos regulares los trabajos siguientes de conservación:

Filtro del aire comprimido: debe revisarse periódicamente el nivel de agua condensada, que no debe sobrepasar nunca la altura marcada. De lo contrario, el agua podría ser arrastrada hasta la tubería por el aire comprimido. Para purgar el agua condensada hay que abrir el tornillo existente en la mirilla. Algunas disponen de dispositivos de purga automática, por lo que debe comprobarse su correcto funcionamiento.

- Regulador o válvula reguladora: siempre que esté precedida por un correcto sistema de filtrado, no necesita más mantenimiento que comprobar la ausencia de fugas.
- Lubricador: verificar el nivel de aceite y, si es necesario, añadir hasta el nivel marcado. Los filtros de plástico y los recipientes de los lubricadores no deben limpiarse con disolventes, dado que pueden dañarlos. Para los lubricadores, utilizar únicamente aceites minerales de la viscosidad y componentes adecuados.
- Depósitos de aire: permite absorber las pulsaciones inherentes al sistema de compresión reciprocante, a la vez que suministra una superficie grande de intercambio de calor que permite disminuir parcialmente la alta temperatura del aire luego de la compresión. También absorber sobre picos de consumo alto y de corta duración ocasionados por aplicaciones que requieren grandes cantidades de aire en lapsos cortos de tiempo; permitiendo de esta manera no tener un compresor sobredimensionado para satisfacer las demandas.
- Mantenimiento de depósitos de aire: requiere revisar que la válvula de seguridad se abra a una presión un 20 % mayor que la presión máxima del sistema y que tenga una capacidad de evacuación mayor a la de los compresores. Si no existe debe instalarse una válvula de inspección, un sistema de evacuación de condensado

automático, un bypass para mantenimiento y un manómetro confiable.

Las rutinas de mantenimiento se deben realizar con adecuada periodicidad, verificándose el estado de los elementos de seguridad realizándose inclusive ensayos no destructivos tales como ultrasonido y radiografías para verificar el óptimo estado. El mantenimiento que se realiza al tanque se limita a una limpieza interior en muy escasas ocasiones, además de la verificación constante de las purgas.

Mantenimiento de equipos de aire comprimido

La elección de las mangueras flexibles es la adecuada a la presión y temperatura del aire comprimido, así como, en su caso, ser compatibles con el aceite de lubricación utilizado. Cuando se utilicen mangueras flexibles en medios con riesgo de atmósferas explosivas o con riesgo de incendio, se debe emplear mangueras anti electricidad estática.

El grado de resistencia física de las mangueras flexibles debe ser el adecuado al uso que se destina se utilizarán mangueras de gran resistencia en el caso de conducciones semipermanentes, como puede ser el caso de canteras, construcción, mientras que las mangueras de tipo medio y ligero, se utilizan en maquinaria neumática fija. En el caso de pequeñas herramientas portátiles, deben ser ligeras y de gran flexibilidad. Las mangueras flexibles se les debe dar un trato adecuado evitando toda erosión, atrapamiento o disposición de materiales encima de ellas: Una vez utilizadas se deben de recoger y guardar adecuadamente. Antes de comenzar el trabajo se deben examinar detenidamente las mangueras flexibles, desechando aquellas cuyo estado no

garantice una absoluta seguridad, y no deben de emplearse cintas aisladoras para taponar escapes.

El acoplamiento de mangueras se efectúa mediante elementos de acción rápida, que deben estar diseñados de tal forma que cuando se desconecta el acoplamiento, automáticamente se interrumpa la salida de aire comprimido y se despresurice lentamente la parte desconectada.

En el caso que el diámetro de la manguera sea superior a 10 milímetros, su longitud superior a 10 metros, o esté sometida a una presión superior a los 90 PSI, el acoplamiento debe permitir la despresurización de la parte a desconectar, antes que la desconexión propiamente dicha pueda realizarse.

Para prevenir que los coletazos de las mangueras dañen al personal, en caso de desengancharse, romperse, se puede disponer de, fusibles de Aire Comprimido, los cuales cortan el suministro de aire al detectar una fuga o la ruptura de la manguera. Los racores de unión a las redes de aire comprimido, no son intercambiables con racores empleados para otros gases. Las tomas a la red de aire comprimido se disponen horizontalmente o hacia abajo: la conexión hacia arriba es causa de que se acumule suciedad y se recurra al soplado antes de efectuar la conexión, lo que puede ocasionar desprendimiento de partículas a gran velocidad. Cuando se empleen herramientas o equipos que viertan el aire una vez utilizado, directamente a la atmósfera, debe disponerse de filtros adecuados, que garanticen la calidad del aire expulsado.

Cuando se empleen herramientas que trabajen a una presión inferior a la de la línea de aire comprimido a la que están conectadas, se deben disponer reguladores de presión en las mismas, con su correspondiente manómetro. En el caso de que la sobrepresión en la herramienta pudiera resultar peligrosa, se

dispone de un dispositivo de fijación de regulador, cuya llave esté en posesión de persona responsable. Evitar en todo lo posible, el empleo de pistolas de soplado, y en el caso que sean imprescindibles, se deben utilizar las que incluyan boquillas de seguridad para reducir la velocidad de salida del aire comprimido, o bien emplear las que distribuyan el aire en forma de cortina.

Operación y mantenimiento de accesorios

El propósito de los accesorios es mejorar la calidad del aire comprimido entregado por el compresor para adaptar este a las condiciones específicas de cada operación, algunos accesorios también se utilizan para la regulación de caudal y presión, lubricación de los equipos a instalar en la red o simplemente para cambios de direcciones en la red y paso o no de fluido dependiendo de la aplicación. Tener aire comprimido de buena calidad es importante para asegurar una larga vida útil de los equipos neumáticos y unos óptimos resultados en los procesos que requieren dicho servicio. Las características más importantes a tener en cuenta son:

- La cantidad de aceite que contiene el aire
- La cantidad de agua presente en el mismo
- o El punto de rocío
- Cantidad de partículas extrañas contenidas en el aire
- Por qué tratar el aire comprimido

Los contaminantes en el aire comprimido afectan a todos los componentes del sistema de distribución del aire. El aire comprimido húmedo y sucio cuesta dinero porque:

Roba energía útil al sistema:

- Ocasiona líneas de aire corroídas y con fugas
- Disminuye la eficiencia y la potencia de las herramientas neumáticas.

Incrementar los costos de mantenimiento y reparación:

- Se elimina el lubricante de las herramientas neumáticas.
- Las partículas sólidas desbastan las superficies de desgaste.

Contribuir al rechazo de productos:

- Se afecta el color y/o adherencia de la pintura.
- Se promueve el deterioro de los productos alimenticios.

De cualquier forma, durante el proceso de compresión, la temperatura del aire se incrementa debido al calor de fricción, aumentando su habilidad de retener vapor de agua cuando el aire abandona el compresor y viaja a través del sistema, se enfría.

Una vez que la temperatura disminuye por debajo de la temperatura del punto de rocío a presión, se comienzan a formar gotas de agua. Es necesario

remover la humedad y los contaminantes del sistema de aire para bajar el punto de rocío y evitar los problemas de operación, los costos de mantenimiento y los gastos de reparación.

Plan de mantenimiento de compresores

A continuación, se presenta un plan de mantenimiento para los compresores, haciendo esto se logrará que el sistema dé servicio satisfactorio por largo tiempo. Sin embargo, para lograr que el equipo funcione bien sin causar dificultades, es necesario llevar a cabo un programa sistemático de servicio. Por consiguiente, se recomienda el siguiente programa de mantenimiento.

