

Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería Química

DISEÑO DE UN CRISTALIZADOR POR ENFRIAMIENTO PARA PRODUCCIÓN DE MAGMA DE SEMILLA EN UN SISTEMA DE CUATRO TEMPLAS EN LA REFINERÍA DE UN INGENIO AZUCARERO

Manuel Alejandro Castro Aldana

Asesorado por el Ing. Byron de Jesús López Maldonado

Guatemala, octubre de 2022

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DISEÑO DE UN CRISTALIZADOR POR ENFRIAMIENTO PARA PRODUCCIÓN DE MAGMA DE SEMILLA EN UN SISTEMA DE CUATRO TEMPLAS EN LA REFINERÍA DE UN INGENIO AZUCARERO

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA POR

MANUEL ALEJANDRO CASTRO ALDANA

ASESORADO POR EL ING. BYRON DE JESÚS LOPÉZ MALDONADO

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO QUÍMICO

GUATEMALA, OCTUBRE DE 2022

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANA	Inga. Aurelia Anabela Cordova Estrada
VOCAL I	Ing. José Francisco Gómez Rivera
VOCAL II	Ing. Mario Renato Escobedo Martínez
VOCAL III	Ing. José Milton de León Bran
VOCAL IV	Br. Kevin Vladimir Armando Cruz Lorente
VOCAL V	Br. Fernando José Paz González
SECRETARIO	Ing. Hugo Humberto Rivera Pérez

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANA	Inga. Aurelia Anabela Cordova Estrada
EXAMINADOR	Ing. Adolfo Narciso Gramajo Antonio
EXAMINADORA	Inga. Dinna Lissette Estrada Moreira
EXAMINADOR	Ing. Jorge Rodolfo García Carrera
SECRETARIO	Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

DISEÑO DE UN CRISTALIZADOR POR ENFRIAMIENTO PARA PRODUCCIÓN DE MAGMA DE SEMILLA EN UN SISTEMA DE CUATRO TEMPLAS EN LA REFINERÍA DE UN INGENIO AZUCARERO

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Química, con fecha del 18 de marzo de 2021.

Manuel Alejandro Castro Aldana

Ingeniero Director Williams Álvarez Escuela Ingeniería Química Facultad de Ingeniería USAC Presente.

Estimado Ingeniero Álvarez:

Le saludo cordialmente, deseándole éxitos en sus actividades. Por medio de la presente hago constar que he revisado y aprobado el Informe Final del trabajo de graduación titulado: "Diseño de un cristalizador por enfriamiento para producción de magma de semilla en un sistema de cuatro templas en la refinería de un ingenio azucarero", elaborado por el estudiante de la carrera de Ingeniería Química, Manuel Alejandro Castro Aldana, quien se identifica con el registro académico 2016-12290 y con el CUI 2010 29022 01 01.

Agradeciendo la atención a la presente, me suscribo de usted,

Atentamente,

Byron de Jesús López Maldonado Ingeniero. Químico olegiado 1066

Ing. Qeo. Byron de Jesús López Maldonado Colegiado 1066 Jefe de fabricación y refinería Ingenio Santa Ana Asesor

Edificio T-5, Ciudad Universitaria, Zona 12, Guatemala, Centroamérica EIQD-REG-TG-001

> Guatemala, 07 de marzo de 2022. Ref. EIQ.TG-IF.004.2022.

Ingeniero Williams Guillermo Álvarez Mejía DIRECTOR Escuela de Ingeniería Química Facultad de Ingeniería

Estimado Ingeniero Álvarez:

55

Como consta en el registro de evaluación, correlativo **095-2020**, le informo que reunidos los Miembros de la Terna nombrada por la Escuela de Ingeniería Química, se practicó la revisión del:

INFORME FINAL Solicitado por el estudiante universitario: Manuel Alejandro Castro Aldana. Identificado con número de carné: 2010290220101. Identificado con registro académico: 201612290. Previo a optar al título de la carrera: Ingeniería Química. En la modalidad: Informe Final, Seminario de Investigación.

Siguiendo los procedimientos de revisión interna de la Escuela de Ingeniería Química, los Miembros de la Terna han procedido a **APROBARLO** con el siguiente título:

DISEÑO DE UN CRISTALIZADOR POR ENFRIAMIENTO PARA PRODUCCIÓN DE MAGMA DE SEMILLA EN UN SISTEMA DE CUATRO TEMPLAS EN LA REFINERÍA DE UN INGENIO AZUCARERO

El Trabajo de Graduación ha sido asesorado por:

Byron De Jesús López Maldonado, profesional de la Ingeniería Química

Habiendo encontrado el referido trabajo de graduación **SATISFACTORIO**, se autoriza al estudiante, proceder con los trámites requeridos de acuerdo a las normas y procedimientos establecidos por la Facultad para su autorización e impresión.

"ID Y ENSEÑAD A TODOS"

José Alfredo Ortiz Herincx José Alfredo Ortiz Herincx José Alfredo Ortiz Herincy profesional de la Ingeniera Química COORDINADOR DE TENsor Tribunal de Revisión Trabajo de Graduación

C.c.: archivo

Formando Ingenieros Químicos en Guatemala desde 1939

Edificio T-5, Ciudad Universitaria, Zona 12, Guatemala, Centroamérica EIQD-REG-SG-007

LNG.DIRECTOR.193.EIQ.2022

El Director de la Escuela de Ingeniería Química de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer el dictamen del Asesor, el visto bueno del Coordinador de Área y aprobación del área de lingüística del trabajo de graduación titulado: DISEÑO DE UN CRISTALIZADOR POR ENFRIAMIENTO PARA PRODUCCIÓN DE MAGMA DE SEMILLA EN UN SISTEMA DE CUATRO TEMPLAS EN LA REFINERÍA DE UN INGENIO AZUCARERO, presentado por: Manuel Alejandro Castro Aldana , procedo con el Aval del mismo, ya que cumple con los requisitos normados por la Facultad de Ingeniería.

"Id y Enseñad a Todos"

Guatemala, septiembre de 2022.

Decanato Facultad de Ingeniería 24189101- 24189102 secretariadecanato@ingenieria.usac.edu.gt

LNG.DECANATO.OI.661.2022

La Decana de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Ingeniería Química, al Trabajo de Graduación titulado: DISEÑO DE UN CRISTALIZADOR POR ENFRIAMIENTO PARA PRODUCCIÓN DE MAGMA DE SEMILLA EN UN SISTEMA DE CUATRO TEMPLAS EN LA REFINERÍA DE UN INGENIO AZUCARERO, presentado por: Manuel Alejandro Castro Aldana, después de haber culminado las revisiones previas bajo la responsabilidad de las Instancias correspondientes, autoriza la impresión del mismo.

IMPRÍMASE:

UNVERSIDAD DE SAN CARLOS DE GUATEMAL DECANA ACULTAD DE INGENIERÍA Inga. Aurelia Anabela Cordova Estrada

Decana

Guatemala, octubre de 2022

AACE/gaoc

Escuelas: Ingeniería Civil, Ingeniería Mecánica Industrial, Ingeniería Química, Ingeniería Mecánica Eléctrica, - Escuela de Ciencias, Regional de Ingeniería Sanitaria y Recursos Hidráulicos (ERIS). Post-Grado Maestría en Sistemas Mención Ingeniería Vial. Carreras: Ingeniería Mecánica, Ingeniería Electrónica, Ingeniería en Ciencias y Sistemas. Licenciatura en Matemática. Licenciatura en Física. Centro de Estudios Superiores de Energía y Minas (CESEM). Guatemala, Ciudad Universitaria, Zona 12. Guatemala, Centroamérica.

ACTO QUE DEDICO A:

Mis padres	Manuel Castro y Alicia Aldana, por su apoyo, amor incondicional, sus enseñanzas y su confianza en mí.
Mis abuelos	Azucena Valladares y Carlos Aldana. Les debo todo lo que soy y tengo, les agradezco su apoyo, amor, ternura y sabiduría compartida incondicionalmente.
Mi abuela	Zenovia Ampie, por tu ternura, consejos y cariño.
Mis hermanos	Alicia, Carlos y Karla, por su cariño y apoyo incondicional, por los buenos momentos vividos.
Mi familia	Virginia Aguilar e hijos, Norberta García e hijas, Ivette Castro por su apoyo y ser parte de mi vida.
Gerardo Leche	Por su amistad y apoyo durante tantos años.

AGRADECIMIENTOS A:

Universidad de San Carlos de Guatemala	Mi <i>alma mater</i> y segundo hogar. El lugar donde viví muchos de los mejores momentos de mi vida y los primeros pasos de mi vida adulta.
Facultad de Ingeniería	Donde adquirí la base académica para mi carrera profesional y donde reforcé mi amor por la ciencia.
Ingenio Santa Ana	A los gerentes, jefes, supervisores de turno, auxiliares y operadores de la fábrica y refinería, por su apoyo, consejos, enseñanzas y amistad. A la empresa por permitirme realizar mi tesis y adquirir mi primera experiencia en la ingeniería química.
Ing. Byron López	Por su apoyo, por asesorar este trabajo de investigación y compartir sus conocimientos, consejos y experiencia.
Mi familia	Por estar siempre en los buenos momentos de mi vida.
Mis amigos	Por los buenos momentos vividos.

ÍNDICE GENERAL

ÍNDICE	DE ILL	ISTRAC	IONES	V
LISTA D	DE SÍMI	BOLOS		VII
GLOSA	RIO			IX
RESUM	IEN			XIII
OBJETI	VOS			XV
HIPÓTE	SIS			XVI
INTROE	DUCCIÓ	N		XVII
1.	ANTE	CEDEN	TES	
2.	MARC	CO TEÓ	RICO	5
	2.1.	Proces	o químico industrial del azúcar refino	5
		2.1.1.	Afinación	7
		2.1.2.	Fundición	
		2.1.3.	Clarificación	9
		2.1.4.	Fosfatación	
		2.1.5.	Carbonatación	10
		2.1.6.	Decoloración	11
		2.1.7.	Filtración	12
		2.1.8.	Evaporación y cristalización	12
		2.1.9.	Secado y enfriado	
	2.2.	Cristali	zación	
		2.2.1.	Sobresaturación	17
		2.2.2.	Nucleación y crecimiento de cristales	17

		2.2.3.	Métodos de cristalización	19
		2.2.4.	Cristalización para producción de magma de semilla	a20
	2.3.	Metod	ología para el diseño de cristalizadores	22
		2.3.1.	Tanques agitados	23
		2.3.2.	Agitación de suspensiones	24
		2.3.3.	Serpentines	28
3.	DISE	ÑO ME	TODOLÓGICO	31
	3.1.	Variab	les	31
		3.1.1.	Determinación de la densidad del magma	31
		3.1.2.	Dimensionamiento del cristalizador	31
		3.1.3.	Diseño del agitador	32
		3.1.4.	Diseño del sistema de transferencia de calor	33
		3.1.5.	Costo del equipo	34
	3.2.	Delimi	tación del campo de estudio	35
	3.3.	Recurs	sos humanos disponibles	35
	3.4.	Recurs	sos materiales disponibles	36
		3.4.1.	Cristalería	36
		3.4.2.	Equipo	36
		3.4.3.	Software	36
	3.5.	Técnic	a cualitativa o cuantitativa	37
		3.5.1.	Comportamiento de la densidad de suspensión	37
		3.5.2.	Diseño del vaso cristalizador	38
		3.5.3.	Diseño del agitador	38
		3.5.4.	Diseño del serpentín de transferencia de calor	39
	3.6.	Recole	ección y ordenamiento de la información	42
		3.6.1.	Densidad del magma	42
		3.6.2.	Cálculo de las dimensiones del vaso cristalizador	43
		3.6.3.	Sistema de agitación	44

		3.6.4.	Diseño del serpentín de enfriamiento	. 44
		3.6.5.	Costo de fabricación del equipo	. 45
	3.7.	Tabula	ción, ordenamiento y procesamiento de la informaciór	ı 45
		3.7.1.	Densidad del magma	. 46
		3.7.2.	Cálculo de las dimensiones del vaso cristalizador	. 46
		3.7.3.	Sistema de agitación	. 48
		3.7.4.	Diseño del serpentín de enfriamiento	. 49
		3.7.5.	Costo de fabricación del equipo	. 50
	3.8.	Análisi	s estadístico	. 50
		3.8.1.	Número de repeticiones	. 50
		3.8.2.	Análisis de varianza de un factor	. 51
		3.8.3.	Plan de análisis de los resultados	. 52
		3.8.4.	Programas para el análisis de datos	. 53
4.	RESI	JLTADC	DS	. 55
	4.1.	Compo	ortamiento de la densidad de magma	. 55
	4.2.	Diseño	o del vaso cristalizador	. 56
	4.3.	Diseño	o del sistema de agitación	. 57
	4.4.	Diseño	o del sistema de transferencia de calor	. 58
	4.5.	Costo	total del cristalizador	. 59
5.	INTE	RPRET	ACIÓN DE RESULTADOS	. 65
CONCL	USION	IES		. 69
RECON	/IENDA	CIONES	5	. 71
REFER	ENCIA	S		. 73
APÉND	ICE			. 81
ANEXC)S			119

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Proceso de refinería en el ingenio evaluado6
2.	<i>Mingler</i> de azúcar 8
3.	Clarificadores Talofloc para licor fundido10
4.	Captura de tierras diatomáceas utilizando un microscopio de barrido
	electrónico13
5.	Sistema de cuatro templas15
6.	Secador de túnel rotatorio 16
7.	Curva de sobresaturación de la sacarosa en agua
8.	Perfil de difusión y reacción para el crecimiento del cristal
9.	Cristalizador por enfriamiento para producción de magma de
	semilla en el Ingenio Almoiz, Pakistán 22
10.	Dimensiones características de un tanque agitado
11.	Tipos de fondo de tanque ASME 26
12.	Número de potencia en función del número de Reynolds para
	diferentes agitadores28
13.	Serpentines helicoidales 30
14.	Dimensionamiento de serpentines helicoidales
15.	Criterios de diseño para el dimensionamiento de serpentines 40
16.	Densidad de suspensión en función de la temperatura

TABLAS

I.	Proceso de diseño de cristalizadores	23
II.	Relaciones entre dimensiones de un tanque	25

III.	Variables en la determinación de la densidad	31
IV.	Variables del dimensionamiento del cristalizador	32
V.	Variables del diseño del agitador	33
VI.	Variables del diseño del sistema de transferencia de calor	33
VII.	Variables de determinación de costos de equipo	34
VIII.	Evaluación de la densidad en función de la temperatura d	le
	enfriamiento del magma	42
IX.	Parámetros de diseño del vaso cristalizador	43
Х.	Parámetros de diseño del sistema de agitación	44
XI.	Parámetros de diseño del serpentín de enfriamiento	44
XII.	Tabla de presupuesto de fabricación del equipo	45
XIII.	Evaluación de la densidad en función de la temperatura d	le
	enfriamiento del magma	46
XIV.	Resultados del diseño del tanque cristalizador	47
XV.	Posultados dol disoño dol sistema do agitación	10
XVI.	Resultados del diserio del sistema de agliación	40
	Resultados del diseño del serpentín de enfriamiento	40 49
XVII.	Resultados del diseño del serpentín de enfriamiento Tabla de presupuesto de fabricación del equipo	40 49 50
XVII. XVIII.	Resultados del diseño del serpentín de enfriamiento Tabla de presupuesto de fabricación del equipo Análisis de varianza unifactorial	40 49 50 52
XVII. XVIII. XIX.	Resultados del diseño del serpentín de enfriamiento Tabla de presupuesto de fabricación del equipo Análisis de varianza unifactorial Dimensionamiento del vaso cristalizador	40 49 50 52 56
XVII. XVIII. XIX. XX.	Resultados del diseño del serpentín de agitación Resultados del diseño del serpentín de enfriamiento Tabla de presupuesto de fabricación del equipo Análisis de varianza unifactorial Dimensionamiento del vaso cristalizador Dimensionamiento del sistema de agitación	48 50 52 56 57
XVII. XVIII. XIX. XX. XXI.	Resultados del diseño del serpentín de agitación Resultados del diseño del serpentín de enfriamiento Tabla de presupuesto de fabricación del equipo Análisis de varianza unifactorial Dimensionamiento del vaso cristalizador Dimensionamiento del sistema de agitación Diseño del sistema de transferencia de calor	48 50 52 56 57 58

LISTA DE SÍMBOLOS

Símbolo

Significado

h	Altura
E	Altura del fondo al impulsor
Jbafle	Ancho de bafle del cristalizador
Wi	Ancho (<i>width</i>)
Α	Área
ATDC	Área de trasferencia de calor
λ	Calor de vaporización del agua
Cp	Capacidad calorífica
hi, ho	Coeficientes de TDC interno y externo
CV	Coeficiente de variación
U	Coeficiente global de transferencia de calor
k	Conductividad térmica
gc	Constante de la gravedad
S	Constante de Zwietering
W	Contenido de sólidos
ρ∟	Densidad del jarabe o licor
ρsusp	Densidad de suspensión sacarosa-jarabe
ρsol	Densidad del cristal de azúcar
d	Diámetro
dP	Diámetro de partícula
Deje	Diámetro del eje del impulsor
Dimpulsor	Diámetro del impulsor
DT, interno	Diámetro interno del cristalizador

Stubo	Espaciamiento entre tubos
3	Espesor
g	Generatriz de cono truncado
C°	Grado Celsius
J	Julio
kg	Kilogramo
L	Largo
L _{tubo}	Longitud total del serpentín
mi	Masa del proceso
m	Metros
m²	Metros cuadrados
m ³	Metros cúbicos
Np	Número de potencia
Re	Número de Reynolds
N _{tubo}	Número de vueltas del tubo del serpentín
a, c, e	Parámetros de forma del elipsoide
Р	Potencia
Х	Ratio de sólidos en suspensión
Tgrano	Tamaño del grano de sacarosa
т	Temperatura
θ	Tiempo
Ν	Velocidad
VL,ref	Velocidad lineal del refrigerante
v	Viscosidad cinemática
μ	Viscosidad dinámica
V	Volumen

GLOSARIO

ASME	American Society of Mechanical Engineers (Sociedad
	Americana de Ingenieros Mecánicos).
Agitador	Dispositivo mecánico que genera movimiento en un
	cuerpo de líquido por medio de la agitación.
Batch	Proceso que se realiza de manera discontinua, con
	propiedades dependientes del tiempo y alimentación por cargas.
Brix	Medida de la cantidad de sólidos disueltos en una
Crecimiento	Proceso de difusión e integración de partículas del
	la sobresaturación.
Cristalización	Operación unitaria de purificación en donde ocurre un
	ordenamiento molecular en unidades tridimensionales
	que se repiten y son unicas para cada sustancia.
Contenido de sólidos	Cantidad porcentual de sólidos no disueltos en un

Ingenio azucarero	Planta industrial de procesamiento de caña de azúcar para la producción a gran escala de sacarosa.
Jarabe	Licor madre de sacarosa de donde se transfieren moléculas a la retícula cristalina.
Licor	Materia prima de la refinería de azúcar, consiste en una solución acuosa de sacarosa con una concentración de entre 66 a 70 °Brix.
Magma	Suspensión sólido-líquido compuesto de una miel o jarabe y cristales de azúcar.
Masa cocida	Producto de la cristalización de azúcar en un tacho previo a la centrifugación.
Nucleación	Formación (primaria y secundaria) o adición (inducida) de centros cristalinos en un licor madre en los que se depositan las moléculas provenientes del licor madre por medio de la sobresaturación.
Operación unitaria	Unidad elemental de un proceso industrial en donde ocurre una transformación física o química de la sustancia de proceso.
Refinería	Planta industrial dedicada al procesamiento de azúcar para su refinamiento y producción de azúcar de muy alta calidad.

Х

- **Región metaestable** Zona de sobresaturación comprendida entre 1.0 y 1.2 en donde existe crecimiento de cristales, pero no nucleación.
- Sacarosa Disacárido no reductor compuesto de glucosa y fructosa.
- Serpentín Intercambiador de calor en configuración helicoidal para el acondicionamiento del fluido en el cristalizador.
- Slurry Suspensión espesa de cristales de azúcar finamente molidos en un molino de bolas y dispersados en un volumen de etanol.
- **Sobresaturación** Condición de no equilibrio donde una solución de azúcar excede su concentración de saturación.
- Suspensión Mezcla heterogénea de sólidos no disueltos en un líquido dispuestos de manera uniforme en todo el medio.
- TachoNombre común utilizado para evaporadorescristalizadores de sacarosa en fábricas de azúcar.
- TemplaLote en proceso de masa cocida que se obtiene de los
tachos.

RESUMEN

En el siguiente trabajo de investigación se documenta el proceso de diseño de un cristalizador por enfriamiento para la producción de un magma de semillamiento para utilizarse en los tachos de refinería de un ingenio azucarero ubicado en el departamento de Escuintla en Guatemala. Se evaluaron las condiciones de sobresaturación y enfriamiento a nivel laboratorio para determinar la densidad y el contenido de sólidos en la suspensión jarabe-sacarosa y con base en los resultados se dimensionó el cristalizador, el agitador y el serpentín de transferencia de calor.