Tabla CIV. Control mantenimiento preventivo compresor Ingersoll Rand
50 HP

					M	ANT	EN	IMI	ENT	os	DE (CON	ИΡΕ	RESC	OR														
	COMPRESOR	R MARCA GAI	RDNER DENV	ER DE 50HP																									
	MODELO: EI	DE99L	SERIE: S	074771																									
	MES:			FECHAS:																									
	DESCRIPCIO	N DEL MANTE	NIMIENTO	FRECUENCIA	L	М	М	J	٧	L	М	М	J	٧	L	М	М	J	٧	L	М	M	J	٧	L	М	М	J	V
1	Chequeo po	r fugas de ace	eite	diario																									
2	chequeo del	l nivel de ace	ite	diario																									
3	revision de a	alineacion de	poleas	diario																									
4	revision de t	tension de faj	jas	diario																									
5	presiones de	e operación, a	arranque y pa	diario																									
6	chequeo de	presion y ten	nperatura	diario																									
7	mediciones	de presiones	internas	diario																									
8	revision de d	drenador		diario																									
9	limpieza de	filtro de aire		75 horas																									
10	limpieza de	panel electri	со	75 horas																									
11	limpieza ger	neral del equi	ipo	75 horas																									
12	limpieza del	radiador por	suciedad	125 horas																									
13	medicion de	amperajes y	voltajes	150 horas																									
14	cambio de fi	Itro de aire		1000 horas																									
15	cambio de fi	Itro de aceite	9	1000 horas																									
16	cambio de a	ceite del siste	ema	4000 horas																									
17	cambio del s	separador de	aceite	8000 horas																									
18	cheque de v	alcula de aliv	rio	anual																									
	MEDICION D	E HOROMETI	ROS															ОВ	SER	VA	CIO	NES	3						
	FECHA:	HOROM. INCIAL	HOROM. FINAL	INTERVALO																									
	F. JEFE DE PF	RODUCCIÓN_			_		_			F.	MA	NTE	NII	MIE	NTC):							_						
				Vo. Bo.																Vo	. Bo	٠.							

Tabla CV. Control mantenimiento preventivo compresor Kaeser AS 30 HP

					M	ANT	EN	MI	ENT	os	DE (CON	ЛPF	RESC	OR														Γ
	COMPRESOR	R MARCA	GARDNER	DENVER DE 3	OHF	•																							Г
	MODELO: E	BE99L	SERIE:	S074779																							П		Ī
	MES:			FECHAS:																								_	t
	DESCRIPCION D	DEL MANTE	NIMIENTO	FRECUENCIA	L	М	М	J	v	L	М	М	J	٧	L	М	М	J	٧	L	М	М	J	٧	L	М	М	J	١
1	Chequeo por fug	gas de aceit	e	diario																								_	Ť
2	chequeo del niv	el de aceite	!	diario																									Ī
3	revision de aline	eacion de po	oleas	diario																								_	Ť
4	revision de tens	ion de fajas	i	diario																									Ī
5	presiones de op	eración, arı	ranque y paro	diario																								_	Ī
6	chequeo de pres	sion y temp	eratura	diario																									Ī
7	mediciones de p	oresiones in	iternas	diario																									Γ
8	revision de dren	nador		diario																									Ī
9	limpieza de filtro	o de aire		75 horas																									Γ
	limpieza de pan			75 horas																									Ī
11	limpieza genera	l del equipo)	75 horas																									Ī
12	limpieza del rad	liador por su	uciedad	125 horas																									Ī
13	medicion de am	perajes y vo	oltajes	150 horas																									Ī
14	cambio de filtro	de aire		1000 horas																									Ī
15	cambio de filtro	de aceite		1000 horas																									Ī
16	cambio de aceit	e del sisten	na	4000 horas																									Ī
17	cambio del sepa	arador de ac	ceite	8000 horas																									Ť
	cheque de valcu			anual																									Ī
_	MEDICIONIS	FUODO	AETROS							_	_			_		_		0.0	CEE		CLO		Ļ	_	_	_	Ш		Ļ
_	MEDICION D	T	1															OB	SEF	(VA	CIO	INE:	<u> </u>				_		H
	FECHA:	HOR. INCIAL	HOROM . FINAL	INTERVALO						-	+-			-	-	-	-				-		H	+-	-	-	Н		ł
_																												_	t
																													t
												Н	Т	Т		Т		Т	Н	Т	Т	Т	Т		Т	T	\Box		t
		1	†																				T				П	_	t
			1											Т		Т					Т		Т		Т	Т	П		t
																											П	_	T
	F. JEFE DE PF	RODUCCI	ÓN									F. I	MAI	NTE	NIN	ΛIEN	OTV	:											_
				Vo. Bo.																			Vc	. Bc).				Γ

Tabla CVI. Control mantenimiento preventivo compresor Kaeser ASD 25

			M	ANT	ENII	MIE	NTC	OS D	E CC	OME	PRES	SOR															
COMPRESOR KAESER A MODELO: EBE99L	SD 25 SERIE:	S074779																									
MES:		FECHAS:																									
DESCRIPCION DEL MANTEN	MIENTO	FRECUENCIA	L	М	М	J	٧	L	М	М	J	V	L	М	М	J	٧	L	M	M	J	V	L	М	M	J	٧
1 Chequeo por fugas de aceite		diario	L					L			┖						L					L				Ш	L
2 chequeo del nivel de aceite		diario	L	L				L			┖											L				Ш	L
3 revision de alineacion de poleas		diario																									L
4 revision de tension de fajas		diario																									L
5 presiones de operación, arranqu	e y paro	diario																									L
6 chequeo de presion y temperatu	ıra	diario																									
7 mediciones de presiones interna	s	diario																									
8 revision de drenador		diario																									
9 limpieza de filtro de aire		75 horas																									
10 limpieza de panel electrico		75 horas																									
11 limpieza general del equipo		75 horas																									
12 limpieza del radiador por sucied	ad	125 horas																									
13 medicion de amperajes y voltaje	s	150 horas																									L
14 cambio de filtro de aire		1000 horas																									L
15 cambio de filtro de aceite		1000 horas																									L
16 cambio de aceite del sistema		4000 horas																									
17 cambio del separador de aceite		8000 horas																									
18 cheque de valcula de alivio		anual																									L
MEDICION DE HOROMI	TDOS	1	ī				_									OB	CED	VAC	ION	EC						_	_
FECHA: HOR INCIAL	HOROM, FINAL	INTERVALO	t				\vdash									OB	JLN	VAC	JON	LJ						—	_
HOR. INCIAL	HOROM, FINAL	INTERVALO	ł				H																				_
			1																								_
			1																								
			1																								
			1																								
			ļ																								_
F. JEFE DE PRODUCCIÓI														IEN													

Tabla CVII. Control mantenimiento preventivo secador Kaeser TD 61

		MAN	NTENIMIENTO) DE	LS	ECA	DOF	R HA	٩Nĸ	IN	SON	1														
SECADOR MARC	A HANKIN	ISON		H	H	Н	+	+	+	+	+	+	+	+	H	H	H	H	H	H	H					
MODELO: HPRP	400-460									T																
SERIE: H4000A46	603609908	018								T		T		T	T	Т	Т	Т	Г	Г						
400 SCFM A 100	PSI (200 N	IAX) Y 100 F																								
MES:			FECHAS:																							
DESCRIPCION DI			frecuencia	L	М	М	۱ ۱	٧L		ηļ	ΜJ	٧	L	N	М	IJ	٧	L	М	M	J	٧	L	М	М	J
1 chequear drena			diario			Ш		_		4	_	4	_	1		1	1							Ш		
2 presionar boton			semanal							1	_					1	1									
3 sopleteo del coi	ndensado	r	semanal																							
4 limpieza total d	el conden	sador	semanal																							
5 chequear mecar	nismo del	drenador	anual																							
6 servicio al separ	ador (cam	bio de filtro si es necesario)	anual																							
7 chequeo o servi	cio electri	co motores ventiladores	anual			Ш		4	4		4	4	1	1	_	L	L	Ļ						Ш	Ц	
F. J	EFE DE PR	ODUCCIÓN				Н	-	+	+	+	+	+	+	╁	+	01	BSE	RV	ACI	ON	ES		H	Н	\dashv	_
			Vo. Bo.																							
F. 1	MANTENII	MIENTO:				Н		+		+	+	+		+		-	-		H	H	H		_	Н	\dashv	-
			Vo. Bo.	Π																						
				-	H		_	+	+	-				-		-	-							Н		
				+				+	+	+	+	+	+	+	+	+	+	+	+	+	-			Н	\dashv	_

CONCLUSIONES

- 1. Para realizar el rediseño se recolectaron datos, como el uso del aire comprimido en cada área tomando tiempos para luego obtener un promedio de uso, los manuales de cada máquina fueron necesarios para determinar el consumo de CFM de cada una. En el análisis se determinó la deficiencia de la red actual mediante cálculos matemáticos.
- 2. Al proponer un diámetro adecuado en la red de tuberías, tomando en cuenta las pérdidas de presión, se logró una presión ideal en cada una de las áreas de trabajo. El diseño de una red mixta se mantiene una presión constante y por lo tanto el sistema es eficiente.
- 3. El estudio de ahorro energético realizado por fugas y mal uso del aire comprimido al analizar los resultados obtenidos se comprobó que se está desperdiciando una gran cantidad de aire comprimido y esto representa una considerable cantidad de dinero por costos de generación. Esta pérdida económica se puede convertir en inversión al rediseñar la red propuesta.
- 4. En la red de aire comprimido, la correcta operación de los equipos neumáticos y del compresor, recae en el personal de mantenimiento, por lo que una buena planificación ayudará a que los equipos no produzcan paros inesperados y mantengan su vida útil establecida por el fabricante.

RECOMENDACIONES

- 1. Instalar purgadores a lo largo del sistema de tubería para evitar contaminación del aire y corrosión de la tubería.
- Implementar capacitaciones al personal de mantenimiento y operarios, sobre el uso y cuidado del sistema neumático para evitar costos de generación por mal uso del aire comprimido.
- Cumplir con el programa de mantenimiento preventivo para evitar la oxidación dentro de la red de tuberías, por lo que el personal deberá purgar diariamente el condensado.
- 4. Mantener un control constante en las tuberías de servicio y mangueras, ya que son las áreas más propensas de que aparezcan fugas de aire comprimido, de ser así reportar inmediatamente al jefe de mantenimiento para eliminar la fuga.
- 5. Seguir el plan de mantenimiento de las unidades compresoras, para mantener una buena eficiencia en el sistema de aire comprimido.

BIBLIOGRAFÍA

- Bandag de México s.a. de C.V. Manual de instalación de una franquicia Bandag. México: Departamento de ingeniería de servicio, 2017, 26 p.
- BARRIENTOS MEJIA, Estuardo Adolfo. Optimización de la red de aire comprimido en el área de servicio rápido de ingenio Pantaleón.
 Trabajo de graduación de Ing. Mecánica. Facultad de Ingeniería, Universidad de San Carlos de Guatemala, 2017. 76 p.
- 3. CARNICER ROYO, Enrique. Aire comprimido teoría y cálculo de las instalaciones. Barcelona, España: Gustavo Gili S.A., 1977. 233 p.
- CUXIL GARCÍA, Nancy Paola. Mantenimiento y factores de seguridad industrial en redes de aire comprimido. Trabajo de graduación de Ing. Mecánica. Universidad de San Carlos de Guatemala, Facultad de Ingeniería, 2009. 149 p.
- GONZÁLEZ SANDOVAL, Juan Pablo. Eficiencia energética a través de la implementación de iluminación con tecnología led en una entidad financiera. Trabajo de graduación de Ing. Mecánica Industrial. Facultad de Ingeniería, Universidad de San Carlos de Guatemala, 2014. 96 p.

- Kaeser compresores. Catalogo y guía de instalaciones de sistemas de aire comprimido. [En línea]. https://gt.kaeser.com/recursos-de-aire comprimido/descargas/catalogos/>. [Consulta: 29 de junio de 2021].
- 7. SOC BOJ, Gerson Mauricio. Rediseño del sistema de distribución de aire comprimido en empresa de calzado euro calzado, S.A. Trabajo de graduación de Ing. Mecánica. Facultad de Ingeniería, Universidad de San Carlos de Guatemala, 2019. 116 p.
- 8. VIFRIO. *Bienvenido a VIFRIO*. [En línea]. http://www.VIFRIO.com/>. [Consulta: 20 de agosto de 2021].
- 9. VIFRIO. *Organización Llantas VIFRIO*. [En línea]. http://www.VIFRIO.com/page.php?st=VIFRIO&ref=15. [Consulta: 20 de agosto de 2021].

APÉNDICES

Apéndice 1. Cálculo para tiempo de recuperación de inversión en sistemas de iluminación Led

Cálculo para Centro de Servicio Petapa:

Tiempo de recuperación inversión:
$$\frac{Q\ 10\ 960,59}{Q/\text{mes}\ 367,0368} = 29,86\ meses$$

• Cálculo para Centro de Servicio Aguilar Batres:

Tiempo de recuperación inversión:
$$\frac{Q~17~871,51}{939,744~0/mes} = 19,01~meses$$

• Cálculo para Centro de Servicio Américas:

Tiempo de recuperación inversión:
$$\frac{Q~17~376,67}{536,2344~0/\text{mes}} = 32,40~\text{meses}$$

Cálculo para Centro de Servicio San Cristóbal:

Tiempo de recuperación inversión:
$$\frac{Q \ 3 \ 622,12}{199,4304 \ Q/mes} = 18,16 \ meses$$

Apéndice 2. Cálculo vida útil de sistema de iluminación

Calcular la vida útil del sistema Led en Centro de Servicio Petapa:

$$Vida \, \acute{u}til = \frac{24\,750\,Horas}{6\,horas*24\,d\acute{a}s\frac{laborales}{mes}*12\frac{meses}{a\~{n}o}}$$

$$Vida \, \acute{u}til = 14,32\,A\~{n}os$$

Calcular la vida útil del sistema Led en Centro de Servicio Aguilar Batres:

$$Vida \, \acute{u}til = \frac{32\ 222\ Horas}{8\ horas * 24\ d\acute{a}s \frac{laborales}{mes} * 12 \frac{meses}{a\~{n}o}}$$
$$Vida \, \acute{u}til = 13,98\ A\~{n}os$$

Calcular la vida útil del sistema Led en Centro de Servicio Américas:

$$Vida \ \text{\'util} = \frac{26\ 444\ Horas}{7\ horas * 24\ d\'{a} s \frac{laborales}{mes} * 12 \frac{meses}{a\~{n}o}}$$
$$Vida \ \text{\'util} = 13,11\ A\~{n}os$$

• Calcular la vida útil del sistema Led en Centro de Servicio San Cristóbal:

$$Vida \, \acute{u}til = \frac{21\,600\,Horas}{6\,horas*24\,d\acute{a}s\frac{laborales}{mes}*12\frac{meses}{a\~{n}o}}$$

$$Vida \, \acute{u}til = 12,50\,A\~{n}os$$

Apéndice 3. Ganancias obtenidas

Ganancias obtenidas en CDS Petapa

Ganancia neta = Período de utilidad * utilidad anual
Ganancia neta = 11,88 Años *
$$367,0368 \frac{Q}{mes} * 12 \frac{meses}{año}$$