La evaluación del comportamiento de la densidad de la suspensión en función de la temperatura se realizó a nivel laboratorio, preparando un jarabe a 76 °Brix, inoculando con *slurry* a 65°C y enfriando en un rango de temperatura desde 65 a 30°C. Para el diseño del equipo se siguió una metodología aplicada a cristalizadores. La metodología consiste en los siguientes niveles jerárquicos: especificaciones de diseño, diseño del producto, diseño fisicoquímico del proceso, diseño del flujo de proceso y finalmente, diseño del equipo.

Se calcularon las dimensiones del cuerpo con base en dimensiones estándar de tanques agitados, el fondo utilizado es una cabeza estándar ASME elíptica y la altura y separador de arrastre se designaron con base en diseño de evaporadores. El agitador se dimensionó por medio del análisis de sistemas de suspensión sólido-líquido, determinando la velocidad adecuada de suspensión buscando la suspensión completa y uniforme. Se seleccionó un agitador de turbina de 6 palas inclinadas a 45° y se determinó la potencia de agitación necesaria. El serpentín se dimensionó mediante medidas estándar de

XIII

serpentines en tanques agitados, se determinaron los coeficientes de transferencia de calor para las sustancias del equipo durante la templa y los tiempos de operación.

Se llegó a determinar las dimensiones de un cristalizador con una capacidad de producción volumétrica de 7.54 m³ de magma de semilla por templa. Se diseñó un equipo de agitación de 3.90 kW de potencia con un impulsor seleccionado para suspender completamente los sólidos con uniformidad. Se diseñó un sistema de transferencia de calor de serpentín helicoidal de cobre con 97.61 m de largo y un área de transferencia de 16.55 m². El costo total de los materiales de fabricación del equipo es de Q 182,345.39.

OBJETIVOS

General

Diseñar un cristalizador por enfriamiento para la producción de magma de semilla en un sistema de cuatro templas de la refinería de un ingenio azucarero.

Específicos

- 1. Determinar el comportamiento de la densidad del magma de azúcar en función de la temperatura.
- 2. Calcular las dimensiones el vaso cristalizador siguiendo una metodología de diseño aplicada a cristalizadores industriales.
- Diseñar el sistema de agitación por medio de la selección del tipo de agitador mecánico y la determinación de la potencia necesaria para el motor.
- Diseñar el sistema de transferencia de calor por medio del dimensionamiento de un serpentín y el cálculo de los coeficientes de película.
- 5. Determinar el costo total del equipo diseñado.

HIPÓTESIS

Hipótesis conceptual

Es posible diseñar un cristalizador *batch* por enfriamiento para la producción de magma a partir de licor filtrado sembrado con *slurry* en la refinería de un ingenio azucarero siguiendo una metodología de diseño enfocada a cristalizadores obteniendo el dimensionamiento del vaso cristalizador, el sistema de agitación de suspensiones y el sistema de transferencia de calor.

Hipótesis nula

No existe diferencia significativa entre las medias de la densidad del magma de azúcar en función de la temperatura de enfriamiento.

$$H_o: \rho_{\mu 1} = \rho_{\mu 2} = \rho_{\mu 3}$$

Hipótesis alternativa

Existe diferencia significativa entre las medias de la densidad del magma de azúcar en función de la temperatura de enfriamiento.

$$H_1: \rho_{\mu 1} \neq \rho_{\mu 2} \neq \rho_{\mu 3}$$

INTRODUCCIÓN

La cristalización es una operación unitaria de separación sólido-líquido cuyo objetivo es obtener un producto cristalino de alta pureza a partir de una solución impura o de una fase sólida amorfa (Westhoff *et al.*, 2004). Esta operación es de gran importancia para numerosas industrias como la industria farmacéutica, alimentaria, biotecnológica y química debido a que permite obtener productos con una alta pureza y que pueden ser fácilmente manejados en operaciones subsiguientes (Felix *et al.*, 2019).

La cristalización en ingenios azucareros consiste esencialmente en dos etapas principales: nucleación y crecimiento de cristales (Vega, 2019). Esta operación se realiza tradicionalmente en equipos evaporadores cristalizadores denominados tachos. La nucleación se induce por medio de la introducción de diminutos cristales con un tamaño entre 5 y 10 µm suspendidos en un *slurry* mientras la solución se encuentra sobresaturada en la región metaestable en un subproceso llamado semillamiento completo (Vega, 2019). La segunda etapa se verifica mediante el desarrollo de la templa, donde existe una transferencia de masa entre el cristal y la solución sobresaturada, siendo el diferencial de concentración en la interfase del cristal, la fuerza impulsora (CENGICAÑA, 2014).

El objetivo principal de la cristalización en tachos de refinería es la producción de azúcar refino con un tamaño promedio de cristal de entre 550 y 600 µm y un coeficiente de variación inferior a 40 %. Esto dependerá del tiempo de introducción de semilla y su calidad, agitación mecánica, entre otros (Sánchez-Sánchez, K.B.; Bolaños-Reynoso, E.; Urrea-García, 2017). Un problema común es el tiempo prolongado que toma el semillamiento de los

XVII

cristales introducidos en el *slurry* hasta un tamaño satisfactorio que permita la alimentación de licor o jarabe sin disolver el grano, lo cual resulta en un alto consumo de tiempo (hasta 30 minutos por templa), limitando la producción (B. Morgenroth y Singh Bola, 2017). Aunado a esto, los cristales de *slurry* introducidos al tacho pueden causar una sobresaturación poco controlable, por lo que su adición al tacho puede resultar en aglomeración y falso grano (Lehnberger y Laue, 2016).

Desde la década de 1980 se utiliza un equipo para desarrollo de semilla en la industria del azúcar de remolacha (Urbaniec, 1989). El equipo consiste en un cristalizador *batch* por enfriamiento en el que se introduce meladura o licor filtrado. El primer paso consiste en la evaporación del licor hasta la curva de saturación. Este se enfría hasta alcanzar el grado de sobresaturación en donde es posible el crecimiento de cristales, pero se evita la formación de nuevos núcleos, denominado la zona metaestable, donde se introduce *slurry* con un tamaño de 10 µm y un coeficiente de variación menor a 50 %. Este crece hasta alcanzar un tamaño promedio entre 80 a 100 µm. Seguidamente, se introduce al proceso de cristalización en tachos, obteniendo características de calidad superiores y menores tiempos de operación, lo que incrementa la producción diaria (B. Morgenroth y Singh Bola, 2017).

El objetivo principal de este estudio es aquel de diseñar un cristalizador por lotes para crecimiento de magma de semillamiento para utilizarse en los tachos de la refinería del ingenio siguiendo la metodología de diseño para cristalizadores propuesta por Bermingham *et al.* en 2000. Se busca el aumento de la producción y la reducción de la variabilidad en el tamaño promedio y coeficiente de variación del azúcar refino.

1. ANTECEDENTES

La cristalización de sacarosa en la industria azucarera es una operación unitaria que ha tenido importantes avances en los últimos años. La investigación sobre la optimización, control y diseño de nuevos equipos ha hecho posible un mejoramiento en la operación y la calidad del producto obtenido. Desde hace dos décadas, la tecnología de crecimiento de semilla por enfriamiento se utiliza en la industria de la remolacha. Los cristalizadores por enfriamiento para crecimiento de semilla no habían sido incorporados a la industria azucarera hasta hace unos cuantos años.

Un estudio publicado por la Universidad de Delft en Países Bajos titulado *A design procedure and predictive models for solution crystallisation processes* propone una metodología de diseño por niveles enfocado a cristalizadores. En este artículo se detallan las etapas necesarias para el conocimiento del proceso de cristalización y el dimensionamiento de los equipos que intervienen en la operación. Se incluyen modelos predictivos de cristalización (Bermingham *et al.,* 2000).

Un estudio conducido en la Universidad de Iwate, Japón, titulado *Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum* tuvo como objetivo la evaluación de dos métodos de enfriamiento para la cristalización *batch* por semillamiento del alumbre de potasio. Se evaluó la respuesta de la distribución de tamaños de cristal en función del modo de enfriamiento, variando entre enfriamiento natural y controlado (Doki *et al.*, 2001).

Un estudio realizado en la Universidad de Loughborough, Reino Unido titulado *Model Based Control Approach for Batch Crystallization Product Design* propone un diseño teórico con un enfoque de control para la cristalización por enfriamiento con semillamiento. El objetivo principal del estudio fue el modelado de un proceso de cristalización por enfriamiento y su validación mediante el análisis de datos obtenidos experimentalmente. Para el modelo teórico se utilizó el balance de poblaciones resuelto mediante la combinación del método de momentos por cuadratura (QMOM) y el método de características (MOC) (Nagy, 2008).

Un estudio publicado por el *International Sugar Journal* en Brunswick, Alemania, realiza una revisión de los avances en automatización de tachos *batch* y de la instrumentación necesaria para optimizar la operación de tachos. Se concluye que la automatización de la operación conduce a un menor consumo de vapor de la fábrica, pero se reporta un coeficiente de variación más bajo en numerosas ocasiones (Boris Morgenroth, 2018).

Un estudio publicado por la empresa IPRO Industrieprojekt GmbH de Brunswick, Alemania titulado *Seed-cooling crystalliser technology for improvement of crystal quality and sugar recovery* realiza una revisión de un equipo de cristalización por enfriamiento semillado para ingenios azucareros. El objetivo principal del artículo fue la discusión de las principales ventajas del equipo y su funcionamiento. Se concluyó que el equipo incorporado a la industria de la caña de azúcar presenta ventajas significativas, llegando a producir cristales con alta uniformidad (CV bajo), mejorando la separación en centrífugas y logrando un mejor agotamiento de mieles. Se determinó también que el equipo posee potencial para optimizar la operación de cristalización (B. Morgenroth y Singh Bola, 2017).

Una tesis de maestría publicada por la Benemérita Universidad Autónoma de Puebla en México titulada *Estudio de la pérdida de eficiencia en el proceso de cristalización por enfriamiento de la sacarosa* reportó una evaluación del fenómeno de la cristalización por enfriamiento de sacarosa proveniente de un ingenio de caña de azúcar. Se describe un diseño de cristalizadores *batch* por enfriamiento y el análisis de las variables que intervienen en el proceso como agitación mecánica, transferencia de calor en serpentines e introducción de semilla. Se concluyó que se obtienen cualidades óptimas de grano por medio de un enfriamiento controlado y con semilla (Isidoro, 2016).

En un artículo publicado por la refinería de Tongaat Hulett en Sudáfrica se reportó la automatización de los tachos donde se utiliza un sistema de cuatro templas. Se introdujeron modernas técnicas de instrumentación y estrategias de control y se obtuvieron resultados preliminares que denotan una mejoría en el proceso de cristalización de la planta (Mncube *et al.*, 2018).

Un estudio realizado en la Universidad Federal de San Carlos, Brasil titulado *Sucrose crystallization: modeling and evaluation of production responses to typical process fluctuations* describió un procedimiento para modelizar y evaluar el proceso de cristalización en un sistema de dos templas. Esto con el fin de evaluar los posibles impactos de impurezas y variabilidad en el proceso. Se presentan balances de masa y energía en tachos *batch*. Posteriormente, se realizaron simulaciones a partir de los modelos obtenidos (de Castro *et al.*, 2019).

Un estudio realizado en CENGICAÑA, Guatemala titulado Análisis del proceso de semillamiento: efecto de la cantidad introducida de slurry en un sistema de cristalización de doble magma tuvo como objetivo principal del estudio fue el análisis de los parámetros de calidad de cristales de azúcar y el agotamiento de mieles en función de la cantidad de slurry introducido al tacho.

Se llegó a evaluar un método para la determinación teórica de la masa de *slurry* necesaria, se determinó que la dosis óptima de *slurry* es de 7 litros, finalmente se comprobó que la cantidad de *slurry* no tiene un efecto significativo en el crecimiento del grano (Vega, 2019).

En la Universidad de Wasaba, Japón, se condujo el estudio *Partial Seeding Policy for Controlling the Crystal Quality in Batch Cooling Crystallization.* El objetivo principal fue la determinación del coeficiente de variación (CV) para condiciones de semillamiento parcial óptimas mediante simulación por resolución del balance de población y de masa para un cristalizador *batch* por enfriamiento semillado. Los resultados del estudio fueron el cálculo de un mínimo en el CV afectado por la calidad de la semilla y del periodo de enfriamiento. Se obtuvo una regresión lineal por análisis experimental que describe la operación del cristalizador y se concluye que las condiciones óptimas de sembrado fueron relativamente predichas (Unno y Hirasawa, 2020).

2. MARCO TEÓRICO

La producción de azúcar en Guatemala es de gran importancia para el desarrollo económico del país, representando una fuente de trabajo y de divisas. Para la zafra 2013-2014, Guatemala se posicionó en el cuarto lugar de exportación y décimo lugar en producción de azúcar a nivel mundial. Asimismo, el sector azucarero representó el 15.80 % del producto interno bruto del país (SIB, 2016). La agroindustria del azúcar de Guatemala ha mejorado considerablemente en los últimos 30 años. Los procesos en campo y en fábrica han presentado avances que repercuten en una mayor producción y recuperación de la sacarosa. Los datos históricos indican un incremento de 45 % en la producción de azúcar entre la zafra de 1996-1997 a la de 2008-2009 (CENGICAÑA, 2014).

2.1. Proceso químico industrial del azúcar refino

El proceso de producción de azúcar refino se enfoca en el refinamiento del azúcar crudo. Existen dos tipos de refinerías: autónomas y anexas a una fábrica de azúcar crudo. Las refinerías autónomas operan de manera independiente y deben comprar el azúcar crudo de numerosas fábricas. Las refinerías anexas a ingenios azucareros utilizan azúcar que sale de la fábrica y es común que operen únicamente en el periodo de zafra (Baikow, 1982).

La materia prima tradicional de las refinerías es el azúcar crudo. En Guatemala es frecuente el uso de azúcar blanco sulfitado proveniente de la fábrica y en algunas refinerías se utiliza azúcar crudo. El bajo color de este tipo de azúcar permite la simplificación del proceso convencional de la refinería

(CENGICAÑA, 2014), sin embargo, se detallarán las operaciones más comunes. El proceso de refinamiento en el ingenio azucarero donde se realiza el estudio es el siguiente:

Figura 1. Proceso de refinería en el ingenio evaluado

Continuación de la figura 1.

Fuente: elaboración propia, realizado con Lucidchart.

2.1.1. Afinación

La afinación del azúcar crudo tiene como fin principal la remoción de la capa de miel de baja pureza del cristal de azúcar (Delgado, 2001). Es una

operación de gran importancia debido a que se logra una remoción de 50 a 70 % del color e impurezas presentes en el azúcar crudo (Rein, 2012).

La materia prima debe presentar parámetros óptimos de calidad para que la afinación sea efectiva (Rein, 2012). El tamaño del grano debe ser grande, homogéneo y no debe presentar falso grano ni aglomerados, el contenido de cenizas y almidones debe ser mínimo y la humedad debe presentar un factor de seguridad inferior a 0.25 (Baikow, 1982).

En la afinación, se alimenta de forma continua un tanque homogeneizador o *mingler* agitado (ver figura 1) con azúcar crudo y jarabe de afinación. Este alimenta un mezclador para la recuperación del azúcar en centrífugas *batch* o continuas y el jarabe recuperado se recircula al *mingler* (Rein, 2012).

Figura 2. *Mingler* de azúcar

Fuente: Hexon Engineering Co., Ltd. (2021). *Magma Mixer*. Consultado el 28 de febrero de 2021. Recuperado de http://www.hexonengineering.com/magma-mixer.html.
2.1.2. Fundición

La fundición consiste en la operación de disolver el azúcar afinado. El producto es un licor de 66 a 70 °Brix. Se realiza en tanques de disolución o fundidores *batch* o continuos, donde se adiciona agua dulce. La solución se calienta a 75 °C por medio de inyección directa de vapor o por superficies de intercambio de calor (Rein, 2012).

El licor producido debe ser colado antes de las operaciones subsiguientes, se recomienda el uso de *mesh* 60.

2.1.3. Clarificación

El licor obtenido de la fundición de azúcar crudo aun contiene impurezas como, por ejemplo: bagazo, tierra, almidones, dextranas y polisacáridos (Delgado, 2001). Los procesos de clarificación más frecuentes son la fosfatación y la carbonatación.

2.1.4. Fosfatación

La fosfatación es el proceso de clarificación donde se emplea fosfato y cal para remover impurezas del licor fundido por medio de la formación de flóculos en las refinerías de azúcar crudo. La operación ha evolucionado con el tiempo, el método más moderno se le conoce como fosflotación.

La fosflotación es un método de clarificación propuesto por Tate and Lyle en 1965, el cual es parecido al proceso de clarificación de meladura (Rein, 2012). En este método, se presentan dos etapas de floculación. La etapa primaria se da por la fosfatación tradicional, mientras que la floculación secundaria se origina por la adición de poliacrilamida (*Taloflote*) (Baikow, 1982).

El licor se calienta inicialmente a 85 °C. La cal o sacarato, el ácido fosfórico y el licor fundido se mezclan en un tanque de reacción agitado. Se utiliza un tanque aireador para dispersar aire utilizando un agitador o bomba. La poliacrilamida se agrega en línea previo a entrar al clarificador *Talofloc* (ver figura 2). Al fondo del clarificador se extrae el licor clarificado, mientras que la espuma se remueve por encima mediante el uso de raspadores para su desendulzado (Rein, 2012).

Figura 3. Clarificadores Talofloc para licor fundido

Fuente: Uttam Sucrotech International (2021). *Melt clarification system*. Consultado el 28 de febrero de 2021. Recuperado de http://www.usipl.com/product-detail/melt-clarification-systemwith-phosphofloatation-carbonation.

2.1.5. Carbonatación

La carbonatación es el método de clarificación de licor fundido de azúcar crudo en el que se remueven color y turbidez por medio de la precipitación de carbonato de calcio (Rein, 2012). Es un método que se ha usado por más de 100 años por su robustez y consistencia (Moodley, M; Schorn, 2017). Con este sistema se logra una disminución de color de hasta 50 %.

La operación consiste en el encalado del licor fundido de azúcar crudo con hidróxido de calcio. A continuación, se introduce el licor encalado a dos o tres saturadores en serie, los cuales burbujean dióxido de carbono hasta un pH menor a 8.50. El primer saturador se diseña para que tenga la mayor absorción del gas llegando a un pH de 9.50, mientras que los subsiguientes reducen el pH en menor escala (Rein, 2012).

2.1.6. Decoloración

La decoloración es el proceso clave del refinado de azúcar, en él, se elimina la mayor parte del color y cenizas presentes en el licor fundido (Delgado, 2001). La decoloración es una operación que se utiliza tanto en las refinerías de azúcar crudo, como de azúcar blanco sulfitado y consiste en la adición del decolorante al licor previo a la operación de filtración. El color del azúcar proviene de dos fuentes: la caña de azúcar y el proceso de fabricación del azúcar. En la caña de azúcar, los colorantes más frecuentes son los fenoles y flavonoides, se estima que estas impurezas aportan hasta dos tercios del color total del azúcar crudo (Ahmedna *et al.*, 2000).

Durante el proceso de fabricación del azúcar, se desarrolla color por caramelización, degradación alcalina y la reacción de Maillard. La caramelización se origina por la degradación térmica del azúcar cuando la temperatura sobrepasa los 120 °C (Rein, 2012). Los HADP o productos de la degradación alcalina de la hexosa por sus siglas en inglés, son polímeros de ácidos carboxílicos que aportan un color amarillo con café (Brujin, 1986).

11

Los principales productos utilizados en la decoloración de licor de azúcar son las resinas iónicas, el carbón de hueso y el carbón activado en polvo o granular (Ahmedna *et al.*, 2000).

2.1.7. Filtración

La operación de filtración es indispensable para remover turbidez y sólidos en suspensión del licor fundido (Rein, 2012). La etapa de filtración dependerá del método de refinado que se aplique. Las refinerías que manejan licor de azúcar crudo y que clarifican por medio de la fosfatación, deben usar filtros mecánicos con ayuda filtrante. En el caso de las refinerías que aplican el método de carbonatación, el carbonato de calcio precipitado funciona como ayuda filtrante. Las refinerías que procesan licor de azúcar blanco sulfitado, deben filtrar el carbón activado adicionado previamente (Baikow, 1982).

La operación de los filtros mecánicos de la refinería requiere el uso de ayuda filtrante (*filter aid*), esta se adiciona al licor tratado con el fin de desarrollar una precapa en los filtros. La ayuda filtrante está compuesta de tierras diatomáceas (ver figura 3). Estas provienen de las diatomitas las cuales son algas unicelulares microscópicas. El esqueleto fosilizado de las diatomitas contiene alrededor de 87 a 91 % de dióxido de sílice, una cantidad considerable de alúmina y óxido férrico (Ibrahim y Selim, 2011). La precapa es una superficie de filtración de diatomáceas o perlita, se recomienda agregar 5 libras por cada 100 pies cuadrados.