Ganancia neta = Q 52 324,76

Ganancias obtenidas en CDS Aguilar Batres

Ganancia neta = Período de utilidad * utilidad anual
Ganancia neta = 11,94 * 939,7440
$$\frac{Q}{mes}$$
 * $12\frac{meses}{año}$
Ganancia neta = Q 134 646,52

Ganancias obtenidas en CDS Américas

Ganancia neta = Período de utilidad
$$*$$
 utilidad anual
Ganancia neta = 9,64 $*$ 536,2344 $\frac{Q}{mes}$ $*$ 12 $\frac{meses}{año}$
Ganancia neta = Q 62 031,59

Ganancias obtenidas en CDS San Cristobal

Ganancia neta = Período de utilidad
$$*$$
 utilidad anual
Ganancia neta = 10,64 $*$ 199,4304 $\frac{Q}{mes}$ $*$ 12 $\frac{meses}{año}$
Ganancia neta = Q 25 463,27

Apéndice 4. Cálculo diámetro de tuberías en la red de aire comprimido

Figura a. Tubería secundaria diámetro de 2" área de inspección inicial

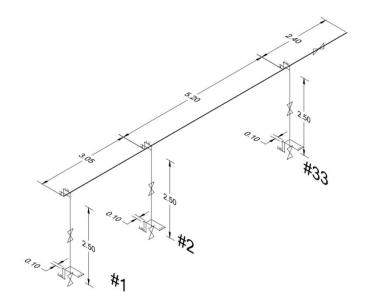


Tabla 1. Tubería secundaria inspección inicial con 2"

Accesorios	Cantidad	Le (pies)	Ltotal (pies)
Tee	3	2,07	6,21
Reductor	1	0,33	0,33
Válvula de paso	1	28,7	28,7
		TOTAL	35,24

$$L Total = 35,24 pies + 34,9320 pies$$

 $L Total = 70,17 pies$

Pérdida de presión

Q = 26,38 CFM

Factor F = 1,5

Continuación del apéndice 4.

$$P\'{e}rdida = \frac{1,5 * 70,17}{9,6530 * 1000} = 0,010$$

%
$$P\'erdida = \frac{0.0109 * 100}{127.2} = 0.0085 \%$$

Tabla 2. Ramificación para maquinaria #1 y #2 con un diámetro de ¾"

Accesorios	Cantidad	Le (pies)	L total (pies)
Reductor	3	0,132	0,396
Codo	3	2,06	6,18
Tee	2	0,82	1,64
Válavula	2	11,4	22,8
		Total	31,0160

$$L Total = 9,6104 pies + 31,0160 pies$$

$$L Total = 40,6264 pies$$

Pérdida de presión

Q = 11,3605 CFM

Factor F = 67,9139

$$P\'{e}rdida = \frac{67,9239 * 28,9984}{9.6530 * 1000} = 0,2040$$

%
$$P\'erdida = \frac{0.2040 * 100}{127.2} = 0.1603 \%$$

Continuación del apéndice 4.

Tabla 3. Ramificación para maquinaria #33 Analizadora Insigth con diámetro de tubería ½"

Accesorios	Cantidad	Le (pies)	L total (pies)
Reductor	2	0,066	0,1320
Codo	3	1,55	4,65
Tee	1	0,62	0,62
Válavula	2	6,65	13,30
		Total	18,7020

$$L Total = 9,6104 pies + 18,7020 pies$$

 $L Total = 28,3120$

Pérdida de presión

Q = 3,6669 CFM

Factor F = 12,7

$$P\'{e}rdida = \frac{12,7 * 28,3124}{9,6530 * 1000} = 0,0372$$

$$\% P\'{e}rdida = \frac{0,0372 * 100}{127,2} = 0,0292 \%$$

Continuación del apéndice 4.

Figura b. **Área de raspado**

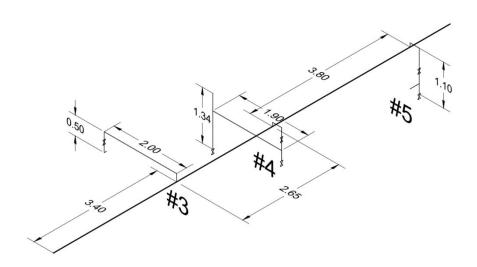


Tabla 4. Raspadora agrícola # 3 con diámetro de tubería de ½"

Accesorios	Cantidad	Le (pies)	L total (pies)
Reductor	2	0,066	0,132
Codo	3	1,55	4,65
Válvula	1	6,65	6,65
		Total	11,4320

$$L Total = 8,5280 \ pies + 11,4320 \ pies$$

$$L Total = 19,96 pies$$

Pérdida de presión

Q = 2,1250CFM

Factor F = 12,7

$$P\'{e}rdida = \frac{12,7 * 19,96}{9.6530 * 1000} = 0,0262$$

%
$$P\'erdida = \frac{0.0262 * 100}{127.2} = 0.0205 \%$$

Tabla 5. Raspadora automática # 4 con diámetro de tubería de ¾"

Accesorios	Cantidad	Le (pies)	L total (pies)
Codo	4	2,06	8,24
Tee	2	0,82	1,64
Válvula paso	2	11,40	22,80
Reductor	3	0,132	0,396
		Total	33,076

$$L Total = 20,9592 pies + 33,0760 pies$$

$$L Total = 54,0352 pies$$

Pérdida de presión

Q = 11,925

Factor F = 11,573

$$P\'{e}rdida = \frac{11,573 * 54,0352}{9.6530 * 1000} = 0,0647$$

%
$$P\'erdida = \frac{0.0647 * 100}{127.2} = 0.0508 \%$$

Tabla 6. Raspador manual # 5 con diámetro de tubería de ¾"

Accesorios	Cantidad	Le (pies)	L total (pies)
Codo	1	2,06	2,06
Tee	2	0,82	1,64
Válvula paso	2	11,40	22,80
Reductor	3	0,132	0,396
		Total	26,896

$$L Total = 5,5760 pies + 26,896 pies$$

$$L Total = 32,472 pies$$

Pérdida de presión

Q = 4,1671

Factor F = 1,2

$$P\'{e}rdida = \frac{1,2 * 32,472}{9,6530 * 1000} = 0,0040$$

%
$$P\'erdida = \frac{0,0040 * 100}{127,2} = 0,0032 \%$$

Figura c. Área de cardeo y reparaciones

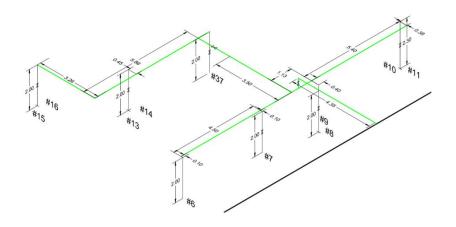


Tabla 7. Tubería secundaria con 2" pulgadas de diámetro

Accesorio	Cantidad	Le	Le total
Codo	5	5,17	25,25
Tee	6	2,07	12,42
Válvula de paso	2	22,4	44,80
Reductor	1	0,231	0,2310
		Total	83,3010

$$L Total = 96,4320 \ pies + 83,3010 \ pies$$

$$L Total = 179,7330 pies$$

Pérdida de presión

Q = 110,5649 CFM

Factor F = 7,5636

$$P\'{e}rdida = \frac{7,5636 * 179,7330}{9,6530 * 1000} = 0,1408$$
% $P\'{e}rdida = \frac{0,1408 * 100}{127,2} = 0,1106$ %