2.1.8. Evaporación y cristalización

La evaporación es una operación unitaria de transferencia de calor donde se evapora parte del solvente de una solución en unidades llamadas

12

evaporadores (McCabe, 2013). El funcionamiento del múltiple efecto se fundamenta en el principio de *Rillieux*, el cual establece que en un evaporador con N efectos, un kilogramo de vapor evaporará N kg de solvente en la solución (CENGICAÑA, 2014).

En las refinerías de azúcar, es común el uso de evaporadores de licor filtrado. El licor se encuentra usualmente entre 65 y 70 °Brix. Este licor puede ser enviado directamente a los tachos al vacío para ser concentrado a la sobresaturación. Sin embargo, en muchas ocasiones el uso de múltiples efectos que concentren el licor a 72 o 78 °Brix resulta ser más económico y viable debido a que se reduce el tiempo de templa (Baikow, 1982).

Figura 4. Captura de tierras diatomáceas utilizando un microscopio de barrido electrónico

Fuente: Van der Meer *et al.* (2014). *Diatomaceous Earth Filtration*. Consultado el 28 de febrero de 2021. Recuperado de https://bioprocessintl.com/downstream-processing/filtration/diatomaceous-earth-filtration-innovative-single-use-concepts-clarification-high-density-mammalian-cell-cultures/.

Es aconsejable el uso de evaporadores de doble efecto donde el primer aparato se encuentre a una presión de vacío entre 14 y 16 inHg. El uso de evaporadores *Roberts* es poco frecuente debido a que los altos tiempos de retención (entre 8 y 15 minutos) pueden provocar la formación de color. Por ello, se recomienda el uso de evaporadores *Kestner* o de película descendente (Baikow, 1982).

El esquema más común de la cristalización en los tachos es el sistema de cuatro templas donde se producen cuatro calidades de azúcar refino (ver figura 4). Las fábricas que no poseen una sección de evaporadores deben concentrar el licor filtrado hasta una concentración de semillamiento de entre 75 y 80 °Brix. En este sistema, con el licor filtrado proveniente de los filtros o de los evaporadores, se produce azúcar A el cual tiene un color entre 18 y 23 IU. El jarabe residual se utiliza para producir azúcar B de entre 30 y 40 IU. De la misma manera se produce azúcar C con un color entre 40 y 50 IU y azúcar D con un color de hasta 60 IU. El azúcar B se produce directamente por su bajo color, mientras que el azúcar C y D deben mezclarse con el azúcar A para producir azúcar con un color de 30 IU (Baikow, 1982).

Otro sistema de cristalización comúnmente utilizado es el sistema *inboiling,* en donde se mezcla el licor filtrado con el residuo de una templa anterior en una proporción de 60 % y 40 %, respectivamente (Baikow, 1982). En este sistema se produce un único tipo de azúcar, lo cual elimina la tarea de mezclar el azúcar de diferentes colores hasta el color óptimo.

Las templas producidas se purgan en centrífugas *batch* automáticas, el uso de centrífugas continuas podrían dañar el grano.

Figura 5. Sistema de cuatro templas

Fuente: CENGICAÑA. (2014). El cultivo de la caña de azúcar en Guatemala. p 351.

2.1.9. Secado y enfriado

El azúcar blanco producido debe ser secado para garantizar que sus características de calidad no se vean comprometidas por la humedad presente en el grano. La deterioración del azúcar es particularmente significativa cuando la humedad supera el 1 % (Hugot, 1986).

Los equipos de secado más utilizados en los ingenios azucareros son los secadores de tambor rotatorio (ver figura 7). En estos equipos, se dispone el azúcar húmedo en la entrada del equipo, un flujo de aire caliente en contracorriente. Mientras la carcasa del equipo gira, eleva el azúcar y la deja caer a modo de cascada (Rastikian *et al.*, 1999). Esta acción permite que el aire fluya por el azúcar permitiendo un contacto amplio. El enfriamiento del azúcar blanco también se puede verificar por medio de un enfriador de tambor. En este caso se

puede enfriar con temperatura ambiente o enfriando el aire entrante con refrigerante.

Figura 6. Secador de túnel rotatorio

Fuente: Perry (2008). Perry's Chemical Engineering Handbook. p 12-74.

2.2. Cristalización

La cristalización es un proceso de ordenamiento molecular organizado en estructuras tridimensionales que se repiten de manera periódica y son propias de cada sustancia (Myerson, 2019). En la industria de los alimentos, químicos y productos farmacéuticos, la cristalización es una operación unitaria de purificación y separación sólido-líquido vital para una gran cantidad de procesos. Se prefiere sobre otras tecnologías debido a que aporta excelentes ventajas,

como bajos costos de operación, alta pureza de producto y presentación atractiva a los consumidores (Sánchez-Sánchez, K.B.; Bolaños-Reynoso, E.; Urrea-García, 2017).

La cristalización industrial se enfoca en la producción de grandes poblaciones de cristales con una adecuada distribución de tamaño de cristal (Grbi *et al.*, 2008). Es una operación unitaria aplicada a procesos desde hace varias décadas, sin embargo, la complejidad dinámica no lineal y las condiciones de mezclado no ideales contribuyen a un pobre control del proceso (Nagy, 2008). Las tecnologías de cristalización han evolucionado a lo largo de los años y los equipos modernos permiten un estudio aún más profundo del tema.

2.2.1. Sobresaturación

La cristalización del azúcar se alcanza cuando el equilibrio termodinámico se desplaza y la concentración del soluto se incrementa por encima de la saturación a determinada temperatura (ver figura 6). A la condición de una solución cuando se encuentra por encima de la saturación se conoce como sobresaturación y se puede expresar por medio del coeficiente de sobresaturación (Rein, 2012):

$$y = \frac{\left(\frac{W_s}{W_w}\right)}{\left(\frac{W_s}{W_w}\right)_{sat}}$$

2.2.2. Nucleación y crecimiento de cristales

La cristalización está controlada por dos parámetros principales: la nucleación y el crecimiento. Ambos procesos se verifican en paralelo y se

expresan como velocidades. La velocidad de nucleación se identifica como la cantidad de nuevos núcleos que se generan por unidad de tiempo (McCabe, 2013). La primera etapa es la formación de la sobresaturación de la solución. El siguiente paso es la agregación de moléculas en diminutos núcleos con el objetivo de regresar nuevamente a una condición de equilibrio (Myerson *et al.,* 2019).

La nucleación se debe a diversos factores y se clasifica en nucleación primaria y secundaria. En la nucleación primaria, los núcleos se forman a partir de una fase carente de sólidos (homogénea) o con la existencia de sólidos extraños que aceleran la velocidad de nucleación (heterogénea) (McCabe, 2013).

Fuente: Rein. (2012). Ingeniería de la caña de azúcar. p 410.

La nucleación secundaria se genera en la interfaz de los cristales madre. Para que ocurra es necesario que exista nucleación primaria anteriormente. Es un proceso que ocurre a bajos niveles de sobresaturación. Se puede originar por el esfuerzo cortante del fluido o por colisiones entre cristales, paredes del cristalizador o con el impulsor de agitación (Myerson *et al.,* 2019).

El crecimiento de cristales puede abordarse como un proceso cinético de reacción donde la sobresaturación es la fuerza impulsora. Se verifica en dos etapas donde el primer paso es la difusión de las partículas a la cara del cristal, seguido de una reacción de integración de estas partículas a la estructura reticular del cristal (ver figura 9) (Perry, 2008). En el caso de los cristales de sacarosa, la tasa de crecimiento es de 3.75x10⁻⁸ m/s (Perry, 2008). El transporte de materia que ocurre en las dos etapas se expresa mediante los siguientes modelos:

$$\frac{dm_c}{dt} = k_d A (C - C_i)$$

$$\frac{dm_c}{dt} = k_d A (C_i - C_{eq})$$

2.2.3. Métodos de cristalización

La cristalización es una operación unitaria en la que intervienen transportes de materia y energía. La fuerza impulsora que permite el crecimiento de los cristales es la sobresaturación. Para generar las condiciones adecuadas de sobresaturación, existen los siguientes métodos (Myerson, 2019):

- Enfriamiento
- Cristalización por evaporación selectiva de un solvente

- Adición de un componente (cristalización antisolvente)
- Cambio de especies químicas (reacción química)

Figura 8. Perfil de difusión y reacción para el crecimiento del cristal

distance from crystal-solution interface

2.2.4. Cristalización para producción de magma de semilla

En las refinerías de azúcar, se utilizan equipos evaporadores cristalizadores (tachos) para alcanzar la sobresaturación por medio de la evaporación del agua presente en el licor o jarabe. Una vez se alcanza la sobresaturación, el tacho se semilla con *slurry* y se produce masa cocida, la cual se purga en centrífugas y se separa el azúcar y el jarabe. La calidad del *slurry* utilizado afecta en gran medida la distribución de tamaño de cristal del azúcar producido. El número de cristales es aproximadamente constante durante su introducción si existe un buen control de la sobresaturación (Aamir *et al.*, 2010).

Fuente: Lewis (2015). Industrial crystallization fundamentals and applications. p 106.

El *slurry* que se introduce en los tachos de los ingenios puede causar aglomeración y falso grano derivado de una gran sobresaturación y de un área relativamente alta de transferencia de masa en los diminutos cristales del *slurry*. Adicionalmente, la semilla debe crecer hasta un tamaño adecuado para evitar la disolución accidental con la alimentación del jarabe o licor por un tiempo aproximado de 30 minutos, lo cual puede limitar la producción diaria de la refinería.

Los cristalizadores de magma de semilla producen un magma a partir del *slurry* convencional haciendo crecer los cristales a un tamaño de entre 80 y 120 µm, tamaño adecuado para su introducción al tacho. Se tiene antecedentes del uso de la tecnología de la cristalización por enfriamiento para producción de magma de semilla en ingenios de caña de azúcar. En el Ingenio Santa Matilde en Honduras, se incorporó este equipo en la refinería. Se reportó un incremento en la producción de los tachos, disminución del coeficiente de variación de 44 % a 28 % con un porcentaje de 4 % de polvillo (Lehnberger y Laue, 2016).

El cristalizador por enfriamiento utilizado convencionalmente para producción de magma de semilla consiste en un cristalizador vertical (ver figura 8), un equipo de calentamiento y enfriamiento, conexión con el sistema de vacío y un sistema de automatización para el correcto control de la operación (Lehnberger y Laue, 2016). La operación consiste en la alimentación y evaporación del licor filtrado hasta una concentración entre 76 y 80 °Brix, semillado por *slurry* con un tamaño de 10 µm, enfriamiento controlado de la templa con un diferencial de 6 a 8°C y la descarga del magma producido cuando se encuentre a 35°C.

21

2.3. Metodología para el diseño de cristalizadores

Bermingham *et al* propusieron una metodología para el diseño de cristalizadores industriales. Consiste en una serie de niveles para un diseño jerárquico que facilita la toma de decisiones y la trazabilidad del proceso. Los niveles se resumen en la tabla 1.

Figura 9. Cristalizador por enfriamiento para producción de magma de semilla en el Ingenio Almoiz, Pakistán

Fuente: Morgenroth. (2017). Seed-cooling crystalliser technology for improvement of crystal quality and sugar recovery. p 1905.

Tabla I.	Proceso	de diseño	de crista	alizadores

Nivel de diseño	Descripción	Definición
0	Especificaciones de diseño	Se detalla el rendimiento del producto, las especificaciones del proceso y las especificaciones de diseño.
I	Diseño del producto cristalino	Se detallan las características del producto cristalino: tamaño promedio, forma, pureza, entre otros.
II	Diseño fisicoquímico de la tarea de cristalización	Se define el método de cristalización.
	Diseño del proceso de cristalización	Se diseña el diagrama de flujo del proceso: modo de operación, tiempo de residencia, balances de masa y energía, la producción volumétrica, entre otros.
IV	Diseño del cristalizador	Se detalla el dimensionamiento del equipo, diseño mecánico, costos, planos, y otros.

Fuente: Bermingham *et al.* (2000). A design procedure and predictive models for solution crystallization processes. p 5. Lewis. (2015). Industrial crystallization fundamentals and applications. p 52.

2.3.1. Tanques agitados

Los tanques agitados son equipos comunes de proceso que poseen una amplia variedad de aplicaciones en todo tipo de industrias. Se pueden utilizar para las siguientes aplicaciones (McCabe, 2013):

- Suspensión de partículas sólidas
- Mezclado de líquidos miscibles
- Dispersión de gases

- Elaboración de emulsiones
- Transferencia de calor

Los cristalizadores por lotes son equipos de construcción sencilla que pueden ser utilizados para la cristalización de diversas sustancias. Pueden consistir en un tanque agitado provisto de serpentines o chaquetas y en algunas ocasiones de vacío (Perry, 2008).

La construcción y dimensiones de un tanque agitado son reguladas por la norma ASME Sección VIII División 1: "Reglas de construcción de recipientes a presión". En esta normativa se detallan los estándares de construcción y diseño del fondo de tanques. Las dimensiones que se usan regularmente para tanques agitados se detallan en la figura 11. Los fondos de tanque ASME poseen diferentes formas: elipsoidales, toriesféricas, semiesféricas, cónicas y toricónicas (ver figura 12) (ASME, 2013), mientras que la parte superior puede ser abierta o cerrada.

El uso de deflectores es necesario para evitar la formación de vórtices propicien zonas muertas de agitación. Es común el uso de cuatro deflectores instalados equitativamente en las orillas internas del tanque.

2.3.2. Agitación de suspensiones

La agitación en mezclas de fases sólidas y líquidas debe procurar la suspensión uniforme en todo el tanque. Este tipo de agitación se presenta en numerosas aplicaciones, en su mayoría de transferencia de masa (Paul *et al.,* 2004):

Dispersión de gases

24

- Disolución y lixiviación
- Cristalización y precipitación
- Adsorción, desorción e intercambio iónico
- Reacciones catalizadas por sólidos
- Polimerización por suspensión

Figura 10. Dimensiones características de un tanque agitado

Fuente: McCabe. (2013). Operaciones unitarias en ingeniería química. p 263.

Tabla II.Relaciones entre dimensiones de un tanque

$\frac{D_a}{D_t} = \frac{1}{3}$	$\frac{H}{D_t} = 1$	$\frac{J}{D_t} = \frac{1}{12}$
$\frac{E}{E} = \frac{1}{2}$	$\frac{W}{W} = \frac{1}{2}$	$\frac{L}{L} = \frac{1}{L}$
D_t 3	<i>D</i> _a 5	D_a 4

Fuente: McCabe. (2013). Operaciones unitarias en ingeniería química. p 262.

La elección del impulsor, la geometría del tanque y las condiciones de operación afectan en gran medida a la correcta suspensión de sólidos y eliminación de zonas muertas de agitación. Con un impulsor de turbina de aspas inclinadas a 45° se consigue un flujo axial y radial, lo cual permite una adecuada suspensión de partículas sólidas (Geankoplis, 1998). Se recomienda también el uso de fondos elípticos ASME (Paul *et al.,* 2004).

Figura 11. Tipos de fondo de tanque ASME

Fuente: ASME. (2013). Section VIII Rules for Construction of Pressure Vessels Division 1. p 353.

Para diseñar un sistema de agitación eficiente, se debe tomar en cuenta la velocidad necesaria para vencer la rapidez de sedimentación del sólido. Zwietering propuso una relación para conocer la velocidad mínima de agitación:

$$N_{js} = Sv^{0.1} \left[\left(\frac{g_c(\rho_{sol} - \rho_l)}{\rho_l} \right) \right]^{0.45} X^{0.13} d_p^{0.2} D_{impulsor}^{-0.85}$$

Donde:

N_{js}: velocidad mínima de suspensión

S: factor geométrico del impulsor

v: viscosidad cinemática del líquido

gc: constante de gravedad

ρs: densidad del sólido

p: densidad del líquido

X: relación de sólidos suspendidos

d_p: diámetro de partícula

Dimpulsor: diámetro del impulsor

Es recomendable utilizar valores mayores a los proporcionados por la ecuación de Zwietering. Por ello, se utilizará la siguiente relación:

$$N_{real} = 2.9 N_{js}$$

Conociendo Reynolds para un tanque agitado:

$$Re = \frac{D_{impulsor}^2 N_{real} \rho_{susp}}{\mu}$$

Se puede correlacionar el número de Reynolds con el tipo de impulsor por medio del siguiente gráfico de la figura 11.

Finalmente, se obtiene la potencia por medio del número de potencia, el cual es adimensional.

2.3.3. Serpentines

En los tanques agitados, es práctica común incorporar equipos para la transferencia de calor del fluido de proceso. Estos equipos pueden ser encamisados, serpentines o calentadores eléctricos de inmersión. Los serpentines de enfriamiento consisten en un tubo metálico por el que fluye agua o un líquido de manera continua (ver figura 12).

Fuente: Bates *et al.* (1963). *An examination of some geometric parameters of impeller power.* p 310.

Es posible utilizar correlaciones para el cálculo de los coeficientes de película que intervienen en la transferencia de calor en tanques agitados. En Coulson y Richardson (2018) se presenta una correlación útil para un vaso agitado por impulsores de turbina.

$$\frac{h_o D_c}{k} = 34 \left(\frac{D_a^2 N \rho}{\mu}\right)^{0.5} \left(\frac{C_p \mu}{k}\right)^{0.3} \left(\frac{D_g}{D_p}\right)^{0.8} \left(\frac{W}{D_c}\right)^{0.25} \left(\frac{D_a D_T}{D_o^3}\right)^{0.85}$$

Donde:

ho: coeficiente de película de la suspensión

DT: diámetro del tanque

k: conductividad térmica

Da: diámetro de impulsor

N: velocidad de suspensión

ρ: densidad de suspensión

µ: viscosidad dinámica

C_p: capacidad calorífica de suspensión

Dg: diámetro del espacio entre vuelta de serpentín

D_p: altura del serpentín

W: altura del aspa del agitador

Dc: diámetro de vuelta de serpentín

D_o: diámetro del tubo de serpentín

Las dimensiones recomendadas para la construcción de serpentines se muestran en la figura 13.

Figura 13. Serpentines helicoidales

Fuente: Power Plus International. (2021). Consultado el 28 de febrero de 2021. Recuperado de http://www.helical-coil.com/#.

Figura 14. Dimensionamiento de serpentines helicoidales

Figure 14-3 Recommended geometries for wall baffles and helical coils.

Fuente: Paul. (2004). Handbook of industrial mixing. p 875.

3. DISEÑO METODOLÓGICO

3.1. Variables

Las variables de la investigación se clasificaron en función del objetivo analizado.

3.1.1. Determinación de la densidad del magma

La siguiente tabla resume las variables involucradas en la determinación del comportamiento de la densidad del magma en función de la temperatura de enfriamiento de la muestra.

Tabla III.	Variab	Variables en la determinación de la densidad			
Variable	Unidad	Independiente	Dependiente	Constante	
Temperatura	°C	Х			
Densidad	kg/m³		Х		
Porcentaje de sólidos	%		х		
Brix inicial	°Brix			X	

Fuente: elaboración propia.

3.1.2. Dimensionamiento del cristalizador

La siguiente tabla muestra las variables relacionadas con el cálculo de las dimensiones del cristalizador.

Variable	Unidad	Independiente	Dependiente	Constante
Constante de Zwietering	Constante			х
Viscosidad cinemática del líquido	m²/s	Х		
Gravedad	m/s²			Х
Densidad de sólido	kg/m³	х		
Densidad del líquido	kg/m³	х		
Porcentaje de sólidos	%	х		
Ratio de sólidos suspendidos	kg sólido/ kg líquido			
Ancho del impulsor	m	x		
Diámetro de partícula	m	x		
Velocidad de suspensión	rpm		x	
Número de Reynolds	Adimensional		x	
Número de potencia	Adimensional		x	
Potencia	HP		Х	

Fuente: elaboración propia.

3.1.3. Diseño del agitador

Las variables utilizadas en el diseño del agitador se muestran a continuación.

Variable	Unidad	Independiente	Dependiente
Tamaño de cristal	m	Х	
Tasa de crecimiento	m/h	х	
Tiempo de residencia	h		х
Producción volumétrica	m³/h	х	
Volumen efectivo	m ³		Х
Altura de líquido	m		Х
Diámetro de tanque	m		Х
Ancho de bafle	m		Х
Altura del impulsor	m		Х
Ancho del impulsor	m		Х

Tabla V. Variables del diseño del agitador

Fuente: elaboración propia.

3.1.4. Diseño del sistema de transferencia de calor

Las variables relacionadas con el diseño del sistema de transferencia de calor se detallan a continuación.

Tabla VI. Variables del diseño del sistema de transferencia de calor

Variable	Unidad	Independiente	Dependiente
Diámetro de tubo del serpentín	m		x
Diámetro del tanque	m	х	
Longitud de paso entre serpentín	m		x
Altura de serpentín	m		х
Altura del líquido	m	x	
Diámetro de hélice	m		Х

Continuación de la tabla VI.

Número de vueltas	Adimensional		Х
Longitud total del serpentín	m		х
Атос	m²		Х
Coeficiente de película de la solución	W/m ² °C		x
Coeficiente de película del vapor	W/m ² °C		x
Coeficiente de película del agua	W/m ² °C		x
Conductividad térmica	W/m °C	Х	
Diámetro de impulsor	m	Х	
Velocidad de suspensión	rpm	Х	
Densidad de suspensión	kg/m³	Х	
Viscosidad dinámica	kg/ms	Х	
Capacidad calorífica de suspensión	J/kg °C	х	
Diferencia de temperatura	°C	Х	
Transferencia de calor	W		X
Flujo másico del vapor	kg/s		Х

Fuente: elaboración propia.

3.1.5. Costo del equipo

En la determinación de costos se incluyen las variables descritas en la tabla.

Tabla VII. Variables de determinación de costos de equipo

Variable	Unidad	Independiente	Dependiente
Materiales de construcción	Adimensional	х	
Costo	Q		Х

Fuente: elaboración propia.

3.2. Delimitación del campo de estudio

El siguiente proyecto de investigación tiene como objetivo principal el diseño y dimensionamiento de un cristalizador *batch* por enfriamiento. El diseño consiste en un tanque agitado con deflectores, sistema de agitación de suspensión y un serpentín helicoidal para el enfriamiento de la solución.

Para el diseño del sistema de agitación se debe conocer la densidad y el contenido de sólidos de la suspensión generada por la solución de sacarosa y los cristales que crecen a medida que la temperatura disminuye. Estos se evaluarán en el laboratorio de fábrica del ingenio azucarero.

Se aplican conocimientos de operaciones unitarias en todo el proceso de diseño. Para el dimensionamiento y cálculo del tanque agitado y la agitación se aplican conocimientos del flujo de fluidos en tanques de mezcla. Los fundamentos de la cristalización se soportan en la transferencia de masa convectiva y de calor. El análisis del serpentín se realiza por medio de correlaciones de transferencia de calor.

3.3. Recursos humanos disponibles

- Investigador: Br. Manuel Alejandro Castro Aldana
- Asesor: Ing. Qco. Byron de Jesús López Maldonado (colegiado 1066)
- Laboratorista
- Dibujante

3.4. Recursos materiales disponibles

Los recursos utilizados durante el trabajo de graduación son los siguientes:

3.4.1. Cristalería

Incluye estos instrumentos:

- Probetas
- Beakers
- Pipetas
- Cucharas

3.4.2. Equipo

Se puede mencionar:

- Balanza analítica
- Termómetro
- Plancha de calentamiento y agitación

3.4.3. Software

Utilización de:

- Excel 2016
- Autodesk AutoCAD 2015
- GNU Octave

3.5. Técnica cualitativa o cuantitativa

La investigación para el diseño del cristalizador *batch* por enfriamiento para producción de magma de semilla tiene un enfoque cuantitativo. Para el correcto cálculo del sistema de agitación, se determinará el comportamiento de la densidad de la suspensión de cristales en jarabe a diferentes temperaturas de enfriamiento. Se calcularán las dimensiones del vaso cristalizador mediante estándares y siguiendo una metodología de diseño enfocada a cristalizadores industriales, se determinará el área de transferencia de calor para la evaporación y enfriamiento en el serpentín por medio de criterios de diseño y se determinará la potencia necesaria del motor y el tipo de impulsor para diseñar el sistema de agitación. Los planos se realizarán siguiendo el diseño mecánico propuesto. Finalmente, se determinará el costo del equipo. Los cálculos y fundamentos de diseño se explican a detalle en el apéndice.

3.5.1. Comportamiento de la densidad de suspensión

- Calentar 100 mL de agua destilada a 75 °C.
- Medir y agregar 317 g de azúcar refino proveniente de la refinería.
- Agitar hasta disolver en su totalidad el azúcar.
- Realizar medición de densidad a 70 °C.
- Remover temperatura.
- Introducir 1 ml de slurry preparado en la fábrica a los 65 °C.
- Realizar medición de densidad a 60 °C.
- Repetir medición de densidad en intervalos de 10 °C hasta llegar a una temperatura de 30 °C.
- Realizar el procedimiento dos veces más.
- Calcular el porcentaje de sólidos por medio del siguiente balance.

$$W = \frac{\rho_{susp} - \rho_L}{\rho_{sol} - \rho_L}$$

• Determinar la ratio de masa de sólidos en suspensión X.

$$X = \left[\frac{W}{1 - W}\right]$$

3.5.2. Diseño del vaso cristalizador

- Recopilar las especificaciones de diseño necesarias para el dimensionamiento del tanque de agitación.
- Determinar la producción volumétrica (ver Apéndice).
- Determinar el volumen efectivo inicial previo a la evaporación (ver Apéndice).
- Determinación del diámetro.

$$D_T = \sqrt[3]{\frac{15V_{efectivo,inicial}}{4\pi}}$$

- Dimensionamiento del fondo elipsoidal ASME (ver Apéndice.)
- Dimensionamiento del cuerpo cristalizador y bafles (ver Apéndice).
- Dimensionamiento de la cúpula y separador de arrastre (ver Apéndice).
- Seleccionar materiales de construcción.

3.5.3. Diseño del agitador

- Recopilar las especificaciones de diseño.
- Elegir el impulsor considerando flujo axial.
- Dimensionar el sistema de agitación.

• Determinar la velocidad óptima mínima para garantizar la suspensión de los cristales en la solución.

$$N_{js} = Sv^{0.1} \left[\left(\frac{g_c(\rho_{sol} - \rho_l)}{\rho_l} \right) \right]^{0.45} X^{0.13} d_p^{0.2} D_{impulsor}^{-0.85}$$
$$N_{real} = 2.9 * N_{js}$$

• Determinar la potencia de agitación considerando una eficiencia del 80%

$$Re = \frac{N_{real}D_{impulsor}^{2}\rho_{susp}}{\mu}$$
$$N_{P} = \frac{P}{\rho_{susp}N_{real}^{3}D_{impulsor}^{5}}$$

$$P = N_P \rho_{susp} N_{real}^3 D_{impulsor}^5$$
$$P_{real} = \frac{P}{0.8}$$

3.5.4. Diseño del serpentín de transferencia de calor

- Recopilar las especificaciones de diseño
- Determinar las dimensiones generales del serpentín

$$d_{tubo,externo} = 0.05398 m$$

$$s_{tubo} = 2.22 * d_{tubo,externo}$$

$$N_{tubo} = \frac{h_2}{2.22d_{tubo,externo}}$$

$$d_{serp} = D_T - (2J_{bafle} + d_{tubo,externo})$$

$$L_{tubo} = N_{tubo} \left(s_{tubo}^2 + \left(\pi d_{serp}^2\right)\right)^{0.5}$$

$$A_{TDC} = \pi d_{tubo,externo} L_{tubo}$$

Figura 15. Criterios de diseño para el dimensionamiento de serpentines

Figure 14-3 Recommended geometries for wall baffles and helical coils.

Fuente: Paul. (2004). Handbook of industrial mixing. p 875.

La transferencia de calor en el sistema cubre cuatro procesos: un calentamiento inicial a 75 °C, evaporación para concentrar la solución desde 68 a 76 °Brix, enfriamiento desde 75 a 65 °C (punto donde se realiza el semillamiento) y finalmente un enfriamiento controlado hasta los 30 °C. En esta última etapa el flujo de refrigerante no es constante y se debe considerar en función de las variables de operación como la sobresaturación, temperatura de la masa y características visuales del grano. A continuación, se muestra el análisis para las etapas de transferencia de calor:

• Coeficientes de calentamiento (65 a 75 °C).

$$\begin{split} h_{o,cal} &= \frac{34k_{L,70}}{D_T} \bigg(\frac{D_{impulsor}^2 N_{real} \rho_{L,70}}{\mu_{L,70}} \bigg) \bigg(\frac{C_{PL,70} \mu_{L,70}}{k_{L,70}} \bigg)^{0.3} \\ & \bigg(\frac{s_{tubo}}{h_2} \bigg)^{0.8} \bigg(\frac{h_{impulsor}}{d_{serp}} \bigg)^{0.25} \bigg(\frac{D_{impulsor}^2 D_T}{d_{tubo,externo}} \bigg)^{0.25} \\ h_{i,cal} &= 0.725 \bigg(\frac{k_{vap}^3 \rho_{vap}^2 g_c \lambda_{vap}}{d_{tubo,interno} \Delta T \mu_{vap}} \bigg)^{0.25} \bigg(1 + 3.5 \bigg(\frac{d_{tubo,interno}}{d_{serp}} \bigg) \bigg) \\ & U_{cal} = \frac{1}{\frac{1}{h_{o,cal}} + \frac{1}{h_{i,cal}}} \end{split}$$

• Coeficiente de evaporación (68 a 75 °Brix). De acuerdo con Rein, 2012.

$$U_{vap} = 0.567(100 - °Brix_{prom})(T_{vap} - 54)$$

• Coeficientes de enfriamiento (75 a 30 °Brix).

$$\begin{split} h_{oenf} &= \frac{34k_{susp,52.5}}{D_{T}} \left(\frac{D_{impulsor}^{2} N_{real} \rho_{susp,52.5}}{\mu_{susp,52.5}} \right) \left(\frac{C_{Psusp,52.5} \mu_{susp,52.5}}{k_{susp,52.5}} \right)^{0.3} \\ &\qquad \left(\frac{S_{tubo}}{h_{2}} \right)^{0.8} \left(\frac{h_{impulsor}}{d_{serp}} \right)^{0.25} \left(\frac{D_{impulsor}^{2} D_{T}}{d_{tubo,externo}} \right)^{0.25} \\ &\qquad h_{i,enf} = 0.023 \left(\frac{k_{ref}}{d_{tubo,interno}} \right) \left(\frac{d_{tubo,interno} v_{L,ref} \rho_{ref}}{\mu_{ref}} \right)^{0.8} \\ &\qquad \left(\frac{C_{P,ref} \mu_{ref}}{k_{ref}} \right)^{0.33} \left(1 + \frac{3.5 d_{tubo,interno}}{d_{serp}} \right) \\ &\qquad U_{enf} = \frac{1}{\frac{1}{h_{o,enf}} + \frac{1}{h_{i,enf}}} \end{split}$$

• Tiempo de calentamiento.

$$\theta_{cal} = \frac{m_{licor,filtrado}C_{pL,70}}{U_{cal}A_{TDC}} \ln \frac{T_{vap} - T_{ca}}{T_{vap} - T_{cb}}$$

• Tiempo de evaporación: se estima en 0.50 horas por datos recopilados del ingenio azucarero. • Tiempo de enfriamiento inicial.

$$K_{1} = Exp\left[\frac{UA}{\dot{m}_{ref}C_{p,ref}}\right]$$
$$\theta_{enf} = \frac{m_{total}C_{pL,70}}{\dot{m}_{ref}C_{p,ref}}\ln\frac{T_{ha} - T_{ref}}{T_{hb} - T_{ref}}$$

• Tiempo de enfriamiento final.

El valor real depende de las características de operación y se estima entre 4 a 4.50 horas de acuerdo con experiencias bibliográficas con el equipo.

3.6. Recolección y ordenamiento de la información

Para el dimensionamiento, diseño mecánico y cálculo de costo del equipo cristalizador se seguirá la siguiente metodología propuesta en la sección anterior.

3.6.1. Densidad del magma

Los datos relacionados con la determinación del comportamiento de la densidad del magma en función de la temperatura de enfriamiento se muestran en la siguiente tabla.

Tabla VIII.Evaluación de la densidad en función de la temperaturade enfriamiento del magma

Temperatura (°C)	Corrida	Densidad (g/mL)	Densidad (kg/m³)	Contenido de sólidos (%)
	1	1.36	1,358.00	0.00
70	2	1.36	1,360.00	0.01
	3	1.36	1,360.00	0.01

60	1	1.37	1,368.00	0.08
	2	1.36	1,364.00	0.06
	3	1.36	1,364.00	0.06
50	1	1.37	1,372.00	0.12
	2	1.37	1,370.00	0.11
	3	1.37	1,366.00	0.09
40	1	1.38	1,376.00	0.16
	2	1.38	1,376.00	0.16
	3	1.38	1,380.00	0.19
30	1	1.38	1,378.00	0.19
	2	1.38	1,380.00	0.19
	3	1.38	1,384.00	0.21

Fuente: elaboración propia mediante datos obtenidos en Laboratorio de Fábrica, Ingenio Santa Ana.

3.6.2. Cálculo de las dimensiones del vaso cristalizador

En la tabla IX se muestran los datos relevantes del cálculo del cristalizador.

Tabla IX. Parámetros de diseño del vaso cristalizador

Especificación	Símbolo	Unidad	Medida
Producción volumétrica	V _{templa}	m ³ /templa	7.54
			m ^e /templa
Tiempo de operación	Θ_{total}	h	5.5
Tasa de crecimiento	G	m/h	3.75x10⁻ ⁸ m/s
Diámetro del tanque	Dτ	m	2.17
Altura del nivel de líquido	h _{líquido}	m	2.60
Ancho del bafle	J _{bafle}	m	0.18
Diámetro del impulsor	Dimpulsor	m	0.73
Ancho del aspa	himpulsor	m	0.14
Largo del aspa	Limpulsor	m	0.26

Fuente: elaboración propia.

3.6.3. Sistema de agitación

Los datos relevantes del diseño del sistema de agitación se muestran en la tabla X.

Tabla X. Parámetros de diseño del sistema de agitación

Especificación	Símbolo	Unidad	Medida
Diámetro de tubo del serpentín	dtubo,externo	m	0.054
Diámetro del tanque	DT	m	2.17
Longitud de paso entre serpentín	Stubo	m	0.12
Altura de serpentín	hserp	m	2.18
Diámetro de hélice	d _{serp}	m	1.75
Número de vueltas	Ntubo	Adimensional	18.00
Longitud total del serpentín	Ltubo	m	97.61
Área total de transferencia	ATDC	m ²	16.55

Fuente: elaboración propia.

3.6.4. Diseño del serpentín de enfriamiento

Los datos obtenidos para el diseño del serpentín de enfriamiento se muestran a continuación.

Tabla XI. Parámetros de diseño del serpentín de enfriamiento

Especificación	Símbolo	Unidad	Medida
Constante de Zwietering	S	Constante	4.80
Viscosidad cinemática del líquido	V	m²/s	1.80
Gravedad	g c	m/s ²	9.80
Densidad de sólido	ρsol	kg/m ³	1,587.00
---------------------------------	-------------------	-------------------------	------------------------
Densidad del líquido	ρι	kg/m³	1,357.00
Porcentaje de sólidos	W	%	0.21
Ratio de sólidos suspendidos	Х	kg sólido/kg líquido	0.25
Ancho del impulsor	Dimpulsor	m	0.76
Diámetro de partícula	dp	m	110 x 10⁻ ⁶
Velocidad de suspensión	N _{real}	rpm	126.60
Número de Reynolds	Re	Adimensional	10,860.80
Número de potencia	Np	Adimensional	1.20
Potencia	Preal	kW	3,910.50

Fuente: elaboración propia.

3.6.5. Costo de fabricación del equipo

Los costos totales de cada resultado se muestran en la tabla XII.

Tabla XII. Tabla de presupuesto de fabricación del equipo

Rubro	Subtotal (Q)
Cuerpo	Q 121,230.15
Agitador	Q 21,311.50
Serpentín	Q 39,803.74
Total	Q 182,345.39

Fuente: elaboración propia.

3.7. Tabulación, ordenamiento y procesamiento de la información

La forma en la que se tabularon los datos se detalla en esta sección.

3.7.1. Densidad del magma

Los datos obtenidos de la determinación de la densidad en función de la temperatura de enfriamiento del magma se muestran en la siguiente tabla.

Tabla XIII.Evaluación de la densidad en función de la temperatura de
enfriamiento del magma

Temperatura (°C)		Densidad (kg/m³)
	70	
Media		1,380.67
Desviación estándar		3.06
	60	
Media		1,375.33
Desviación estándar		1.15
	50	
Media		1,369.33
Desviación estándar		3.06
	40	
Media		1,364.77
Desviación estándar		3.06
	30	
Media		1,359.33
Desviación estándar		1.15

Fuente: elaboración propia mediante datos obtenidos en Laboratorio de Fábrica, Ingenio Santa Ana.

3.7.2. Cálculo de las dimensiones del vaso cristalizador

Los resultados del cálculo de las dimensiones del cristalizador se muestran en la siguiente tabla.

Tabla XIV. Resultados del diseño del tanque cristalizador

Fuente: elaboración propia.

3.7.3. Sistema de agitación

Los datos del diseño del sistema de agitación se muestran a continuación.

Tabla XV. Resultados del diseño del sistema de agitación

Especificación	Símbolo	Unidad	Medida
Fluido de proceso	-	Adimensional	Licor filtrado y magma de semilla
Sustancia	-	Adimensional	Solución concentrada y suspensión sólida
Tipo de impulsor	-	Adimensional	Turbina de aspas inclinadas
Número de aspas	-	Unidad	6
Diámetro de impulsor	Dimpulsor	m	0.73
Material del impulsor	-	Adimensional	Acero inoxidable
Velocidad de agitación	Nreal	rpm	127
Potencia real requerida	Preal	kW	4
	Diagra	ma del equipo	
	SOPORTE EJE HEMBRA SOPORTE DE EJE	SOPORTE	
EJE		Р	
			SOPORTE ASPA
		ELI	EVACIÓN DE IMPULSOR

Fuente: elaboración propia.

3.7.4. Diseño del serpentín de enfriamiento

Se muestran los datos obtenidos para el diseño del serpentín.

Tabla XVI. Resultados del diseño del serpentín de enfriamiento

Especificación	Símbolo	Unidad	Medida
Tipo de intercambiador	-	Adimensional	Serpentín helicoidal
Material de fabricación	-	Adimensional	Cobre
Diámetro de tubo nominal	dtubo	m	0.051
Largo	L	m	96.64
Área total de transferencia	Atdc	m ²	18.31
Número de pasos	Ntubo	Adimensional	18
Ancho de hélice	dserp	Adimensional	1.75
Presión de vapor	Pvap	kPa	165.50
Coeficiente global de calentamiento	Ucalentamiento	W/m²°C	2,832.60
Coeficiente global de evaporación	Uevaporación	W/m²°C	1,063.70
Tipo de refrigerante	-	Adimensional	Etilenglicol 20 % (v/v)
Coeficiente global de enfriamiento	Uenfriamiento	W/m²°C	1,318.90
	Diagrama del	equipo	
]	
4 DEF 0.16) 0.		ENTRADA DE VAPOR	
VAP	or 1.814		

Fuente: elaboración propia.

3.7.5. Costo de fabricación del equipo

Los costos de fabricación del equipo de acuerdo con la pieza se muestran en la tabla XVII.

Tabla XVII. Tabla de presupuesto de fabricación del equipo

Subtotal (Q)
Q 121,230.15
Q 21,311.50
Q 39,803.74
Q 182,345.39

Fuente: elaboración propia.

3.8. Análisis estadístico

A continuación, se describe el análisis estadístico realizado.

3.8.1. Número de repeticiones

Para determinar el número de corridas necesarias se utiliza la siguiente ecuación:

$$N = \frac{p * q * z_{\alpha}^2}{E^2}$$

Donde:

- N: número de corridas experimentales
- p: probabilidad de éxito
- q: probabilidad de fracaso
- $Z_{\alpha/2}$: variable aleatoria en función del nivel de significancia
- α : nivel de significancia

E: error

Se tendrá un nivel de confianza de 95 % y un error aproximado de 25 %.

$$N = \frac{0.95 * 0.05 * 1.96^2}{0.25^2} = 3 \ corridas \ experimentales$$

Se consideran, entonces, las siguientes cantidades de tratamientos y corridas:

- Tratamientos: 5
- Corridas: 3
- Total de unidades: 15

3.8.2. Análisis de varianza de un factor

Para el análisis estadístico de las muestras de densidad analizadas, se utilizará el análisis de varianza de un factor o ANOVA unifactorial. Este análisis consiste en comparar más de dos medias de población o tratamiento.

El ANOVA se utilizará para comprobar la veracidad de la hipótesis nula planteada para el estudio de la influencia de la temperatura de enfriamiento sobre la densidad de una suspensión de cristales de sacarosa sobre jarabe. Las hipótesis planteadas se muestran a continuación:

Hipótesis nula

No existe diferencia significativa entre las medias de la densidad del magma de azúcar en función de la temperatura de enfriamiento.

$$H_o: \rho_{\mu 1} = \rho_{\mu 2} = \rho_{\mu 3}$$

Hipótesis alterna

Existe diferencia significativa entre las medias de la densidad del magma de azúcar en función de la temperatura de enfriamiento.

$$H_1: \rho_{\mu 1} \neq \rho_{\mu 2} \neq \rho_{\mu 3}$$

Para el cálculo del análisis de varianza unifactorial se usará el método de sumas de cuadrados:

Fuente: elaboración propia.

3.8.3. Plan de análisis de los resultados

El análisis de los resultados del comportamiento de la densidad de suspensión de los cristales de sacarosa en jarabe consistirá en un ANOVA

unifactorial para evaluar si existe una relación entre la variable de respuesta y la temperatura de enfriamiento. Estos datos serán usados para el diseño del sistema de agitación y de enfriamiento del cristalizador por enfriamiento.