Tabla 8. Ramificaciones para maquina # 6 y # 7

Accesorio	Cantidad	Le	Le total
Reductor	1	0,066	0,066
Codo	2	1,55	3,1
Válvula paso	1	6,65	6,65
		Total	9,8160

$$L Total = 6,8160 pies + 9,8160 pies$$

$$L Total = 16,6384 pies$$

Pérdida de presión

Q = 10,9964 CFM

Factor F = 63,3144

$$P\'{e}rdida = \frac{63,3144 * 16,6384}{9,6530 * 1000} = 0,1091$$

%
$$P\'erdida = \frac{0,1091 * 100}{127,2} = 0,0857 \%$$

Tabla 9. Ramificaciones para maquina # 8, # 9 y # 10, # 11 con diámetro de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,132	0,396
Codo	1	2,06	2,06
Válvula paso	1	11,40	11,40
Tee	1	0,82	0,82
		Total	14,6760

$$L Total = 8,8560 pies + 14,6760 pies$$

$$L Total = 23,532 pies$$

Pérdida de presión

Q = 21,9928 CFM

Factor F = 38,3712

$$P\'{e}rdida = \frac{38,3712 * 23,5320}{9,6530 * 1000} = 0,0935$$

%
$$P\'{e}rdida = \frac{0.0935 * 100}{127.2} = 0.0735 \%$$

Área de reparaciones

Tabla 10. Ramificaciones para maquina # 37 para un diámetro de ½"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,066	0,1980
Codo	1	1,55	1,55
Válvula paso	1	6,65	6,65
Tee	1	0,62	0,62
		Total	9,0180

$$L Total = 8,6592 pies + 9,0180 pies$$

$$L Total = 17,6772 pies$$

Pérdida de presión

Q = 8,9173 CFM

Factor F = 42,47

$$P\'{e}rdida = \frac{42,47 * 17,6772}{9,6530 * 1000} = 0,0777$$

%
$$P\'erdida = \frac{0.0777 * 100}{127.2} = 0.0610 \%$$

Tabla 11. Ramificaciones para maquina # 13 y #14 para un diámetro de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,1320	0,3960
Codo	1	2,06	2,06
Válvula paso	1	11,40	11,40
Tee	1	0,82	0,82
		Total	14,6760

$$L Total = 8,0360 pies + 14,6760 pies$$

$$L Total = 22,7120 pies$$

Pérdida de presión

Q = 17,8346 CFM

Factor F = 24,8565

$$P\'{e}rdida = \frac{24,8565 * 22,7120}{9,6530 * 1000} = 0,0584$$

%
$$P\'{e}rdida = \frac{0.0584 * 100}{127.2} = 0.0459 \%$$

Tabla 12. Ramificaciones para maquina # 15 y #16 para un diámetro de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,1320	0,3960
Codo	1	2,06	2,06
Válvula paso	1	11,40	11,40
Tee	1	0,82	0,82
		Total	14,6760

$$L Total = 17,2528 pies + 14,6760 pies$$

$$L Total = 31,9288 pies$$

Pérdida de presión

Q = 17,8346 CFM

Factor F = 24,8565

$$P\'{e}rdida = \frac{24,8565 * 31,9288}{9,6530 * 1000} = 0,0822$$

%
$$P\'erdida = \frac{0.0822 * 100}{127.2} = 0.0646 \%$$

Figura d. Ramificaciones para maquina #12 cementadora

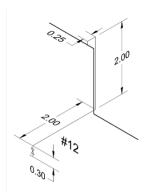


Tabla 13. Ramificaciones para maquina # 12 para un diámetro de 1"

Accesorio	Cantidad	Le	Le total
Reductor	1	0,1650	0,1650
Codo	5	2,62	13,1
Válvula paso	1	14,6	14,6
		Total	27,8650

$$L Total = 15,252 pies + 27,8650 pies$$

 $L Total = 43,1170 pies$

Pérdida de presión

Q = 12,8333 CFM

Factor F = 3,7299

$$P\'{e}rdida = \frac{3,7299 * 43,1170}{9,6530 * 1000} = 0,0166$$

$$\% P\'{e}rdida = \frac{0,0166 * 100}{127,2} = 0,0130 \%$$

Figura e. Área de rellenado

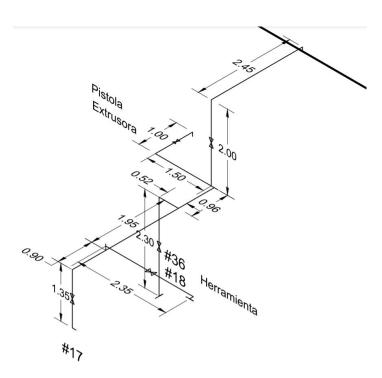


Tabla 14. Línea secundaria para área de rellenado con diámetro de 1 1/2"

Accesorio	Cantidad	Le	Le total
Codo	3	4,02	12,06
Tee	4	1,61	6,44
Reductor	1	0,231	0,231
Válvula de paso	1	22,40	22,040
		Total	41,1310

$$L Total = 27,6832 pies + 41,1310 pies$$

$$L Total = 68,8142 pies$$

Pérdida de presión

Q = 61,6958 CFM

Factor F = 8,4917

Factor de tubería (R) = 9,6530

$$P\'{e}rdida = \frac{8,4917 * 68,8142}{9,6530 * 1000} = 0,0605$$

$$\% P\'{e}rdida = \frac{0,0605 * 100}{127.2} = 0,0475 \%$$

Tabla 15. Ramificaciones para pistola extrusora con diámetro ½"

Accesorio	Cantidad	Le	Le total
Reductor	2	0,066	0,132
Codo	2	1,55	3,10
Válvula paso	1	6,65	6,65
		Total	9,8820

$$L Total = 8,20 pies + 9,8820 pies$$

$$L Total = 18,0820 pies$$

Pérdida de presión

Q = 2,6835 CFM

Factor F = 12,70

$$P\'{e}rdida = \frac{12,70 * 18,0820}{9,6530 * 1000} = 0,0237$$

%
$$P\'erdida = \frac{0.0237 * 100}{127.2} = 0.0186 \%$$

Tabla 16. Ramificaciones para herramientas área de rellenado con diámetro de tubería de ½"

Accesorio	Cantidad	Le	Le total
Tee	1	0,62	0,62
Reductor	2	0,066	0,1320
Válvula paso	1	6,65	6,65
Codo	1	1,55	1,55
		Total	8,9520

$$L Total = 7,9704 pies + 8,9520 pies$$

$$L Total = 16,9224 pies$$

Pérdida de presión

Q = 8,2143 CFM

Factor F = 37,1286

$$P\'{e}rdida = \frac{37,1286 * 16,9224}{9,6530 * 1000} = 0,0650$$

%
$$P\'erdida = \frac{0.0650 * 100}{127.2} = 0.0511 \%$$

Tabla 17. Ramificaciones para maquina #17 Extrusora

Accesorio	Cantidad	Le	Le total
Reductor	1	0,1320	0,1320
Válvula ángulo	1	11,40	11,40
Codo	1	2,06	2,06
		Total	13,5920

$$L Total = 4,4280 pies + 13,5920 pies$$

$$L Total = 18,02 pies$$

Pérdida de presión

Q = 37,0480 CFM

Factor F = 109,0935

$$P\'{e}rdida = \frac{109,0935 * 18,02}{9,6530 * 1000} = 0,2036$$

%
$$P\'{e}rdida = \frac{0.2036 * 100}{127.2} = 0.1600 \%$$

Figura f. Área de corte

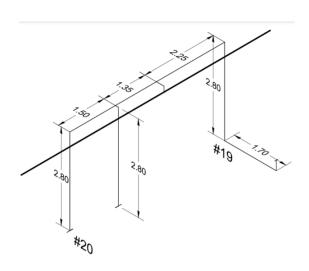


Tabla 18. Área de corte de banda para un diámetro de 1"