Los resultados del diseño y dimensionamiento del equipo de cristalización se evaluarán para determinar si cumplen con las especificaciones de diseño propuestas inicialmente.

3.8.4. Programas para el análisis de datos

- Excel 2016
- Autodesk AutoCAD 2020
- GNU Octave

4. **RESULTADOS**

4.1. Comportamiento de la densidad de magma

Se muestra el comportamiento obtenido durante la experimentación.

Figura 16. Densidad de suspensión en función de la temperatura

Fuente: elaboración propia, realizado con Excel 2016.	

en jarabe

 (kg/m^3)

+ 1,396.50

4.2. Diseño del vaso cristalizador

Los resultados del diseño del cristalizador se muestran a continuación.

Tabla XIX. Dimensionamiento del vaso cristalizador

Especificación	Símbolo	Unidad	Medida	
Producción por templa	Vtempla	m ³ /templa	7.54	
Capacidad total	Vefectivo	m³	8.57	
Diámetro interno	DT	m	2.17	
Altura total (sin cúpula)	hCristalizador	m	3.26	
Altura de líquido	h Líquido	m	2.60	
Espesor de lámina	ELámina	m	0.013	
Material de construcción	-	Adimensional	Acero inoxidable AISI	
			304	
Tipo de fondo	-	Adimensional	Elipsoidal	
Número total de láminas	-	Unidad	2	
Dia managa dal a mina				

Fuente: elaboración propia según valores calculados con algoritmo de cálculo.

4.3. Diseño del sistema de agitación

Tabla XX.

Los resultados del diseño del sistema de agitación se muestran en la tabla.

Dimensionamiento del sistema de agitación

Especificación Símbolo Unidad Medida Licor filtrado y magma Fluido de proceso Adimensional _ de semilla Solución concentrada y Sustancia Adimensional suspensión sólida Turbina de aspas Tipo de impulsor Adimensional inclinadas Número de aspas Unidad 6 _ Diámetro de impulsor 0.73 Dimpulsor m Material del impulsor Adimensional Acero inoxidable -Velocidad de agitación 127 Nreal rpm Potencia real Preal 4 kW requerida

Fuente: elaboración propia según algoritmo de cálculo.

4.4. Diseño del sistema de transferencia de calor

Los resultados del diseño del serpentín se muestran a continuación.

Tabla XXI.Diseño del sistema de transferencia de calor

Especificación	Símbolo	Unidad	Medida
Tipo de intercambiador	-	Adimensional	Serpentín helicoidal
Material de fabricación	-	Adimensional	Cobre
Diámetro de tubo nominal	dtubo	m	0.051
Largo	L	m	96.64
Área total de transferencia	Atdc	m ²	18.31
Número de pasos	Ntubo	Adimensional	18
Ancho de hélice	d _{serp}	Adimensional	1.75
Presión de vapor	Pvap	kPa	165.50
Coeficiente global de calentamiento	Ucalentamiento	W/m ² °C	2,832.60
Coeficiente global de evaporación	Uevaporación	W/m ² °C	1,063.70
Tipo de refrigerante	-		Etilenglicol 20 % (v/v)
Coeficiente global de enfriamiento	Uenfriamiento	W/m ² °C	1,318.90
	Diagrama de	el equipo	
4 DEFLECTOR 0.15 x 2.16 x 1 0.24 - 0.24 - 0.12 - 0.12 - 0.08 - SALIDA DE VAPOR		ENTRADA DE VAPOR	

Fuente: elaboración propia según algoritmo de cálculo.

4.5. Costo total del cristalizador

El costo total de materiales del equipo se detalla a continuación.

Tabla XXII.Tabla de presupuesto de fabricación del equipo

Sección	Rubro	Especificación	Unidad	Cantidad	Costo unitario	Subtotal
	Lámina 8'x20'	Acero inoxidable 304 1/2"	c/u	2.00	Q 40,953.59	Q 81,907.18
	Lámina 8'x20'	Acero inoxidable 304 1/4"	c/u	1.00	Q 18,463.09	Q 18,463.09
	Lámina 8'x20'	Lámina hierro negro 1/2"	c/u	1.00	Q 10,094.11	Q 10,094.11
	Mirillas	Luceta redonda 3/4" x 6" Pyrex	c/u	3.00	Q 856.49	Q 2,569.46
	Tubería de limpieza	Tubo hierro negro ced. 40 0.237" 4"	m	6.51	Q 163.05	Q 1,061.46
Cuerpo	Tubería de descarga	Tubo inoxidable 316 ced. 10 10"	m	0.50	Q 909.61	Q 454.81
	Tubería de alimentación	Tubo inoxidable 304 ced. 10 6"	m	0.50	Q 355.26	Q 177.63
	Tubería de arrastres	Tubo hierro negro ced. 40 0.237" 4"	m	1.66	Q 163.05	Q 270.66
	<i>Flange</i> para registro	<i>Flange</i> hierro negro 150 lbs 20"	c/u	2.00	Q 638.29	Q 1,276.58
	Tubería de registro	Tubo hierro negro ced. 40 0.593" 20"	m	0.50	Q 2,886.37	Q 1,443.19
	Empaques de registros	Lámina con inserción de alambre Teadit 1/8"	m2	1.06	Q 837.00	Q 888.06

	<i>Flange</i> de salida de magma	Flange (Slip on) inoxidable 304 150 lbs 10"	c/u	1.00	Q 1,062.50	Q 1,062.50
	<i>Flange</i> de salida de magma	Tornillo G5 hexagonal rosca ordinaria 7/8" x 3 1/2"	c/u	12.00	Q 5.67	Q 68.04
	<i>Flange</i> de salida de magma	Tuerca G5 hexagonal rosca ordinaria 7/8"	c/u	12.00	Q 1.60	Q 19.20
	Flange de entrada de licor	Tornillo G5 hexagonal rosca ordinaria 3/4" x 3 1/2"	c/u	8.00	Q 3.48	Q 27.84
- Cuerpo -	Flange de entrada de licor	Tuerca G5 hexagonal rosca ordinaria 3/4"	c/u	8.00	Q 0.95	Q 7.60
	Flange de entrada de licor	Arandela plana 3/4"	c/u	8.00	Q 0.28	Q 2.24
	Flange entrada de agua	Flange (slip on) inoxidable 304 150 lbs 4"	c/u	1.00	Q 361.79	Q 361.79
	Flange entrada de agua	Tornillo G5 hexagonal rosca ordinaria 5/8" x 3 1/2"	c/u	8.00	Q 2.54	Q 20.32
	Flange entrada de agua	Tuerca G5 hexagonal rosca ordinaria 5/8"	c/u	8.00	Q 0.56	Q 4.48
-	Flange entrada de agua	Arandela plana 5/8"	c/u	8.00	Q 0.26	Q 2.08
	Flange de lucetas	Tornillo G5 hexagonal rosca ordinaria 1/2" x 2"	c/u	8.00	Q 1.40	Q 11.20
	Flange de lucetas	Tuerca G5 hexagonal rosca ordinaria 1/2"	c/u	8.00	Q 0.29	Q 2.32

	Flange de lucetas	Arandela plana 1/2"	c/u	8.00	Q 0.25	Q 2.00
	Flange registro de cuerpo	Tornillo G5 hexagonal rosca ordinaria 1 1/8" x 3 1/2"	c/u	20.00	Q 8.38	Q 167.60
	Flange registro de cuerpo	Tuerca G5 hexagonal rosca ordinaria 1 1/8"	c/u	20.00	Q 4.22	Q 84.40
Cuerpo	Flange registro de cuerpo	Arandela plana 1 1/8"	c/u	20.00	Q 1.75	Q 35.00
-	Flange salida de vapor	Tornillo G5 hexagonal rosca ordinaria 1 1/8" x 3 1/2"	c/u	20.00	Q 8.38	Q 167.60
	Flange salida de vapor	Tuerca G5 hexagonal rosca ordinaria 1 1/8"	c/u	20.00	Q 4.22	Q 84.40
	Flange salida de vapor	Arandela plana 1 1/8"	c/u	20.00	Q 1.75	Q 35.00
	Viga 6"	Viga W 6" x 25 lb	m	11.30	Q 319.41	Q 3,609.33
	Maza del impulsor	Barra perforada acero inoxidable 304 5" x 3"	c/u	1.00	Q 2,655.00	Q 2,655.00
Ciatama	Aspas	Acero inoxidable 304 1/4"	c/u	0.10	Q 18,463.09	Q 1,846.31
de de	Eje sólido	Eje redondo acero 3" (Brinell 300-400)	m	5.40	Q 857.36	Q 4,629.74
agitación -	Bushing de bronce	Bushing de bronce 63 7 3/4" x 3"	c/u	1.00	Q 6,837.26	Q 6,837.26
	Bushing de bronce	Bushing de bronce BC-2432 4" x 3"	c/u	1.00	Q 132.72	Q 132.72
	Bushing de hierro negro	Barra perforada acero al carbono 6" x 3 1/4"	c/u	1.00	Q 302.34	Q 302.34

Bushing de hierro negro	Barra perforada acero al carbono 7 1/2" x 5"	c/u	1.00	Q 904.95	Q 904.95
Hembra - platina de soporte	Tornillo G5 hexagonal rosca ordinaria 3/4" x 1 1/2"	c/u	8.00	Q 2.69	Q 21.52
Hembra - platina de soporte	Tuerca G5 hexagonal rosca ordinaria 3/4"	c/u	8.00	Q 0.95	Q 7.60
Hembra - platina de soporte	Arandela plana 3/4"	c/u	8.00	Q 0.28	Q 2.24
Flange de estopero	Flange (slip on) hierro negro 150 lbs 6"	c/u	2.00	Q 147.32	Q 294.64
Flange de estopero	Tornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"	c/u	8.00	Q 3.01	Q 24.08
Flange de estopero	Tuerca G5 hexagonal rosca ordinaria 3/4"	c/u	8.00	Q 0.95	Q 7.60
Flange de estopero	Arandela plana 3/4"	c/u	8.00	Q 0.28	Q 2.24
Flange de tapadera de apriete	Tornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"	c/u	8.00	Q 3.01	Q 24.08
Flange de tapadera de apriete	Tuerca G5 hexagonal rosca ordinaria 3/4"	c/u	8.00	Q 0.95	Q 7.60
Flange de tapadera de apriete	Arandela plana 3/4"	c/u	8.00	Q 0.28	Q 2.24
	Bushing de hierro negro Hembra - platina de soporte Hembra - platina de soporte Flange de estopero Flange de estopero Flange de estopero Flange de estopero Flange de estopero Flange de tapadera de apriete Flange de	Bushing de hierro negroBarra perforada acero al carbono 7 1/2" x 5"Hembra- platina de soporteTornillo G5 hexagonal rosca ordinaria 3/4" x 1 1/2"Hembra - platina de soporteTuerca G5 hexagonal rosca ordinaria 3/4" x 1 1/2"Hembra - platina de soporteFlange (slip on) hierro negro 150 lbs 6"Flange de estoperoFlange (slip on) hierro negro 150 lbs 6"Flange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"Flange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"Flange de estoperoTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"Flange de estoperoTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"Flange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4"Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"Flange de tapadera de aprieteArandela plana 3/4"Flange de tapadera de aprieteArandela plana 3/4"	Bushing de hierro negroBarra perforada acero al carbono 7 1/2" x 5"c/uHembra - platina de soporteTornillo G5 hexagonal rosca ordinaria 3/4" x 1 1/2"c/uHembra - platina de soporteTuerca G5 hexagonal rosca ordinaria 3/4" x 1 1/2"c/uHembra - platina de soporteTuerca G5 hexagonal rosca ordinaria 3/4"c/uFlange de estoperoFlange (slip on) hierro negro 150 lbs 6"c/uFlange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"c/uFlange de estoperoTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"c/uFlange de estoperoTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"c/uFlange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"c/uFlange de tapadera de aprieteTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"c/uFlange de tapadera de aprieteTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"c/u	Bushing de hierro negroBarra perforada acero al carbono 7 1/2" x 5"c/u1.00 1.00 1.00 1.00 1.2" x 5"Hembra - platina de soporteTornillo G5 hexagonal rosca ordinaria 3/4" x 1 1/2"c/u8.00Hembra - platina de soporteTuerca G5 hexagonal rosca ordinaria 3/4"c/u8.00SoporteTuerca G5 hexagonal rosca ordinaria 3/4"c/u8.00Flange de estoperoFlange (slip on) hierro negro 150 lbs ordinaria 3/4" x 2 1/2"c/u8.00Flange de estoperoFlange (slip on) hierro negro 150 lbs ordinaria 3/4" x 2 1/2"c/u8.00Flange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"s.008.00Flange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"s.008.00Flange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4"s.008.00Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4"c/u8.00Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4"c/u8.00Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"c/u8.00	Bushing de hierro negroBarra perforada acero al carbono 7 1/2" x 5"c/u1.00Q 904.95Hembra - platina de soporteTornillo G5 hexagonal rosca ordinaria 3/4" x 1 1/2"c/u8.00Q 2.69Hembra - platina de soporteTuerca G5 hexagonal rosca ordinaria 3/4"c/u8.00Q 0.95Hembra - platina de soporteTuerca G5 hexagonal rosca ordinaria 3/4"c/u8.00Q 0.95Hembra - platina de soporteTuerca G5 hexagonal rosca ordinaria 3/4"c/u8.00Q 0.28Flange de estoperoFlange (slip on) hierro negro 150 lbs 6"c/u8.00Q 0.28Flange de estoperoFlange (slip on) hexagonal rosca ordinaria 3/4" x 2 1/2"c/u8.00Q 0.28Flange de estoperoTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"c/u8.00Q 0.28Flange de estoperoTornillo G5 hexagonal rosca ordinaria 3/4" x 2 1/2"s.00Q 0.28Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"s.00Q 0.28Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4" x 2 1/2"s.00Q 0.28Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4" x 2 0.01s.00Q 0.28Flange de tapadera de aprieteTuerca G5 hexagonal rosca ordinaria 3/4" x 2 0.28s.00Q 0.28

Total						
						Q
Serpentín _	Tuerca de amarre del serpentín	Tuerca hexagonal inoxidable rosca ordinaria 1/4"	c/u	72.00	Q 0.22	Q 15.84
	Varillas	Varilla lisa acero inoxidable 1/4"	m	8.28	Q 16.20	Q 134.14
	Tubería de cobre	Tubo de cobre 2" (D. ext. 2 1/8") tipo K 51	c/u	16.00	Q 2,478.36	Q 39,653.76

Fuente: elaboración propia.

5. INTERPRETACIÓN DE RESULTADOS

Los objetivos del estudio se centran en el diseño de un cristalizador por enfriamiento para la producción de magma de semillamiento para ser utilizado en los tachos de refinería de un ingenio azucarero. El ciclo de operación del equipo consiste en: carga, evaporación de solvente, enfriamiento inicial, semillamiento, enfriamiento final y descarga.

El equipo diseñado debe ser capaz de promover una correcta circulación durante el ciclo de operación. Durante el lote, el licor filtrado que es alimentado al cristalizador se concentra por evaporación y posteriormente es enfriado y semillado con *slurry*. En este punto, comienza el crecimiento de los cristales introducidos y la sustancia se convierte en una suspensión sólido-líquido, en donde el tamaño del sólido se incrementa hasta un tamaño de 110 µm al final del lote.

La circulación de la suspensión de los cristales de sacarosa debe ser del tipo de flujo mixto y con una velocidad de agitación suficiente para que los cristales se distribuyan de manera homogénea en el cristalizador. Para encontrar la velocidad y potencia de agitación fue necesario conocer el comportamiento de la densidad de la suspensión sólido-líquido a medida que ocurren dos fenómenos simultáneos: el crecimiento paulatino de los cristales de sacarosa y el enfriamiento de la suspensión.

La figura 15 muestra que el comportamiento de la densidad del magma es de carácter ascendente conforme desciende la temperatura. El magma estudiado se compone de jarabe de azúcar sobresaturado y cristales de sacarosa de alta

65

pureza. El jarabe de azúcar disminuye su grado de sobresaturación mientras que las moléculas de sacarosa se trasladan a la retícula cristalina de los granos. La pérdida de sacarosa en el jarabe y por ende el crecimiento de los cristales, contribuyen al aumento de la densidad del magma.

El análisis de varianza aplicado al conjunto de datos evaluado determinó que la hipótesis nula, la cual establece que no existe diferencia significativa entre las medias de la densidad del magma de azúcar en función de la temperatura de enfriamiento, es falsa. El valor de Fisher calculado para los datos es mayor que el valor crítico con un nivel de confianza del 95 %. Esto, aunado al coeficiente de correlación de 0.99, indica una fuerte dependencia de la densidad con la temperatura de enfriamiento.

Por medio de la regla D³ la cual establece que la relación entre el tamaño del *slurry* y el tamaño final del grano elevado al cubo es igual a la relación entre la masa introducida de *slurry* y la masa de los cristales con el tamaño final. A partir de los datos de densidad obtenidos, se recurrió a datos bibliográficos de la densidad del licor madre a la temperatura de enfriamiento y de la densidad de los cristales de sacarosa (Rein, 2012). Por medio de la relación entre las tres densidades presentes en el magma se determinó el porcentaje del contenido de sólidos presentes en la templa al final del ciclo. Esto permitió calcular la producción volumétrica por templa.

El dimensionamiento del cristalizador se definió alrededor del diámetro del cuerpo como medida central para el cálculo de todas las secciones del equipo. La forma elipsoidal del fondo se seleccionó para proveer una mejor circulación de los sólidos y procurar la homogenización en todo el equipo. Durante la fase de evaporación es posible que ocurra arrastre de moléculas de sacarosa, por lo que se extendió la altura del cuerpo y se dimensionó un separador de arrastre del tipo reversión de flujo. Adicionalmente, se incluyeron mirillas, tubería de limpieza, tubería de alimentación de semilla, tubería de alimentación de licor, tubería de descarga de magma y tubería de agua al cuerpo para pruebas hidrostáticas.

Debido a que el fluido de trabajo es un licor concentrado con partículas sólidas de sacarosa, se debe garantizar que la velocidad y el diseño del agitador podrán suspender homogéneamente los cristales. Una mala circulación provocaría zonas de sobresaturación lábil locales y se produciría falso grano. En el diseño del sistema de agitación se calculó la velocidad mínima para mantener los cristales arriba del fondo y se multiplicó por un factor de seguridad para mantener la mezcla en suspensión.

Las soluciones concentradas de sacarosa presentan comportamientos como fluidos pseudoplásticos. La potencia real de agitación es un parámetro necesario para la selección del motor y reductor. Esta se determinó por medio del cálculo del número de Reynolds y la determinación del número de potencia con la gráfica de Bates, Fondy y Corpstein. Se supuso una eficiencia del 80 % para el cálculo de la potencia real.

El sistema de transferencia de calor consiste en un intercambiador de calor de serpentín. El equipo debe realizar cuatro tareas por lote: un calentamiento inicial, evaporación, enfriamiento inicial y enfriamiento final. Para las dos primeras tareas se utilizará vapor del primer efecto de evaporación. Para las tareas de enfriamiento se utilizará refrigerante proveniente del sistema de enfriamiento del chiller de la refinería. Los coeficientes de transferencia de calor se determinaron mediante correlaciones empíricas y el tiempo de calentamiento y enfriamiento por medio de balances de calor en estado no estacionario.

67

El diseño del serpentín se realizó siguiendo estándares de dimensionamiento. Se seleccionó cobre tipo K de 2" como material de fabricación debido a su excelente conductividad térmica. El serpentín se soporta en varillas de acero inoxidable unidas a pequeñas platinas soldadas a cada bafle del tanque. Las varillas sujetan el tubo con firmeza, pero no está soldado para permitir la expansión térmica del material.

El costo del equipo considera únicamente el costo de los materiales de fabricación, los costos de mano de obra de fabricación, materiales destinados al montaje, trabajos en taller mecánico y costos de instrumentación y control no se consideran en el trabajo. Se considera el precio de los materiales de construcción y su cantidad.

CONCLUSIONES

- Se analizó el comportamiento de la densidad de suspensión en función de la temperatura de enfriamiento en un proceso de crecimiento cristalino de sacarosa en jarabe de alta pureza, determinando con un nivel de confianza del 95 % y un coeficiente de correlación de 0.99 que existe una dependencia fuerte del factor de temperatura de enfriamiento.
- 2. Se diseñó un cristalizador para producir magma de semillamiento por medio de una metodología de diseño por tarea, llegando a dimensionar un vaso cristalizador con una producción volumétrica de 7.54 m³ por lote con un fondo elipsoidal y separador de arrastre del tipo reversión de flujo.
- 3. A partir de los datos experimentales y considerando los requerimientos de agitación, se diseñó un agitador de turbinas inclinadas a 45° con una potencia de 3.40 kW que mantiene una suspensión completa de los cristales de sacarosa.
- 4. Se calculó un sistema de transferencia de calor mediante un serpentín helicoidal de 18 vueltas de cobre tipo K.
- Se determinó el costo total de los materiales de fabricación del cristalizador, el sistema de agitación y el serpentín helicoidal; el costo de materiales fue de Q 182,345.39.