Accesorio	Cantidad	Le	Le total
Reductor	6	0,1650	0,99
Tee	4	1,05	4,20
Codo	7	2,62	18,34
Válvula paso	4	14,60	58,40
		TOTAL	81,93

 $L\,Total = 52{,}5456\,pies + 81{,}93\,pies$

L Total = 134,4756 pies

Pérdida de presión

Q = 21,4313 CFM

Factor F = 10,2601

$$P\acute{e}rdida = \frac{10,2601 * 134,4756}{9,6530 * 1000} = 0,1429$$
% $P\acute{e}rdida = \frac{0,1429 * 100}{127,2} = 0,1123$

Figura g. Área de embandado

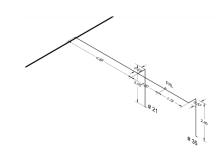


Tabla 19. Tubería secundaria área de embandado con diámetro de 1 1/2"

Accesorio	Cantidad	Le	Le total
Tee	2	1,61	3,22
Codo	2	4,02	8,04
Reductor	1	0,231	0,2310
Válvula paso	1	22,40	22,40
		TOTAL	33,8910

$$L Total = 27,9128 pies + 33,8910 pies$$

 $L Total = 61,8038 pies$

Pérdida de presión

Q = 38,7012 CFM

Factor F = 3,3921

$$P\'{e}rdida = \frac{3,3921 * 61,8038}{9,6530 * 1000} = 0,0217$$

%
$$P\'erdida = \frac{0.0217 * 100}{127.2} = 0.0170 \%$$

Tabla 20. Tubería de servicio para maquinaria # 21 área de embandado con diámetro de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	2	0,132	0,2640
Codo	2	2,06	4,12
Válvula de paso	1	11,40	11,40
		TOTAL	15,7840

$$L Total = 9,6104 pies + 15,7840 pies$$

$$L Total = 25,3944 pies$$

Pérdida de presión

Q = 17,1348 CFM

Factor F = 23,0650

$$P\'{e}rdida = \frac{23,0650 * 25,3944}{9.6530 * 1000} = 0,0606$$

%
$$P\'erdida = \frac{0,0606 * 100}{127,2} = 0,0476 \%$$

Tabla 21. Tubería de servicio para maquinaria # 35 área de embandado con diámetro de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	2	0,132	0,2640
Codo	2	2,06	4,12
Válvula de paso	1	11,40	11,40
		TOTAL	15,7840

$$L Total = 9,6104 pies + 15,7840 pies$$

$$L Total = 25,3944 pies$$

Pérdida de presión

Q = 18,746 CFM

Factor F = 27,1897

$$P\'{e}rdida = \frac{24,1897 * 18,746}{9,6530 * 1000} = 0,0715$$
% $P\'{e}rdida = \frac{0,0606 * 100}{127,2} = 0,0562$ %

Lifter Pintadora 3.20

Figura h. Área de cobertores

Tabla 22. Tubería secundaria área de cobertores con diámetro de ¾"

Accesorio	Cantidad	Le	Le total
Codo	1	2,06	2,06
Tee	5	0,82	4,1
Reductor	1	0,132	0,132
Válvula de paso	2	11,40	22,80
		Total	29,09

$$L Total = 34,6040 \ pies + 29,0920 \ pies$$

$$LTotal = 63,6960 pies$$

Pérdida de presión

Q = 14,3468 CFM

Factor F = 16,2674

Factor de tubería = 9,6530

$$P\'{e}rdida = \frac{16,2674 * 63,6960}{9,6530 * 1000} = 0,1073$$
 % $P\'{e}rdida = \frac{0,1073 * 100}{127,2} = 0,0843$ %

Tabla 23. **Tubería de servicio para pintadora de llantas con diámetro de**

Accesorio	Cantidad	Le	Le total
Codo	1	1,55	1,55
Válvula de paso	1	6,65	6,65
Reductor	1	0,0660	0,0660
		TOTAL	8,2660

$$L Total = 4,4280 \ pies + 8,2660 \ pies$$

$$L Total = 12,6940 pies$$

Pérdida de presión

Q = 2,2917 CFM

Factor F = 12,7

$$P\'{e}rdida = \frac{12.7 * 12.6940}{9.6530 * 1000} = 0.0167$$
210

%
$$P\'{e}rdida = \frac{0.0167 * 100}{127.2} = 0.0131 \%$$

Tabla 24. Tubería de servicio para lifter monorriel con diámetro de ½"

Accesorio	Cantidad	Le	Le total
Reductor	2	0,066	0,1320
Codo	1	1,55	1,55
Válvula de paso	1	6,65	6,65
		TOTAL	8,332

$$L Total = 4,7560 pies + 8,3320 pies$$

$$L Total = 13,0880 pies$$

Pérdida de presión

Q = 1,4102 CFM

Factor F = 12,7

$$P\'erdida = \frac{12.7 * 13.0880}{9.6530 * 1000} = 0.0172$$

%
$$P\'erdida = \frac{0.0172 * 100}{127.2} = 0.0135 \%$$

Tabla 25. **Tubería de servicio para abridor de cobertores con diámetro** de ½"

Accesorio	Cantidad	Le	Le total
Reductor	2	0,066	0,1320
Codo	1	1,55	1,55
Válvula de paso	1	6,65	6,65
		TOTAL	8,332

$$L Total = 2,1648 pies + 8,3320 pies$$

$$L Total = 10,4968 pies$$

Pérdida de presión

Q = 0.2602 CFM

Factor F = 12,7

$$P\'{e}rdida = \frac{12,7 * 10,4968}{9,6530 * 1000} = 0,0138$$

%
$$P\'{e}rdida = \frac{0.0138 * 100}{127.2} = 0.0108 \%$$

Tabla 26. Tubería de servicio para maquinaria #19, #23 y #24 con diámetro de tubería de ½"

Accesorio	Cantidad	Le	Le total
Reductor	4	0,066	0,2640
Tee	2	0,62	1,24
Válvula de paso	1	6,65	6,65
Codo	1	1,55	1,55
		TOTAL	9,7040

L Total = 14,1040 pies + 9,7040 pies

LTotal = 23,8080 pies

Pérdida de presión

Q = 1,1499 CFM

Factor F = 12,7

$$P\'{e}rdida = \frac{12.7 * 23,8080}{9,6530 * 1000} = 0,0313$$

%
$$P\'erdida = \frac{0.0313 * 100}{127.2} = 0.0246 \%$$

Tabla 27. Tubería de servicio para herramientas y probador de cobertores #25 con diámetro de tubería de ½"

Accesorio	Cantidad	Le	Le total
Tee	2	0,62	1,24
Codo	1	1,55	1,55
Reductor	6	0,066	0,3960
		TOTAL	3,1860

$$L Total = 9,6760 pies + 3,1860 pies$$

$$L Total = 12,8620 pies$$

Pérdida de presión

Q = 9,2348 CFM

Factor F = 44,8844

$$P\'{e}rdida = \frac{44,8844 * 12,8620}{9,6530 * 1000} = 0,0598$$

%
$$P\'{e}rdida = \frac{0.0598 * 100}{127.2} = 0.0470 \%$$

Figura i. Área de cámaras de vulcanización

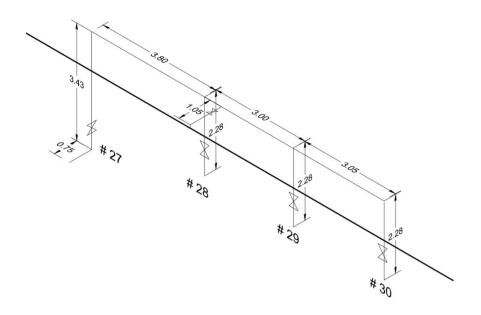


Tabla 28. Tubería secundaria área de cámaras de vulcanización con diámetro de 3"

Accesorio	Cantidad	Le	Le total
Reductor	1	0,99	0,99
Codo	3	7,5	22,5
Tee	3	5	15
Válvula de paso	1	37,5	37,5
		Total	75,99

L Total = 36,08 pies + 75,99 pies

L Total = 112,07 pies

Pérdida de presión

Q = 200 CFM

Factor F = 2.9

Factor de tubería = 9,6530

$$P\'{e}rdida = \frac{2,90 * 112,07}{9,6530 * 1000} = 0,0336$$

%
$$P\'{e}rdida = \frac{0.0336 * 100}{127.2} = 0.0264 \%$$

Tabla 29. Tubería de servicio para cámara de vulcanización # 27

Accesorio	Cantidad	Le	Le total
Codo	1	2,62	2,62
Reductor	2	0,165	0,33
Válvula de paso	1	14,6	14,6
		TOTAL	17,55

$$L Total = 13,7104 pies + 17,55 pies$$

$$L Total = 31,2604 pies$$

Pérdida de presión

Q = 50 CFM

Factor F = 54,4

$$P\'{e}rdida = \frac{54,4 * 31,2604}{9,6530 * 1000} = 0,1761$$

%
$$P\'erdida = \frac{0.1761 * 100}{127.2} = 0.1384 \%$$

Tabla 30. **Tubería de servicio para cámara de vulcanización # 28, # 29 y** # **30**

Accesorio	Cantidad	Le	Le total
Reductor	2	0,1650	0,33
Válvula de paso	1	14,6	14,6
		TOTAL	14,93

$$L Total = 7,4784 pies + 14,93 pies$$

$$L Total = 22,4084 pies$$

Pérdida de presión

Q = 50 CFM

Factor F = 54,4

$$P\'{e}rdida = \frac{54,4 * 22,4084}{9,6530 * 1000} = 0,1262$$

%
$$P\'erdida = \frac{0.1262 * 100}{127.2} = 0.0992 \%$$

Figura j. Tubería secundaria inspección final

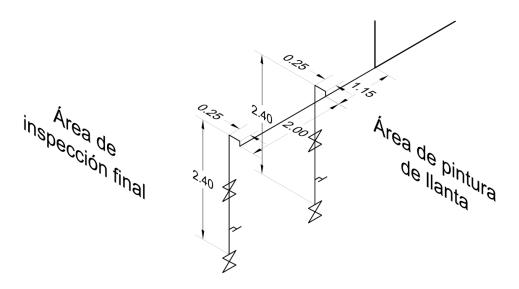


Tabla 31. Tubería secundaria inspección final

Accesorios	Cantidad	Le (pies)	Ltotal (pies)
Reductor	1	0,33	0,33
Tee	1	2,07	2,07
Válvula de paso	1	28,7	28,7
		TOTAL	31,10

$$L Total = 6,56 pies + 31,10 pies$$

$$L Total = 37,66 pies$$

Pérdida de presión

Q = 2,2471 CFM

Factor F = 1,5

$$P\'{e}rdida = \frac{1,5 * 37,66}{9.6530 * 1000} = 0,0058$$

%
$$P\'erdida = \frac{0,0058 * 100}{127,2} = 0,0045 \%$$

Tabla 32. **Tubería de servicio para maquinaria # 31 y # 32 con diámetro** de ³/₄"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,132	0,396
Codo	3	2,06	6,18
Tee	2	0,82	1,64
Válvula	2	11,40	22,80
		Total	31,01

$$L Total = 9,6104 pies + 31,01 pies$$

$$L Total = 40,6264 pies$$

Pérdida de presión

Q = 21,2470 CFM

Factor F = 35,3880

$$P\'{e}rdida = \frac{35,3880 * 40,6264}{9,6530 * 1000} = 0,1489$$

%
$$P\'erdida = \frac{0.0.1489 * 100}{127.2} = 0.1170 \%$$

Figura k. **Área de OTR**

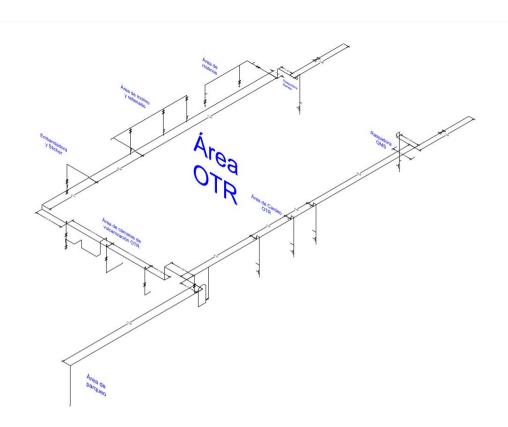


Tabla 33. Tubería secundaria área de OTR con diámetro de 2"

Accesorio	Cantidad	Le	Le total
Tee	18	2,07	37,26
Válvula de paso	10	28,7	287
Codo	8	5,17	41,36
Reductor	2	0,33	0,66
		Total	366,28

L Total = 344 pies + 366,28 pies

$$L Total = 710,28 pies$$

Pérdida de presión

Q = 75 CFM

Factor F = 3,35

$$P\'{e}rdida = \frac{3,35 * 710,28}{9,6530 * 1000} = 0,2464$$

%
$$P\'erdida = \frac{0.2464 * 100}{127.2} = 0.1937 \%$$

Figura I. Área de raspado

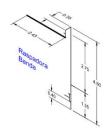


Tabla 34. Tubería de servicio área de raspado OTR con diámetro de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,1320	0,3960
Codo	3	2,06	6,18
Válvula de paso	2	11,40	22,80
Tee	2	0,82	1,64
		Total	31,0160

$$L Total = 18,36 pies + 31,0160 pies$$

$$L Total = 49,8760 pies$$

Pérdida de presión

Q = 6,25 CFM

Factor F = 2,85

$$P\'{e}rdida = \frac{2,85 * 49,876}{9,6530 * 1000} = 0,0147$$

%
$$P\'{e}rdida = \frac{0.0147 * 100}{127.2} = 0.0115 \%$$

Tabla 35. Tubería de servicio área de Cardeo OTR con diámetro de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,1320	0,3960
Codo	3	2,06	6,18
Válvula de paso	2	11,40	22,80
Tee	2	0,82	1,64
		Total	31,0160

$$L Total = 18,36 pies + 31,0160 pies$$

$$L Total = 49,8760 pies$$

Pérdida de presión

Q = 7,5 CFM

Factor F = 4,5

$$P\'{e}rdida = \frac{4,5 * 49,876}{9,6530 * 1000} = 0,0232$$

% Pérdida =
$$\frac{0.0232 * 100}{127.2} = 0.0182 \%$$

Figura m. Área de cardeo OTR

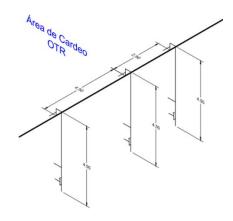


Tabla 36. Tubería de servicio para herramientas área de Cardeo OTR con diámetro de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,1320	0,3960
Codo	3	2,06	6,18
Válvula de paso	2	11,40	22,80
Tee	2	0,82	1,64
		Total	31,0160

$$L Total = 18,36 pies + 31,0160 pies$$

$$LTotal = 49,8760 pies$$

Pérdida de presión

Q = 5,6250 CFM

Factor F = 2,0250

$$P\'{e}rdida = \frac{2,0250 * 49,876}{9.6530 * 1000} = 0,0104$$

%
$$P\'erdida = \frac{0.0104 * 100}{127.2} = 0.0081 \%$$

Tabla 37. Tubería de servicio rápido en área de OTR con diámetro de ¾"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,1320	0,3960
Codo	3	2,06	6,18
Válvula de paso	2	11,40	22,80
Tee	2	0,82	1,64
		Total	31,0160

$$L Total = 18,36 pies + 31,0160 pies$$

$$L Total = 49,8760 pies$$

Pérdida de presión

Q = 1,5625 CFM

Factor F = 1,2

$$P\'{e}rdida = \frac{1,2 * 49,8760}{9,6530 * 1000} = 0,0062$$

%
$$P\'erdida = \frac{0,0062 * 100}{127,2} = 0,0048 \%$$

Figura n. Área de molinos

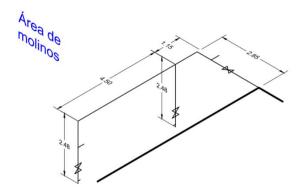


Tabla 38. Tubería de servicio área de molinos OTR con diámetro de ¾"