RECOMENDACIONES

- Optimizar el diseño del cristalizador mediante simulaciones de las condiciones de agitación con programas de CFD (*Computational Fluid Dynamics*) para conocer el comportamiento del fluido y su interacción con el diseño del fondo, del impulsor y del serpentín.
- Considerar una instrumentación del equipo completa, incluyendo medición de grados Brix en línea y grado de sobresaturación. Automatizar el equipo y sus controles.
- Asegurar la inocuidad del proceso seleccionando los materiales detallados en el documento.
- 4. Realizar mediciones constantes de la granulometría que se obtiene con el uso del equipo y el cristal obtenido en los tachos de la refinería.
- 5. Diseñar y construir un tanque recibidor del magma de semilla para almacenar y distribuir el producto a los tachos.

REFERENCIAS

- Aamir, E., Nagy, Z. K., y Rielly, C. D. (2010). Evaluation of the effect of seed preparation method on the product crystal size distribution for batch cooling crystallization processes. *Crystal Growth and Design*, *10*(11), 4728–4740. Recuperado de https://doi.org/10.1021/cg100305w
- Ahmedna, M., Marshall, W. E., y Rao, R. M. (2000). Granular Activated Carbons From Agricultural By-Products : Preparation, Properties, and Application in Cane Sugar Refining. *Methods*, *71*(869), 15–17.
- ASME. (2013). Section VIII Rules for Construction of Pressure Vessels Division 1. En ASME Boiler and Pressure Vessel Code. The American Society of Mechanical Engineers.
- Baikow, V. E. (1982). Manufacture and Refining of Raw Cane Sugar. En Manufacture and Refining of Raw Cane Sugar (2a ed., Vol. 1). Elsevier. Recuperado de https://doi.org/10.1016/c2013-0-12459-2
- Bates, Robert L.; Fondy Philip L.; Corpstein, R. R. (1963). An examination of some geometric parameters of impeller power. *Industrial y Engineering Chemistry Research*, 2(4), 5. Recuperado de https://doi.org/10.1021/i260008a011

- Bermingham, S. K., Neumann, A. M., Kramer, H. J. M., Verheijen, P. J. T., Rosmalen, G. M. Van, y Grievink, J. (2000). A DESIGN PROCEDURE AND PREDICTIVE MODELS FOR SOLUTION CRYSTALLISATION PROCESSES. 250–264.
- Brujin, J. M. de. (1986). Monosaccharides in alkaline medium: isomerization, degradation, oligomerization. Delft University of Technology. Recuperado de http://resolver.tudelft.nl/uuid:7a4d811c-8ce9-4a67-81a4beedea5dddd8
- 8. CENGICAÑA. (2014). *El cultivo de la caña de azúcar en Guatemala.* Artemis Edinter.
- De Castro, B. J. C., Marciniuk, M., Giulietti, M., y Bernardo, A. (2019). Sucrose crystallization: Modeling and evaluation of production responses to typical process fluctuations. *Brazilian Journal of Chemical Engineering*, 36(3), 1237–1253. Recuperado de https://doi.org/10.1590/0104-6632.20190363s20180240
- Delgado, A. V. (2001). Sugar Processing and By-Products of the Sugar Industry. En FAO. FAO.
- Doki, N., Kubota, N., Sato, A., y Yokota, M. (2001). Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum. *Chemical Engineering Journal*, *81*(1–3), 313–316. Recuperado de https://doi.org/10.1016/S1385-8947(00)00172-8

- 12. Engineering, H. (s/f). *Magma mixer*. Hexon Engineering. Recuperado el
 1 de marzo de 2021, de http://www.hexonengineering.com/magmamixer.html
- Felix, E. P., Alabi, S. B., y Umo, A. M. (2019). A regression model for estimating sugar crystal size in a fed-batch vacuum evaporative crystalliser. *Chemical Engineering Transactions*, *75*(July 2018), 553–558. Recuperado de https://doi.org/10.3303/CET1975093
- Geankoplis, C. J. (1998). Procesos de transporte y operaciones unitarias (3a ed.). CECSA.
- 15. Hugot, E. (1986). Manual del Ingeniero Azucarero.
- Ibrahim, S. S., y Selim, A. Q. (2011). Evaluation of Egyptian diatomite for filter aid applications. *Physicochemical Problems of Mineral Processing*, 47(April 2011), 113–122.
- International, P. P. (s/f). *Helical coils*. Recuperado el 1 de marzo de 2021, de http://www.helical-coil.com/#
- International, U. S. (s/f). Melt clarification system with phosphofloatation / carbonation. Uttam Sucrotech International. Recuperado de http://www.usipl.com/product-detail/melt-clarification-system-withphosphofloatation-carbonation
- Isidoro, M. A. B. (2016). Benemérita Universidad Autónoma de Puebla. México. Benemérita Universidad Autónoma de Puebla, 145.

- Lehnberger, A., y Laue, D. (2016). Improved crystallisation in cane sugar mills with updated strategies and equipment. 29, 1507–1514.
- 21. Lewis, A., Seckler, M., Kramer, H., y Rosmalen, G. Van. (2015). *Industrial Crystallization: Fundamentals and Applications* (1a ed.). Cambridge University Press.
- McCabe, W. L. J. C. S. P. H. (2013). Operaciones Unitarias en Ingeniería Química. En *Journal of Chemical Information and Modeling* (7a ed., Vol. 53, Número 9). McGraw-Hill.
- Mncube, F. S., Love, D. J., Sikhakhane, P., Ogle, D., y Mtembu, T. (2018).
 Automation of white pans at the Tongaat Hulett refinery. International Sugar Journal, 120(1431), 474–488.
- 24. Moodley, M; Schorn, P. M. W. D. (2017). Optimising the carbonation process. January 2002.
- Morgenroth, B., y Singh Bola, H. (2017). Seed-cooling crystalliser technology for improvement of crystal quality and sugar recovery. *International Sugar Journal*, *119*(1421), 1901–1907.
- Morgenroth, Boris. (2018). Batch pan automation and its impact on energy conservation in cane sugar factories. *International Sugar Journal*, *December* 2014. Recuperado de https://www.researchgate.net/publication/279028251

- Myerson, A. S., Engineering, C., Engineering, C., Chemical, A., Award, S., Science, S., Separations, A., Clarence, D., Award, G. G., Process, A., Division, D., Development, P., Erdemir, D., Scientist, P., Company, B. S., Lee, A., Scientist, P., y Scientist, P. (2019). *Handbook of Industrial Crystallization* (3a ed.). Cambridge University Press. Recuperado de https://doi.org/10.1017/9781139026949
- Nagy, Z. K. (2008). Model based control approach for batch crystallization product design. *IFAC Proceedings Volumes (IFAC-PapersOnline)*, *17*(1 PART 1), 970–975. Recuperado de https://doi.org/10.3182/20080706-5-KR-1001.3835
- 29. Paul, E. L., Atiemo-obeng, V. A., y Kresta, S. M. (2004). *Handbook of Industrial Mixing*. John Wiley y Sons, Inc.
- Perry, R. H. . D. W. G. (2008). Perry's Chemical Engineers' Handbook (8a ed.). McGraw-Hill. Recuperado de https://doi.org/10.1036/0071422943
- Prof. Ing. Marcos A. Golato. (2014). Sistema de control en cocimientos de azúcar. Universidad Nacional de Tucumán, 27.
- Rastikian, K., Capart, R., y Benchimol, J. (1999). Modelling of sugar drying in a countercurrent cascading rotary dryer from stationary profiles of temperature and moisture. *Journal of Food Engineering*, *41*(3), 193–201. Recuperado de https://doi.org/10.1016/S0260-8774(99)00086-2

- 33. Rein, P. (2012). Ingeniería de la Caña de Azúcar. Bartens.
- Sánchez-Sánchez, K.B.; Bolaños-Reynoso, E.; Urrea-García, G. R.
 (2017). Analysis of Operating Conditions for Cane Sugar Batch. *Revista Mexicana de Ingeniería Química*, *16*(3), 1029–1052.
- SIB. (2016). Análisis Sector Económico Azúcar. 19. file:///C:/Users/osest/Downloads/Estudio del sector azucarero, referido a mayo 2016.pdf
- Unno, J., y Hirasawa, I. (2020). Partial Seeding Policy for Controlling the Crystal Quality in Batch Cooling Crystallization. *Chemical Engineering Technology*, *43*(6), 1065–1071. Recuperado de https://doi.org/10.1002/ceat.201900618
- Urbaniec, K. (1989). Modern Energy Economy in Beet Sugar Factories. En Sugar Series (Vol. 10). Recuperado de https://doi.org/10.1002/ceat.201900618https://doi.org/10.1016/B97 8-0-444-87294-4.50011-4
- 38. van der Meer, Tjebbe; Minow, Benjamin; Lagrange, Bertille; Krumbein, Franziska; Rolin, F. (2014). Diatomaceous Earth Filtration: Innovative Single-Use Concepts for Clarification of High-Density Mammalian Cell Cultures. Bioprocess International. Recuperado de https://bioprocessintl.com/downstreamprocessing/filtration/diatoma ceous-earth-filtration-innovative-single-use-concepts-clarificationhigh-density-mammalian-cell-cultures/

- 39. Vega, R. (2019). Análisis del proceso de semillamiento: efecto de la cantidad. Recuperado de https://www.researchgate.net/publication/337063799_ANALISIS_D EL_PROCESO_DE_SEMILLAMIENTO_EFECTO_DE_LA_CANTI DAD_INTRODUCIDA_DE_SLURRY_EN_UN_SISTEMA_DE_CRI STALIZACION_DE_DOBLE_MAGMA
- 40. Westhoff, G. M., Kramer, H. J. M., Jansens, P. J., y Grievink, J. (2004). Design of a multi-functional crystallizer for research purposes. 82(July), 865–880.
APÉNDICE

• Algoritmo de cálculo para el volumen de templa y de volumen efectivo

Apéndice 1. Situación actual en refinería del ingenio azucarero

Tiempo promedio de templa de azúcar refino	3.25 horas
Tiempo de semillamiento (crecimiento inicial de grano)	0.50 horas
Tamaño aproximado al final de semillamiento	148.00 µm
CV aproximado al final de semillamiento	48.62 %
Producción diaria (zafra 2020 – 2021)	16,573.50 qq
Quintales por templa de azúcar	571.50 qq/templa
Templas diarias promedio (zafra 2020 – 2021)	29
Número de tachos actual	4 tachos

Fuente: elaboración propia según datos del ingenio azucarero.

o Incremento en el número de templas con el equipo nuevo

$$\begin{split} & Tiempo \ ahorrado \ en \ semillamiento = Tiempo \ de \ templa - Tiempo \ de \ semilla \\ & Templas \ diarias \ nuevo = \frac{24 \ horas * Número \ de \ tachos}{Tiempo \ ahorrado \ semilla} \\ & Producción \ esperada = Templas \ diarias \ nuevo * Quintales \ por \ templa \\ & \% \ Aumento \ de \ producción \ = \frac{Producción \ vieja - Producción \ nueva}{Producción \ vieja} * 100 \end{split}$$

• Templas del cristalizador

Cada templa del equipo por diseñar se tarda aproximadamente 5 a 5.5 horas en culminar una templa. En un día se harían 4 templas del equipo. Cada templa del equipo debe de tener el volumen suficiente para proveer de magma de semillamiento necesario para las templas de azúcar refino que se hacen en un día.

 $Templa\ cristalizador = \frac{Templas\ diarias\ nuevo}{Templas\ diarias\ cristalizador}$

El cálculo del volumen de cada templa se realizó por la regla D³ partiendo de la cantidad de cristales a inocular en las templas de refino.

Apéndice 2. Propiedades del slurry del ingenio azucarero

Volumen de slurry por templa de azúcar refino	300 ml
Concentración del slurry	0.45 kg cristales/L etanol
Tamaño de grano promedio	8.87 µm
CV de grano promedio	57.28 %
Tipo de molino	Vertical
Tiempo de maduración	5h

Fuente: elaboración propia según datos del ingenio azucarero.

• Volumen total de *slurry* por inyectar en cristalizador

 $V_{slurry} = 300 \ ml * Templa \ cristalizador$

• Masa seca de *slurry*

$$m_{cristales,slurry} = 0.45 \frac{kg}{L} * V_{slurry}$$

• Masa final de cristales (regla "D³")

$$m_{cristales,final} = \frac{m_{cristales,slurry}}{\left[\frac{T_{grano,slurry}}{T_{grano,final}}\right]^3}$$

Contenido de sólidos a 30 °C

$$W = \frac{\rho_{susp} - \rho_L}{\rho_{sol} - \rho_L}$$

Ratio de sólidos a 30 °C

$$X = \frac{W}{1 - W}$$

• Masa final de jarabe saturado

$$m_{jarabe} = rac{m_{cristales,final}}{X}$$

• Masa final total de templa

 $m_{total} = m_{jarabe} + m_{cristales, final}$

• Volumen final de templa

 $V_{templa} = m_{total} * \rho_{susp, 30^{\circ}C}$

• Detalles de la evaporación del licor filtrado

Apéndice 3. Detalles de la operación de evaporación

Tipo de fluido	Licor filtrado de refinería
Densidad inicial	1,303.00 kg/m ³
Viscosidad inicial	0.016 Pa*s
Pureza	99.65 %
Grados Brix inicial	68.00
Grados Brix final	76.00

Fuente: elaboración propia con base en datos del ingenio azucarero.

• Contenido de sólidos

 $m_{s \circ lidos} = 0.76(m_{total})$

• Masa inicial de licor por templa

$$\begin{split} m_{agua} &= \frac{m_{s \acute{o} lidos} - 0.68 * m_{s \acute{o} lidos}}{0.68} \\ m_{licor\ filtrado} &= m_{s \acute{o} lidos} + m_{agua} \end{split}$$

• Volumen total efectivo del equipo

 $V_{efectivo,inicial} = m_{licor\,filtrado} * \rho_{licor,70^{\circ}C}$

• Algoritmo de cálculo para el diseño del vaso cristalizador

El cuerpo cristalizador se compondrá de las siguientes partes:

• Medidas del fondo elipsoidal (ver figura 11)

Apéndice 4. Detalles del fondo

Acero inoxidable AISI 304
Elipsoidal
1
6"
10"
1/2"
14.80 m ²

Fuente: elaboración propia.

El volumen efectivo de líquido en el tanque está repartido entre el volumen del fondo y el cuerpo cilíndrico superior. Para calcular las medidas, ambos se expresan en función del diámetro total del cristalizador.

$$V_{fondo} = \frac{\pi}{12} D_T^2 * h_1$$

$$V_{cuerpo} = \frac{\pi}{4} * D_T^2 * h_2$$

$$h_1 = 0.2 * D_T$$

$$h_2 = 1.0D_T$$

$$V_{efectivo,inicial} = \frac{\pi}{60} D_T^3 + \frac{\pi}{4} D_T^3$$

$$D_T = \sqrt[3]{\frac{15V_{efectivo,inicial}}{4\pi}}$$

$$D_{T,externo} = D_T + 2\varepsilon_{lámina}$$

$$a = \frac{D_{T,externo}}{2}, c = \frac{h_1}{2}, e = \sqrt{1 - \frac{c^2}{a^2}}$$

$$A_{elipsoide} = \left[2\pi a^2 + \frac{\pi c^2}{e} \ln \frac{1+e}{1-e}\right] * \frac{1}{2}$$

$$\#Láminas = \frac{A_{elipsoide}}{A_{lámina}}$$

Medidas del cuerpo cristalizador

Material	Acero inoxidable AISI 304
Lucetas	3
Tubería de soplado	Hierro negro
Tubería de semillamiento	Hierro negro 1"
Tubería de limpieza de mirillas	Hierro negro 1/2"
Área de lámina	14.80 m ²
Espesor de lámina	1/2"

Apéndice 5. Detalles del cuerpo

Fuente: elaboración propia.

 $V_{cuerpo} = \frac{\pi}{4} * D_T^2 * h_2$ $h_{cristalizador} = 1,50 D_T$ $A_{cuerpo} = \pi D_{T,externo} (h_{cristalizador} - h_1)$ $\#L\acute{a}minas = \frac{A_{cuerpo}}{A_{l\acute{a}mina}}$

o Bafles

Apéndice 6.

Detalles de bafles

Material	Acero inoxidable AISI 304
Área de lámina	14.8 m ²
Espesor de lámina	1/4"
Número de bafles	4

Fuente: elaboración propia.

$$J_{bafle} = \frac{D_T}{12}$$
$$L_{bafle} = h_1$$

$$A_{bafles} = 4J_{bafle} * L_{bafle}$$
$$#L\acute{a}minas = \frac{A_{bafles}}{A_{l\acute{a}mina}}$$

• Cúpula y separador de arrastre

Se compone de los siguientes elementos:

- Cono inferior (1)
- Cilindro externo de cúpula (2)
- Lámina superior (3)
- Cilindro truncado superior (4)
- Cilindro truncado inferior (5)

Fuente: elaboración propia, realizado con AutoCAD 2021.

• Cono inferior

Las medidas del cono inferior se calculan como sigue:

Fuente: elaboración propia, realizado con AutoCAD 2021.

 $d_{T} = 0.30 * D_{T}$ $d_{T,externo} = d_{T} + 2\varepsilon_{lámina}$ $h_{4} = 0.10 * h_{cristalizador}$ $g = \sqrt{h_{4}^{2} + \left(\frac{D_{T} - d_{T}}{2}\right)^{2}}$ $A_{cono} = \pi g \frac{D_{T,externo} + d_{T,externo}}{2}$ #Láminas = $\frac{A_{cono}}{A_{lámina}}$

• Cilindro externo

Apéndice 9.

Dimensiones del cilindro externo

Fuente: elaboración propia, realizado con AutoCAD 2021.

$$d_c = 0.50 * D_T$$

 $d_{c,externo} = d_c + 2\varepsilon_{lámina}$
 $h_c = 0.88d_c$
 $A_{cilindro} = \pi d_{c,externo}h_c$
#Láminas = $\frac{A_{cilindro}}{A_{lámina}}$

• Lámina superior

$$A_{l\acute{a}mina\ superior} = \pi * \frac{d_{c,externo}^2}{4}$$
$$#L\acute{a}minas = \frac{A_{l\acute{a}mina\ superior}}{A_{l\acute{a}mina}}$$

• Cilindro truncado superior

Apéndice 10.