Accesorio	Cantidad	Le	Le total
Reductor	3	0,1320	0,3960
Codo	2	2,06	4,12
Válvula de paso	5	11,40	57
Tee	3	0,82	2,46
		Total	63,9760

$$L Total = 46,4776 pies + 63,9760 pies$$

 $L Total = 110,4536 pies$

Pérdida de presión

Q = 3,1250 CFM

Factor F = 1,2

$$P\'{e}rdida = \frac{1,2 * 110,4536}{9,6530 * 1000} = 0,0137$$
% $P\'{e}rdida = \frac{0,0137 * 100}{127,2} = 0,0107$ %

Figura o. **Área de molino y rellenado**

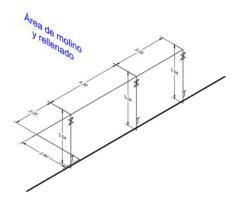


Tabla 39. **Tubería de servicio área de molino y rellenado OTR con** diámetro de ³/₄"

Accesorio	Cantidad	Le	Le total
Reductor	7	0,132	0,9240
Tee	9	0,82	7,38
Codo	6	2,06	12,36
Válvula de paso	8	11,40	91,20
		Total	111,8640

$$L Total = 75,6070 \ pies + 111,8640 \ pies$$

 $L Total = 187,4680 \ pies$

Pérdida de presión

Q = 7,5 CFM

Factor F = 4,5

$$P\'{e}rdida = \frac{4.5 * 187,4680}{9,6530 * 1000} = 0,0873$$

$$\% P\'{e}rdida = \frac{0,0873 * 100}{127,2} = 0,0686 \%$$

Figura p. Área de embandadora y sticher

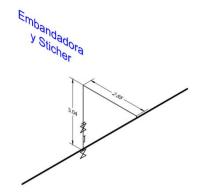


Tabla 40. Tubería de servicio área de embandado OTR y sticher con diámetro de ¾"

Accesorio	Cantidad	Le	Le total
Reductor	4	0,1320	0,5280
Codo	3	2,06	6,18
Tee	3	0,82	2,46
Válvula de paso	2	11,40	22,80
		Total	31,9680

$$L Total = 20,7296 pies + 31,9680 pies$$

$$L Total = 52,6976 pies$$

Pérdida de presión

Q = 7,5 CFM

Factor F = 4,5 Factor de tubería = 9,6530

$$P\'{e}rdida = \frac{4,5 * 52,6976}{9,6530 * 1000} = 0,0245$$
% $P\'{e}rdida = \frac{0,0245 * 100}{127,2} = 0,0192$ %

Figura q. Área de cámaras de vulcanización OTR

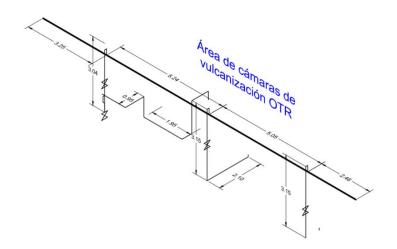


Tabla 41. Tubería de servicio cámara de vulcanización de 76" de diámetro con tubería de 3/4"

Accesorio	Cantidad	Le	Le total
Reductor	1	0,132	0,1320
Codo	10	2,06	20,6
Tee	4	0,82	3,28
Válvula de paso	3	11,40	34,20
		Total	58,2120

$$L Total = 39,4584 pies + 58,2120 pies$$

$$L Total = 97,6704 pies$$

Pérdida de presión

Q = 8,1250 CFM

Factor F = 5,3250

$$P\'{e}rdida = \frac{5,3250 * 97,6704}{9,6530 * 1000} = 0,0538$$

%
$$P\'{e}rdida = \frac{0.0538 * 100}{127.2} = 0.0422 \%$$

Tabla 42. **Tubería de servicio cámara de vulcanización de 96" de** diámetro con tubería de 1"

Accesorio	Cantidad	Le	Le total
Reductor	2	0,165	0,33
Codo	3	2,62	7,86
Válvula de paso	1	14,6	14,6
		Total	22,79

$$L Total = 22,79 pies + 18,4664 pies$$

$$L Total = 41,2564 pies$$

Pérdida de presión

Q = 8,1250 CFM

Factor F = 1,5625

Factor de tubería = 9,6530

$$P\'{e}rdida = \frac{1,5625 * 41,2564}{9,6530 * 1000} = 0,0066$$

%
$$P\'erdida = \frac{0,0066 * 100}{127,2} = 0,0051 \%$$

Tabla 43. **Tubería de servicio cámara de vulcanización de 96" de** diámetro con tubería de 1"

Accesorio	Cantidad	Le	Le total
Reductor	2	0,165	0,33
Codo	3	2,62	7,86
Válvula de paso	1	14,6	14,6
·		Total	22,79

$$L Total = 13,8088 pies + 22,79 pies$$

$$L Total = 36,5988 pies$$

Pérdida de presión

Q = 8,1250 CFM

Factor F = 1,5625

$$P\'erdida = \frac{1,5625 * 36,5988}{9,6530 * 1000} = 0,0059$$

$$\% P\'{e}rdida = \frac{0,0059 * 100}{127,2} = 0,0046 \%$$

Figura r. **Área de parqueo**

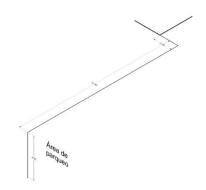


Tabla 44. Área de parqueo con diametro de ¾"

Accesorio	Cantidad	Le	Le total
Reductor	2	0,132	0,2640
Codo	3	2,06	6,18
Válvula de paso	1	11,40	11,40
		Total	17,8440

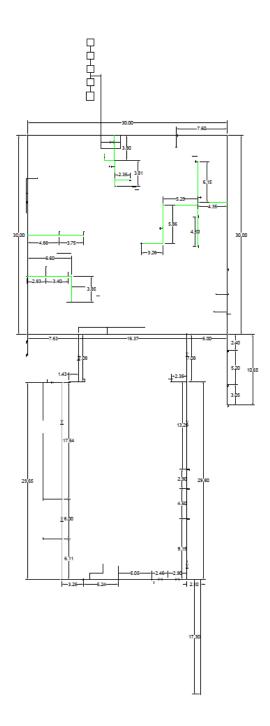
$$L Total = 78,3920 \ pies + 17,8440 \ pies$$

$$LTotal = 96,2360 pies$$

Pérdida de presión

$$Q = 1,5625 CFM$$

Factor F = 1,2


Factor de tubería = 9,6530

$$P\'{e}rdida = \frac{1,20 * 96,2360}{9,6530 * 1000} = 0,0119$$

%
$$P\'{e}rdida = \frac{0.0119*100}{127.2} = 0.0093 \%$$

Fuente: elaboración propia.

Apéndice 5. Vista aérea del rediseño de la red de aire comprimido

Fuente: elaboración propia, empleando AutoCAD.