Dimensiones del cilindro truncado superior

Fuente: elaboración propia, realizado con AutoCAD 2021.

$$d_{cs} = 0.40D_{T}$$

$$d_{cs,externo} = d_{cs} + 2\varepsilon_{lámina}$$

$$h_{cs1} = 0.90d_{cs}$$

$$h_{cs2} = 0.51h_{cs1}$$

$$A_{cilindro\ superior} = \pi d_{cs,externo} \left(\frac{h_{cs1} + h_{cs2}}{2}\right)$$

$$\#L\acute{a}minas = \frac{A_{cilindro\ superior}}{A_{l\acute{a}mina}}$$

Cilindro truncado inferior

Apéndice 11. Dimensiones del cilindro truncado inferior

Fuente: elaboración propia, realizado con AutoCAD 2021.

$$d_{ci} = 0.30 * D_{T}$$

$$d_{ci,externo} = d_{ci} + 2\varepsilon_{lámina}$$

$$h_{ci1} = 1.05d_{ci}$$

$$h_{ci2} = 0.78d_{ci}$$

$$A_{cilindro\ inferior} = \pi d_{ci,externo} \left(\frac{h_{ci1} + h_{ci2}}{2}\right)$$

$$\#L\acute{a}minas = \frac{A_{cilindro\ inferior}}{A_{lámina}}$$

Algoritmo de diseño del sistema de agitación

El agitador del cristalizador se compone de los siguientes elementos:

• Dimensionamiento general del sistema de agitación (ver figura 10)

El sistema de agitación se diseñó de la siguiente manera:

$$h_{liquido} = h_1 + h_2$$
$$E = \frac{h_{liquido}}{4}$$
$$D_{impulsor} = \frac{D_T}{3}$$

Dimensionamiento del impulsor 0

Apéndice 12. Detalles del impulsor

Turbina con aspas inclinadas a 45°
6
1
6
Acero inoxidable AISI 304 ¼"
Cobre diam. 0.20 m
3"

Fuente: elaboración propia.

$$\begin{split} h_{impulsor} &= \frac{D_{impulsor}}{5} \\ L_{impulsor} &= \frac{D_{impulsor}}{2} - \frac{D_{bushing}}{2} \\ L_{bushing} &= h_{impulsor} * \sin \frac{\pi}{4} \\ L_{eje} &= h_{cristalizador} - E + h_4 + h_c + 2W_{viga} + 0.32 \end{split}$$

Dimensionamiento del soporte interno del eje 0

$$L_{viga} = \frac{D_T}{2} - \frac{D_{eje}}{2} - \varepsilon_{bushing}$$

Velocidad de agitación 0

$$N_{js} = Sv^{0.10} \left[\left(\frac{g_c(\rho_{sol} - \rho_l)}{\rho_l} \right) \right]^{0.45} X^{0.13} d_p^{0.2} D_{impulsor}^{-0.85}$$
$$N_{real} = 2.90 * N_{js}$$

• Potencia de agitación

$$Re = \frac{N_{real}D_{impulsor}^{2}\rho_{susp}}{\mu}$$
$$N_{P} = \frac{P}{\rho_{susp}N_{real}^{3}D_{impulsor}^{5}}$$

Utilizando el diagrama de la figura 11 se calcula el número de potencia considerando el uso de una turbina de 6 aspas inclinadas a 45°. A continuación, despejando la potencia y considerando una eficiencia del 80 %.

$$P = N_P \rho_{susp} N_{real}^3 D_{impulsor}^5$$
$$P_{real} = \frac{P}{0.8}$$

• Dimensionamiento del bancazo para el motor

Apéndice 13. **Detalles del bancazo**

Viga (6")	6 m
Lámina hierro negro (1")	1

Fuente: elaboración propia.

$$L_{viga} = D_T$$
$$L_{viga} = h_c + h_3$$

- Algoritmo de diseño del sistema de transferencia de calor
 - o Dimensiones generales del serpentín

De acuerdo con la figura 14:

$$d_{tubo,externo} = 0.054 m$$

$$s_{tubo} = 2.22 * d_{tubo,externo}$$

$$N_{tubo} = \frac{h_2 - 0.05 m}{2.22d_{tubo,externo}}$$

$$d_{serp} = D_T - (2J_{bafle} + d_{tubo,externo})$$

$$L_{tubo} = N_{tubo} \left(s_{tubo}^2 + \left(\pi d_{serp}\right)^2\right)^{0.5}$$

$$A_{TDC} = \pi d_{tubo,externo}L_{tubo}$$

• Coeficientes de calentamiento (65 a 75°C)

Apéndice 14. Detalles del calentamiento de licor

Temperatura inicial de licor	65 °C
Temperatura final de licor	75 °C
Temperatura promedio	70 °C
Concentración de sólidos disueltos	68 °Brix
Temperatura de vapor (saturado)	121 °C

Fuente: elaboración propia.

$$\begin{split} h_{o,cal} &= \frac{34k_{L,70}}{D_T} \bigg(\frac{D_{impulsor}^2 N_{real} \rho_{L,70}}{\mu_{L,70}} \bigg) \bigg(\frac{C_{PL,70} \mu_{L,70}}{k_{L,70}} \bigg)^{0.3} \\ & \bigg(\frac{s_{tubo}}{h_2} \bigg)^{0.8} \bigg(\frac{h_{impulsor}}{d_{serp}} \bigg)^{0.25} \bigg(\frac{D_{impulsor}^2 D_T}{d_{tubo,externo}} \bigg)^{0.25} \\ h_{i,cal} &= 0.725 \bigg(\frac{k_{vap}^3 \rho_{vap}^2 g_c \lambda_{vap}}{d_{tubo,interno} \Delta T \mu_{vap}} \bigg)^{0.25} \bigg(1 + 3.5 \bigg(\frac{d_{tubo,interno}}{d_{serp}} \bigg) \bigg) \end{split}$$

$$U_{cal} = \frac{1}{\frac{1}{h_{o,cal}} + \frac{1}{h_{i,cal}}}$$

• Coeficiente de evaporación (68 a 75 °Brix)

De acuerdo con Rein, 2012:

 $U_{vap} = 0.567(100 - {^\circ}Brix_{prom})(T_{vap} - 54)$

• Coeficientes de enfriamiento (75 a 30°Brix)

Apéndice 15. Detalles del enfriamiento de masa

Temperatura inicial de licor	75 °C
Temperatura final de masa	30 °C
Temperatura promedio	52.5 °C
Concentración de sólidos disueltos inicial	76 °Brix
Concentración de sólidos disueltos final	68 °Brix
Concentración promedio	72 °Brix
Temperatura de refrigerante	5 °C
Caudal mínimo (Chiller: York YVAA Style A)	15.80 L/s
Velocidad lineal de refrigerante	7.18 m/s

Fuente: elaboración propia según datos del ingenio azucarero.

$$\begin{split} h_{oenf} &= \frac{34k_{susp,52,5}}{D_{T}} \left(\frac{D_{impulsor}^{2} N_{real} \rho_{susp,52,5}}{\mu_{susp,52,5}} \right) \left(\frac{C_{Psusp,52,5} \mu_{susp,52,5}}{k_{susp,52,5}} \right)^{0.3} \\ &\qquad \left(\frac{S_{tubo}}{h_{2}} \right)^{0.8} \left(\frac{h_{impulsor}}{d_{serp}} \right)^{0.25} \left(\frac{D_{impulsor}^{2} D_{T}}{d_{tubo,externo}} \right)^{0.25} \\ h_{i,enf} &= 0.023 \left(\frac{k_{ref}}{d_{tubo,interno}} \right) \left(\frac{d_{tubo,interno} v_{L,ref} \rho_{ref}}{\mu_{ref}} \right)^{0.8} \\ &\qquad \left(\frac{C_{P,ref} \mu_{ref}}{k_{ref}} \right)^{0.33} \left(1 + \frac{3.5d_{tubo,interno}}{d_{serp}} \right) \end{split}$$

$$U_{enf} = \frac{1}{\frac{1}{h_{o,enf}} + \frac{1}{h_{i,enf}}}$$

• Tiempo total de templa

Apéndice 16. **Fases de la templa**

Fases de la cristalización	Tiempo (horas)
Carga/prevacío	0.08
Calentamiento	Θ _{cal}
Evaporación	0.50
Enfriamiento inicial (sobresaturación)	Θ _{enf}
Enfriamiento final (crecimiento)	4.25
Descarga	0.15
Soplado	0.05

Fuente: elaboración propia según datos del ingenio azucarero.

• Tiempo de calentamiento

$$\theta_{cal} = \frac{m_{licor,filtrado}C_{pL,70}}{U_{cal}A_{TDC}} \ln \frac{T_{vap} - T_{ca}}{T_{vap} - T_{cb}}$$

• Tiempo de evaporación

Se estima en 0.5 horas por datos recopilados del ingenio azucarero.

• Tiempo de enfriamiento inicial

$$K_1 = Exp\left[\frac{UA}{\dot{m}_{ref}C_{p,ref}}\right]$$

$$\theta_{enf} = \frac{m_{total}C_{pL,70}}{\dot{m}_{ref}C_{p,ref}} \ln \frac{T_{ha} - T_{ref}}{T_{hb} - T_{ref}}$$

• Tiempo de enfriamiento final

El valor real depende de las características de operación y se estima entre 4 a 4,50 horas de acuerdo con experiencias con el equipo.

Desarrollo de cálculos en GNU Octave

El programa de cálculo se basa en la metodología planteada anteriormente.

Apéndice 17. Algoritmo en GNU Octave

```
1 #Algoritmo de cálculo de la producción volumétrica
 2
 3
    #Cálculo de aumento de producción
 4 numero tachos = input("Tachos existentes en refinería:");
 5
  tiempo actual templa = input("Tiempo de templa actual:");
 6 tiempo_semillamiento = input("Tiempo de semillamiento actual:");
 7
    tiempo templa nuevo = tiempo actual templa-tiempo semillamiento;
 8
9 numero_templa_actual = input("Numero de templas diarias actual:");
10 quintales_por_templa = input("Quintales producidos por templa:");
11 tamano_slurry = input("Tamaño de slurry en fábrica:");
12 tamano final de grano = input("Tamaño final de grano en la templa:");
13 produccion_actual = numero_templa_actual*quintales_por_templa;
14
15 numero templa nuevo = (24*4)/tiempo templa nuevo;
16 produccion_esperada = numero_templa_nuevo*quintales_por_templa;
17 porcentaje aumento = ((produccion esperada-produccion actual)/produccion actual)*100;
18
19 #Cálculo de la producción volumétrica de magma de semilla
20 tiempo_templa_cristalizador = 5.5;
21
```

```
21
22
    e=0.1;
23 k=0;
24 🗐 do
    numero templa cristalizador = 24/tiempo_templa_cristalizador;
25
26
    produccion_por_templa = numero_templa_nuevo/numero_templa_cristalizador;
27
28
    slurry_por_templa = 0.300*produccion_por_templa;
29
    concentracion slurry = 3.6/8;
    masa_seca_cristales = slurry_por_templa*concentracion_slurry;
30
31
    masa_sacarosa_final = masa_seca_cristales/((tamano_slurry/tamano_final_de_grano)^3);
32
    densidad_suspension = 1380.67;
33
    densidad_licor = 1357;
    densidad_jarabe = 1330;
34
    densidad_solido = 1586;
35
36
    Wl = (densidad suspension-densidad jarabe)/(densidad solido-densidad jarabe);
    X = W1/(1-W1);
37
    masa liquido = masa sacarosa final/X;
38
    masa_total_templa = masa_sacarosa_final+masa_liquido;
39
    volumen total templa = masa total templa/densidad suspension
40
    volumen_templa_pies = volumen_total_templa*3.28^3;
41
43
    #Cálculo de carga de concentración y volumen efectivo
    Brix_inicio = input("Brix de licor filtrado:");
44
45
    Brix_final = input("Brix final concentración:");
46
    solidos = masa_total_templa*Brix_final;
    masa licor_inicial = solidos/Brix_inicio;
masa_agua_evaporada = masa_licor_inicial-masa_total_templa;
47
48
49
    volumen_licor = masa_licor_inicial/densidad_licor;
50
    volumen_licor_final = masa_total_templa/1353.5;
51
52
    #1. Dimensionamiento del vaso cristalizador
53
    #1.1. Fondo elipsoidal
54
    diametro_fondo = (15*volumen_licor/(4*pi))^(1/3);
55
    diametro_fondo_externo = diametro_fondo+0.0254;
56
    altura_fondo = 0.2*diametro_fondo;
volumen_fondo = (pi/12)*diametro_fondo^2*altura_fondo;
57
58
    a = diametro_fondo_externo/2;
    c = altura_fondo/2;
59
    e = (1-c^2/a^2)^{0.5};
60
    area_fondo = (2*pi*a^2+((pi*c^2)/e)*log((1+e)/(1-e)));
61
    area lamina = 14.8;
62
63
    numero_laminas_fondo = area_fondo/area_lamina;
64
65
    #1.2. Cuerpo cristalizador
66
    diametro_cuerpo = diametro_fondo;
67
    diametro cuerpo externo = diametro cuerpo+0.0254;
68
    altura_h2 = diametro_cuerpo;
69
    volumen cuerpo = (pi/4)*diametro cuerpo^2*altura h2;
70
    altura_liquido = altura_fondo+altura_h2;
71
    altura_cristalizador = 1.5*diametro_cuerpo;
72
    area_cuerpo = pi*diametro_cuerpo_externo*(altura_cristalizador-altura_fondo);
73
    numero_laminas_cuerpo = area_cuerpo/area_lamina;
74
     ancho_bafles = diametro_cuerpo/12;
    largo_bafles = altura_h2;
75
76
     area_bafles = 4*ancho_bafles*largo_bafles;
77
    numero_laminas_bafles = area_bafles/area_lamina;
78
79
    #1.3. Cúpula y separador de arrastre
80
    #1.3.1. Cono grande inferior
81
    altura_cono = 0.1*altura_cristalizador;
82
    diametro_cono = 0.3*diametro_cuerpo;
    diametro_cono_externo = diametro_cono+0.0254;
83
84
    generatriz = (altura_cono^2+((diametro_cuerpo-diametro_cono)/2)^2)^0.5;
```

```
85 area cono = pi*generatriz*((diametro cuerpo externo+diametro cono externo)/2);
 86 numero laminas cono = area_cono/area_lamina;
 87
     #1.3.2. Cilindro superior
 88 diametro_cilindro = 0.5*diametro_cuerpo;
89 diametro_cilindro_externo = diametro_cilindro+0.0254;
 90 altura cilindro = 0.88*diametro cilindro;
 91 area_cilindro = pi*diametro_cilindro_externo;
 92
     numero laminas cilindro = area cilindro/area lamina;
 93 #1.3.3. Lámina superior
 94 area_lamina_superior = pi*(diametro_cilindro_externo/2)^2;
 95 numero laminas superior = area lamina superior/area lamina;
 96
     #1.3.4. Cilindro truncado superior
 97 diametro cilindro s = 0.4*diametro cuerpo;
 98 diametro_cilindro_s_externo = diametro_cilindro_s+0.0254;
     altura cilindro sl = 0.9*diametro cilindro s;
 99
100 altura cilindro s2 = 0.51*diametro cilindro s;
101 area_cilindro_s = pi*diametro_cilindro_s_externo*((altura_cilindro_sl+altura_cilindro_s2)/2);
102
     numero_laminas_cilindro_s = area_cilindro_s/area_lamina;
103
     #1.3.5. Cilindro truncado inferior
104 diametro_cilindro_i = 0.3*diametro_cuerpo;
105 diametro_cilindro_i_externo = diametro_cilindro_i+0.0254;
106
     altura cilindro il = 1.05*diametro cilindro i;
107 altura_cilindro_i2 = 0.78*diametro_cilindro_i;
108
     area cilindro i = pi*diametro cilindro i externo*((altura cilindro il+altura cilindro i2)/2);
109 numero_laminas_cilindro_i = area_cilindro_i/area_lamina;
110
111
     #2. Dimensionamiento de sistema de agitación
112 #2.1. Dimensiones del impulsor
113 E = altura liquido/4;
114 diametro_impulsor = diametro_cuerpo/3;
115 w viga = 0.15;
116 espesor_bushing = 0.02;
117
     altura impulsor = diametro impulsor/5;
118 H_eje = altura_cristalizador-E+altura_cilindro+2*w_viga+0.3254;
119 L_impulsor = diametro_impulsor/2-espesor_bushing/2;
120 L bushing = espesor bushing;
121 area_impulsor = 6*altura_impulsor*L_impulsor;
122 numero laminas impulsor = area impulsor/area lamina;
123 #2.2.Velocidad de agitación
124 S = 4.8;
     S = 4.8;
125 viscosidad_masa = 0.141;
126 gravedad = 9.81;
```

127 diametro_particula = 0.00011; 128 v = viscosidad_masa/densidad_jarabe; N_minima = S*(v^0.1)*(((gravedad*(densidad_solido-densidad_jarabe))/densidad_jarabe)^0.45)*(X^0.13)* 129 130 (diametro_particula^0.13) * (diametro_impulsor^(-0.35)); 131 N_real = N_minima*2.9; N_real_rpm = N_real*60; 132 Place Potencia de agitación
Re = (N_real*diametro_impulsor^2*densidad_suspension)/viscosidad_masa; 133 134 135 numero_potencia = 1.2; 136 137 potencia = N_real^3*densidad_suspension*numero_potencia*diametro_impulsor^5; potencia_real = potencia/0.8; 138 potencia_real_hp = potencia_real*0.00134; 139 140 #3. Diseño del sistema de transferencia de calor 141 #3.1. Dimensiones generales de serpentin d_tubo = 0.05398 s_tubo = 2.22*d_tubo N_tubo = (altura_h2-0.05)/(2.22*d_tubo) 142 143 144 d serp = diametro_cuerpo-(2*ancho_bafles+d_tubo)
L_tubo = N_tubo*(s_tubo^2+(pi*d_serp)^2)^0.5 145 146 147 area_TDC_ext = pi*d_tubo*L_tubo area_prueba_TDC = (pi/2)*((s_tubo^2+(pi*d_serp)^2)^0.5)*((4*(volumen_licor-pi*diametro_cuerpo^3/60))/(pi*diametro_cuerpo^2)); 148 149 150 151 #3.2. Coeficiente de transferencia de calor en calentamiento #3.2.1. Coeficiente del licor 152 D_licor_cal = 1320.29; K_licor_cal = 0.4153; u_licor_cal = 0.0184; 153 154 155 Cp_licor_cal = 4170.2; 156 157 ho_cal = 34*(K_licor_cal/diametro_cuerpo)*(diametro_impulsor^2*N_real*D_licor_cal/u_licor_cal)^0.5*(Cp_licor_cal/u_licor_cal/K_licor_cal) 158 ^0.3*(s_tubo/altura_h2)^0.8*(altura_impulsor/d_serp)^0.25*(diametro_impulsor^2*diametro_cuerpo/d_tubo^3)^0.25 159 160 #3.2.2. Coeficiente del vapor 161 d_tubo_interno = 0.0525; K_vapor_cal = 0.687; D_vapor_cal = 938.09; 162 163 164 H_vap = 2199400; 165 u_vapor_cal = 0.00021817; 166 delta_T = 22.5; 167 T_vap = 121;

```
167
      hi_cal = 0.725*(K_vapor_cal^3*D_vapor_cal^2*gravedad*H_vap/(d_tubo_interno*delta[T*u_vapor_cal)}^0.25*(1+3.5*d_tubo_interno/d_serp)
168
     U_cal = 1/(1/ho_cal+1/hi_cal)
169
170
171
     #3.3. Coeficiente general de evaporación
U_vap = 0.000567*(100-((Brix_final+Brix_inicio)/2)*100)*(T_vap-54)*1000
172
173
      #3.4. Coeficientes de transferencia de calor en enfriamiento
174
      #3.4.1. Coeficiente del licor
175
     D_susp_enf = 1372;
176
     K_susp_enf = 0.3924;
177
     u_susp_enf = 0.0864;
178
      Cp_susp_enf = 2659.79;
179
     ho_enf = 34*(K_susp_enf/diametro_cuerpo)*(diametro_impulsor^2*N_real*D_susp_enf/u_susp_enf)^0.5*(Cp_susp_enf*u_susp_enf/K_susp_enf)^0.3*
(s_tubo/altura_h2)^0.8*(altura_impulsor/d_serp)^0.25*(diametro_impulsor^2*diametro_cuerpo/d_tubo^3)^0.25
180
181
182
183
      #3.4.2. Coeficiente del refrigerante
184
     K_{ref} = 0.4757;
     vel_ref = 1.472;
185
186
     D_ref = 1025;
187
      u_ref = 0.00181;
188
     Cp_ref = 3554;
     m_ref = 27.16;
189
190
191
     hi_enf = 0.023*(K_ref/d_tubo_interno)*(d_tubo_interno*vel_ref*D_ref/u_ref)^0.8*(Cp_ref*u_ref/K_ref)^0.33*(1+3.5*d_tubo_interno/d_serp)
192
     U_enf = 1/(1/ho_enf+1/hi_enf)
193
      #3.5. Tiempos de operación
194
195
     t_ex = 0.43;
196
      t_vap = 0.5;
197
      t_enf_control = 4;
198
      #3.5.1. Tiempo de calentamiento
199
      T cal a = 65;
      T_cal_b = 75;
200
201
202
      t_calentamiento = (masa_licor_inicial*Cp_licor_cal/(U_cal*area_TDC_ext))*log((T_vap-T_cal_a)/(T_vap-T_cal_b))/3600
203
204
      #3.5.3. Tiempo de enfriamiento
205
     T_enf_a = 75;
206
      T_enf_b = 65;
207
      T_ref = 5;
      t_enfriamiento = masa_total_templa*Cp_susp_enf*Kl/(m_ref*Cp_ref*(Kl-l))*log((T_enf_a-T_ref)/(T_enf_b-T_ref))/3600
209
210
211
      t_templa = t_calentamiento+t_vap+t_enf_control+t_ex+t_enfriamiento
212
213
     d tiempo = abs(tiempo templa cristalizador-t templa);
     tiempo_templa_cristalizador=t_templa
214
215 until (d_tiempo<=e);</pre>
216
217 t_templa
```

Fuente: elaboración propia, realizado con GNU Octave.

- Metodología propuesta por Bermingham *et al* (2000)
 - Nivel 0: especificaciones de diseño del equipo

Apéndice 18. Especificaciones de diseño (Nivel 0)

Especificaciones del producto		
En el cristalizador	Suspensión de sólidos sin sedimentar	
En operaciones subsiguientes	Tamaño y CV óptimo, baja viscosidad	
Especificaciones del proceso		
Tipo de fluido	Licor filtrado de refinería	
Densidad	1,306.00 kg/m ³	
Viscosidad	18.40 cp	
Grados Brix	68.00	
Pureza	99.65 %	
Color	220 IU	
Modo de operación	Discontinuo	
Tiempo aproximado de templa	5.5 horas	
Producción volumétrica	7.54 m ³ /templa	
Temperatura de trabajo	35 – 70 °C	
Presión de vacío	0.54 kg/cm ²	
Producción de sólidos	2,100.00 kg cristales/templa	
Fluidos auxiliares	Vapor 1.05 kg/cm ² y refrigerante	

Fuente: elaboración propia.

• Nivel 1: especificaciones del producto cristalino

Apéndice 19. Especificaciones del producto (Nivel I)

Especificaciones del producto			
Tipo de fluido Suspensión de azúcar en licor			
Tamaño requerido 100 – 120 µm			

Coeficiente de variación	< 40 %
Temperatura final	30 °C
Brix de licor madre	68 °Brix (Saturado)

Fuente: elaboración propia.

• Nivel 2: diseño fisicoquímico del proceso

Apéndice 20. Diseño fisicoquímico del proceso (nivel II)

Datos del fluido			
Tipo de fluido Licor filtrado de refinería			
Densidad	1,306.00 kg/m ³		
Viscosidad	18.40 cp		
Grados Brix	68.00		
Pureza	99.65 %		
Color	220 IU		
Variables de operación			
Método de cristalización	Enfriamiento		
Curva de solubilidad	Dependiente de la temperatura		
Purificación de alimentación	Filtrado a presión		
Presión de vacío	0.54 kg/cm ²		
Rango de enfriamiento	60 – 30 °C		
Rango de concentración de magma	76 – 90 °Brix		
Sobresaturación de semillamiento	1.15		

Fuente: elaboración propia.

Nivel 3: diseño del proceso de cristalización 0

Apéndice 21. Diseño del proceso de cristalización (Nivel III)

Variables de alimentación			
Tipo de fluido	Licor filtrado de refinería		
Densidad	1306.00 kg/m ³		
Viscosidad	18.4 cp		
Grados Brix	68.00		
Pureza	99.65 %		
Color	220 IU		
Modo de operación	Discontinuo/Batch		
Variables	s de operación		
Método de cristalización Enfriamiento			
Curva de solubilidad	Dependiente de la temperatura		
Purificación de alimentación	Filtrado a presión		
Presión de vacío	0.54 kg/cm ²		
Rango de temperatura	35 – 80 °C		
Rango de concentración de	70 00 °Driv		
magma	70-00 DIX		
Sobresaturación de	1 15		
semillamiento			
Tiempo de templa 5.5 horas			
Travactoria de onfriamiento Controlada a diferencia de 5 °C entre			
	masa y agua		
Tasa de crecimiento de cristales	3.75x10 ⁻⁸ m/s		
Tipo de proceso	Batch		
Especificaciones del producto			
Tipo de fluido	Suspensión de azúcar en licor		
Tamaño requerido	100 – 120 μm		
Coeficiente de variación	< 40 %		
Temperatura final	30 °C		
Diagrama de flujo de proceso			
(Ver páginas siguientes)			

(Ver páginas siguientes) Trayectoria de cristalización

(Ver anexo 5)

Fuente: elaboración propia.

Apéndice 22. Diagrama de flujo de proceso

Fuente: elaboración propia, realizado con DIA.

• Nivel 4: diseño de la etapa de cristalización

Apéndice 23. Diseño del proceso

Variables del proceso			
Capacidad de producción	7.54 m ³ /templa		
Composición de la alimentación	Licor filtrado a 68 °C		
Método de cristalización	Enfriamiento		
Modo de operación	Por lotes		
Rango de temperatura (lado de proceso)	30°C – 75°C		
Presión de operación	0.54 kg/cm ²		
Sobresaturación de operación	1.15		
Tiempo de templa	5.50 horas		
Tasa de crecimiento	3.75x10⁻ ⁸ m/s		
Rango de concentración	68 – 76°Brix		
Variables de	I producto		
Tamaño de cristal 110 µm			
CV	40 %		
Brix final de jarabe	68 °Brix		
Temperatura	30 °C		
Densidad de suspensión	1,380.00 kg/m ³		
Contenido de cristales	19 %		
Variables del equipo			
Tipo de cristalizador	Batch por enfriamiento		
Material del cristalizador	Acero inoxidable AISI 304		
Tipo de agitador	Aspas inclinadas a 45°		
Material del agitador	Acero inoxidable AISI 304		
Tipo de intercambiador de calor	Serpentín helicoidal vertical		
Material del IDC	Acero inoxidable AISI 304		

Fuente: elaboración propia.

Apéndice 24. Valores del proceso

Valores calculados de templa			
Volumen de <i>slurry</i> por inyectar	V _{slurry}	2.40 L	
Masa de cristales de slurry	mcristales,slurry	1.08 kg	
Masa de cristales producidos	M cristales,final	2059.80 kg	
Tamaño de slurry	Tgrano,slurry	8.87 µm	
Tamaño final de cristal	Tgrano,final	110 µm	
Masa del jarabe resultante	Mjarabe	8,347.00 kg	
Masa total de templa final	m total	10,406.87 kg	
Volumen total de templa	Vtempla	7.54 m ³	
Valores calculados de la etapa evaporación			
Masa de sólidos en proceso	M sólidos	7,909.20 kg	
Masa de agua evaporada	Magua	1,224.30 kg	
Masa de licor filtrado inicial (alimentación)	M licor,filtrado	11,631.20 kg	
Volumen de licor inicial (volumen de diseño)	Vefectivo,inicial	8.57 m ³	

Fuente: elaboración propia con base en valores calculados con algoritmo de cálculo.

Apéndice 25. Valores del vaso cristalizador (a)

Valores calculados del vaso cristalizador			
Volumen del fondo elipsoidal	Vfondo	0.54 m ³	
Volumen del cuerpo (en contacto con fluido)	V _{cuerpo}	8.04 m ³	
Altura del fondo	h₁	0.43 m	
Altura del cuerpo (en contacto con fluido)	h ₂	2.17 m	
Diámetro interno del vaso	DT	2.17 m	
Área del elipsoide	Aelipsoide	8.27 m ²	
Altura del cristalizador (cuerpo con altura de separación)	hcristalizador	3.26 m	
Ancho de bafle	J _{bafle}	0.18 m	
Largo del bafle	Lbafle	2.17 m	
Área de bafles	Abafle	1.88 m ²	

Valores calculados de la cúpula y separador de arrastre				
Diámetro del cono de cúpula d⊤ 1.08 m				
Altura del cono de cúpula	h4	0.24 m		
Generatriz del cono	g	0.83 m		
Área del cono	A _{cono}	3.29 m ²		

Fuente: elaboración propia según valores calculados con algoritmo de cálculo.

Apéndice 26. Valores del vaso cristalizador (b)

Valores calculados del cilindro exterior de cúpula			
Diámetro de cilindro	dc	1.08 m	
Altura de cilindro	hc	1.08 m	
Área de cilindro	Acilindro	3.49 m ²	
Área de lámina superior	Alámina, superior	0.97 m ²	
Valores calculados del cilindro truncado superior del separador			
Diámetro de cilindro superior	d _{cs}	0.86 m	
Altura mayor del cilindro superior	h _{cs1}	0.79 m	
Altura menor del cilindro superior	h _{cs2}	0.44 m	
Área del cilindro superior	Acilindro,superior	2.19 m ²	
Valores calculados del cilindro truncado inferior del separador			
Diámetro del cilindro inferior	d _{ci}	0.65 m	
Altura mayor del cilindro inferior	h _{ci1}	0.68 m	
Altura menor del cilindro inferior	h _{ci2}	0.51 m	
Área del cilindro inferior	Acilindro, inferior	1.25 m ²	

Fuente: elaboración propia según valores calculados con algoritmo de cálculo.

Apéndice 27.	Valores del sistema de agitación (a)
--------------	--------------------------------------

Dimensiones generales del agitador			
Altura del líquido	hlíquido	2.60 m	
Altura del fondo al impulsor	E	0.65 m	
Diámetro del impulsor	Dimpulsor	0.73 m	
Ancho del impulsor	h _{impulsor}	0.14 m	
Largo de aspa	Limpulsor	0.26 m	
Espesor de bushing	E bushing	0.06 m	
Largo de bushing	Lbushing	0.20 m	
Largo de eje	L _{eje}	5.40 m	
Diámetro de eje	Deje	0.076 m	
Ancho de viga	W _{viga}	0.15 m	
Velocidad de agitación			
Constante de Zwietering	S	4.80	
Viscosidad cinemática	V	1.06x10 ⁻⁴ m ² /s	
Diámetro de partícula	dP	110 µm	
Velocidad mínima de agitación	Njs	45.60 rpm	
Velocidad real de agitación	Nreal	126.60 rpm	

Fuente: elaboración propia según valores calculados con algoritmo de cálculo.

Apéndice 28. Valores del sistema de agitación (b)

Potencia de agitación			
Número de Reynolds	Re	10860.80	
Número de potencia	NP	1.20	
Potencia	Р	3,124.10 W	
Potencia real	Preal	3,905.10 W	
Soporte interno de agitador			
Largo de viga de soporte	L _{viga}	1.035 m	
Altura de viga de soporte	h _{viga}	3.25 m	

Fuente: elaboración propia según valores calculados con algoritmo de cálculo.

Apéndice 29. Valores del sistema de transferencia de calor

Dimensiones generales del serpentín					
Diámetro de tubo externo	d tubo,externo	0.054 m			
Separación entre vueltas	entre vueltas stubo 0.12 m				
Número de vueltas del tubo	Ntubo	18			
Diámetro de la vuelta del serpentín	de la vuelta del serpentín d _{serp} 1.7				
Largo total del tubo	Largo total del tubo L _{tubo} 97				
Área de transferencia de calor ATDC 16.55 m ²					
Coeficientes del calentamiento inicial					
Coeficiente en el interior del tubo	h _{i,cal}	9957.00 W/m ² K			
Coeficiente en el fluido de proceso	h _{o,cal}	4275.30 W/m ² K			
Coeficiente global de calentamiento Ucal 29		2991.00 W/m ² K			
Coeficiente de evaporación					
Coeficiente global de evaporación	U_{vap}	1063.70 W/m ² K			
Coeficientes del enfriamiento					
Coeficiente en el interior del tubo	h i,enf	2807.30 W/m ² K			
Coeficiente en el fluido de proceso	h _{o,enf}	2686.20 W/m ² K			
Coeficiente global de enfriamiento	Uenf	1372.70 W/m ² K			

Fuente: elaboración propia según valores calculados con algoritmo de cálculo.

Apéndice 30.

Tiempos de operación

Tiempo de calentamiento					
Temperatura de vapor	T _{vap}	121 °C			
Temperatura de licor inicial	T _{ca}	65 °C			
Temperatura de licor final	T_{cb}	75 °C			
Tiempo de calentamiento	Θ_{cal}	0.05 h			
Tiempo de enfriamiento inicial					
Temperatura de licor inicial	T _{ha}	75 °C			
Temperatura de licor final	T _{hb}	65 °C			
Temperatura de refrigerante	T _{ref}	5 °C			
Flujo másico de refrigerante	m _{ref}	27.16 kg/s			
Tiempo de enfriamiento inicial	Θ _{enf}	0.06 h			

Tiempo total de templa				
Tiempo de evaporación	Θvap	0.5 h		
Tiempo de enfriamiento controlado	$\Theta_{enf,con}$	4 h		
Tiempo extra (carga, soplado, vacío)	Θex	0.43 h		
Tiempo total	O total	5.04 h		

Fuente: elaboración propia según valores calculados con algoritmo de cálculo.

Diagramas y detalles del equipo

Apéndice 31. Detalles del cuerpo

Fuente: elaboración propia, realizado con AutoCAD 2015.

Fuente: elaboración propia, realizado con AutoCAD 2015.

0.7<u>67</u>

00.0TS

0.171

ł

0,075

PLANTA DEL BUSHING

0.162

0,126

SECCIÓN BUSHING DE BRONCE

Apéndice 33.

Detalles del estopero

PLANTA TAPADERA DEL ESTOPERO

Fuente: elaboración propia, realizado con AutoCAD 2015.

Apéndice 34. Detalles del serpentín

Fuente: elaboración propia, realizado con AutoCAD 2015.

• Análisis de varianza con un factor

El análisis de varianza indica que la hipótesis nula es falsa debido a que el valor calculado de F es mayor que el valor crítico.

	Apéndice 35.		Análisis estadístico	
RESUMEN				
Grupos	Cuenta	Suma	Promedio	Varianza
Columna 1	3	4142	1380).67 9.33
Columna 2	3	4126	1375	5.33 1.33
Columna 3	3	4108	1369	9.33 9.33
Columna 4	3	4094	1364	1.67 9.33
Columna 5	3	4078	1359	9.33 1.33

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	854.40	4	213.60	34.83	7.64E-06	3.48
Dentro de los grupos	61.33	10	6.13			
Total	915.73	14				

Fuente: elaboración propia, realizado con Excel 2016.

 Evaluación de la densidad de suspensión en función de la temperatura en el laboratorio.

Apéndice 36. Evaluación de densidad en laboratorio

Fuente: [Fotografía de Manuel Castro]. (Laboratorio de fábrica, Ingenio Santa Ana. 2021). Colección particular. Guatemala.
Tabla de requisitos académicos

Apéndice 37. Tabla de requisitos académicos

Fuente: elaboración propia, realizado con Lucidchart.

Fuente: elaboración propia, realizado con Miro.

ANEXOS

• Densidad de soluciones de azúcar

Anexo 1. Densidad de soluciones de sacarosa

Contenido	Temperatura t en °C									
de sacarosa										
w _s en %	20	30	40	50	60	70	80	90	100	
0	998	997	992	988	983	978	972	965	958	
5	1018	1015	1012	1007	1002	997	991	984	977	
10	1038	1035	1031	1027	1022	1016	1010	1004	997	
15	1059	1056	1052	1048	1042	1037	1031	1024	1017	
20	1081	1078	1074	1069	1064	1058	1052	1045	1038	
25	1104	1100	1096	1091	1086	1080	1074	1067	1060	
30 1127		1123	1119	1112	1108	1103	1096	1090	1082	
35	1151	1147	1143	1138	1132	1126	1120	1113	1106	
40	1177	1172	1168	1162	1157	1151	1144	1138	1131	
45	1207	1198	1193	1188	1182	1176	1170	1163	115	
50	1230	1225	1220	1215	1209	1203	1196	1189	1182	
55	1258 12		1248	1242	1236	1230	1224	1217	1210	
60	1287	1282	1276	1271	1265	1259	1252	1245	1239	
62	1299	1293	1288	1282	1276	1270	1264	1257	125	
64	1311	1305	1300	1294	1288	1282	1276	1269	126	
66	1323	1318	1312	1307	1300	1294	1288	1281	1274	
68	1335	1330	1324	1319	1312	1306	1300	1293	1287	
70	1348	1342	1337	1331	1325	1319	1312	1306	1299	
72	1360	1355	1349	1343	1337	1331	1325	1318	1313	
74	1373	1368	1362	1356	1350	1344	1337	1331	132	
76	1386	1380	1375	1369	1363	1357	1350	1344	133	
78	1399	1394	1388	1382	1376	1370	1363	1357	135	
80	1412	1407	1401	1395	1389	1383	1377	1370	1364	
85	1446	1441	1435	1429	1423	1417	1411	1404	139	
90	1481	1475	1470	1464	1458	1452	1446	1440	143	

Fuente: Rein (2012). Ingeniería de la caña de azúcar. p 745.

Viscosidad de soluciones de azúcar

Contenido de sacarosa	Temperatura t en °C												
w _s en %	0	10	20	30	40	50	60	70	80				
0	1.76	1.3	1	0.8	0.65	0.55	0.47	0.42	0.37				
10	2.22	1.65	1.29	1.04	0.85	0.7	0.6	0.51	0.45				
20	3.78	2.64	1.95	1.49	1.18	0.97	0.81	0.68	0.59				
30	6.69	4.49	3.19	2.37	1.83	1.47	1.2	1	0.85				
40	14.6	9.17	6.17	4.38	3.24	2.49	1.97	1.6	1.32				
50	44.7	25.2	15.4	10.1	6.99	5.07	3.81	2.94	2.34				
60	236	111	58.5	33.8	21	14	9.66	6.98	5.2				
62	365	163	82.4	46	27.8	17.9	12.2	8.63	6.35				
64	592	249	120	64.5	37.7	23.7	15.7	10.9	7.87				
66	1013	399	182	93.5	52.6	32.1	20.6	14.1	9.93				
68	1846	672	289	141	76	44.7	27.9	18.4	12.8				
70		1206	482	222	114	64.4	39	25	16.8				
72				368	179	96.5	56.1	34.9	22.8				
74					296	152	84.1	50.3	32				
76						247	131	76.7	45.9				
78							221	122	70.5				

Anexo 2. Viscosidad de soluciones de sacarosa

Fuente: Rein (2012). Ingeniería de la caña de azúcar. p 745.

Ecuaciones complementarias

• Capacidad calorífica de soluciones de sacarosa (Rein, 2012)

$$C_p = 4.187 \left(1 - \left(\frac{B}{100} \right) (0.6 - 0.0018 * T) \right)$$

Donde:

C_p: capacidad calorífica de solución (kJ/kg K)

B: grados Brix de la solución

T: temperatura de solución

$$\rho_L = 1000 \left[1 + \left(\frac{B(B+200)}{54000} \right) \right] \left[1 - \frac{0.036(T-20)}{160-T} \right]$$

Donde:

ρ∟: densidad de solución

• Conductividad térmica de soluciones de sacarosa (Rein, 2012)

$$k = \left[0.561 + 0.206\left(\frac{T}{100}\right) - 0.0943\left(\frac{T}{100}\right)^2 - 0.007746\left(\frac{T}{100}\right)^3\right] \left[1 - 0.54\left(\frac{B}{100}\right)\right]$$

Donde:

k: conductividad térmica de solución (W/m K)

Propiedades del agua •

Densidad del agua a diferentes temperaturas.

Anexo 3. Densidad del agua

TABLE 2-30	Density (kg/i	m) of Sature	ated Liquid Wa	T	er from the	Iriple Point t	0	the Critical	Point		
Т, К	ρ , kg/m ³		Т, К	ρ , kg/m ³		Т, К	ρ, kg/m³		Т, К	ρ, kg/m ³	Т, К	ρ , kg/m ³
273.160°	999.793		352	972.479		432	908.571		512	814.982	592	669.930
274	999.843		354	971.235		434	906.617		514	812.164	594	664.974
276	999.914		356	969.972		436	904.645		516	809.318	596	659.907
278	999,919		358	968,689		438	902.656		518	806,441	598	654.722
280	999.862		360	967.386		440	900.649		520	803.535	600	649.411
282	999.746		362	966.064		442	898.624		522	800.597	602	643.97
284	999.575		364	964.723		444	896.580		524	797.629	604	638.38
286	999.352		366	963.363		446	894.519		526	794.628	606	632.64
288	999.079		368	961.984		448	892.439		528	791.594	608	626.74
290	998.758		370	960.587		450	890.341		530	788.527	610	620.65
292	998.392		372	959.171		452	888.225		532	785.425	612	614.37
294	997.983		374	957.737		454	886.089		534	782.288	614	607.88
296	997.532		376	956.285		456	883.935		536	779.115	616	601.15
298	997.042		378	954.815		458	881.761		538	775.905	618	594.16
300	996.513		380	953.327		460	879.569		540	772.657	620	586.88
302	995.948		382	951.822		462	877.357		542	769.369	622	579.26
304	995.346		384	950.298		464	875.125		544	766.042	624	571.25
306	994.711		386	948.758		466	872.873		546	762.674	626	562.81
308	994.042		388	947.199		468	870.601		548	759.263	628	553.84
310	993.342		390	945.624		470	868.310		550	755.808	630	544.25
312	992.610		392	944.030		472	865.997		552	752.308	632	533.92
314	991.848		394	942.420		474	863.664		554	748.762	634	522.71
316	991.056		396	940.793		476	861.310		556	745.169	636	510.42
318	990.235		398	939.148		478	858.934		558	741.525	638	496.82
320	989.387		400	937.486		480	856.537		560	737.831	640	481.53
322	988.512		402	935.807		482	854.118		562	734.084	641	473.01
324	987.610		404	934.111		484	851.678		564	730.283	642	463.67
326	986.682		406	932.398		486	849.214		566	726.425	643	453.14
328	985.728		408	930.668		488	846.728		568	722.508	644	440.73
330	984.750		410	928.921		490	844.219		570	718.530	645	425.05
332	983.747		412	927.157		492	841.686		572	714.489	646	402.96
334	982.721		414	925.375		494	839.130		574	710.382	647	357.34
336	981.671		416	923.577		496	836.549		576	706.206	647.096†	322
338	980.599		418	921.761		498	833.944		578	701.959		
340	979.503		420	919.929		500	831.313		580	697.638		
342	978.386		422	918.079		502	828.658		582	693.238		
344	977.247		424	916.212		504	825.976		584	688.757		
346	976.086		426	914.328		506	823.269		586	684.190		
348	974.904		428	912.426		508	820.534		588	679.533		
350	973.702		430	910.507		510	817.772		590	674.781		

TABLE 2-30 Density (kg/m³) of Saturated Liquid Water from the Triple Point to the Critical Point

"Triple point iCritical point iCritical point From Wagner, W., and Pruss, A., "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use," J. Phys. Chem. Ref. Data 31(2):387–535, 2002.

Fuente: Perry (2008). Perry's Chemical Engineering Handbook. p 2 – 96.

• Curva de solubilidad de la sacarosa

La sacarosa presenta las siguientes características de solubilidad en función de la temperatura.

Anexo 4. Solubilidad y sobresaturación

Fuente: Golato (2014). Sistemas de control en cocimientos de azúcar. p 3.

Trayectoria de cristalización

Anexo 5. Trayectoria de cristalización

Etapa	Descripción
1	Alimentación de licor filtrado
2	Concentración a 76 °Brix
3	Enfriamiento y semillamiento a 65°C
4	Enfriamiento controlado hasta 30°C

Fuente: Rein (2012). Ingeniería de la caña de azúcar. p 410.; elaboración propia.