IMPLEMENTACIÓN DE LA METODOLOGÍA DE MAPEO DIGITAL DE SUELOS SOLÍM, EN LA MICROCUENCA DE XESIGUAN, MUNICIPIO DE RABINAL, DEPARTAMENTO DE BAJA VERAPAZ



MILTON ARMANDO RAMÍREZ PASCUAL

CHIQUIMULA, GUATEMALA, SEPTIEMBRE 2023

IMPLEMENTACIÓN DE LA METODOLOGÍA DE MAPEO DIGITAL DE SUELOS SOLÍM, EN LA MICROCUENCA DE XESIGUAN, MUNICIPIO DE RABINAL, DEPARTAMENTO DE BAJA VERAPAZ

# TRABAJO DE GRADUACIÓN

Sometido a consideración del Honorable Consejo Directivo

Por

# MILTON ARMANDO RAMÍREZ PASCUAL

Al conferírsele el título de

# INGENIERO EN ADMINISTRACIÓN DE TIERRAS

En el grado académico de

# LICENCIADO

CHIQUIMULA, GUATEMALA, SEPTIEMBRE 2023



# RECTOR M.A. WALTER RAMIRO MAZARIEGOS BIOLIS

# **CONSEJO DIRECTIVO**

Presidente: Representante de Profesores: Representante de Profesores: Representante de Graduados: Representante de Estudiantes: Secretaria: Lic. Zoot. Merlin Wilfrido Osorio López Mtro. Helmuth César Catalán Juárez Mtro. José Emerio Guevara Auxume Ing. Agr. Henry Estuardo Velásquez Guzmán A.T. Zoila Lucrecia Argueta Ramos Licda. Yessica Azucena Oliva Monroy

# **AUTORIDADES ACADÉMICAS**

Coordinador Académico: Coordinador de Carrera: Mtro. Carlos Leonel Cerna Ramírez Dr. Jeovani Joel Rosa Pérez

# ORGANISMO COORDINADOR DE TRABAJOS DE GRADUACIÓN

Presidente: Secretario: Vocal: Dr. Jeovani Joel Rosa Pérez Mtra. Victoria María Callén Valdés Mtra. Maris Arelis España Estrada

# TERNA EVALUADORA

Mtra. Maris Arelis España Estrada Mtro. Héctor Conrado Valdés Marckwordt Ing. César Enrique Flores Cerón

Chiquimula, septiembre de 2023

SEÑORES CONSEJO DIRECTIVO CENTRO UNIVERSITARIO DE ORIENTE CIUDAD DE CHIQUIMULA

#### Honorables miembros:

De conformidad con las normas establecidas por la Universidad de San Carlos de Guatemala, tengo el honor de someter a su consideración el trabajo de graduación titulado:

# "IMPLEMENTACIÓN DE LA METODOLOGÍA DE MAPEO DIGITAL DE SUELOS SOLÍM, EN LA MICROCUENCA DE XESIGUAN, MUNICIPIO DE RABINAL, DEPARTAMENTO DE

# BAJA VERAPAZ"

El cual presento como requisito previo a optar al título de Ingeniero en Administración de Tierras, en el grado académico de Licenciado.

Atentamente;

Milton Armando Ramírez Pascual Carné 201742327





Chiquimula, 22 de agosto de 2023 Ref. TG-AT-023-2023

Lic. Zoot. Merlin Wilfrido Osorio López DIRECTOR Centro Universitario de Oriente Universidad de San Carlos de Guatemala

Respetable señor Director:

En atención a la designación efectuada según Acta de Aprobación de Tema de Trabajo de Graduación APT-03-2022 de fecha 07-09-2022, para asesorar al estudiante *Milton Armando Ramírez Pascual con Registro Académico* 201742327, en el trabajo de graduación denominado *"Implementación de la metodología de mapeo digital de suelos solím, en la microcuenca de Xesiguan, municipio de Rabinal, departamento de Baja Verapaz",* tengo el agrado de dirigirme a usted para informarle que he procedido a asesorar y orientar al sustentante sobre el contenido de dicho trabajo.

En mi opinión, el trabajo presentado reúne los requisitos exigidos por las normas pertinentes, razón por la cual recomiendo la aprobación del informe final para su discusión en el Examen General Público, previo a optar el título de *Ingeniero en Administración de Tierras*, en el Grado Académico de *Licenciado*.

"Id y Enseñad a Todos"

Ing Maris Aralis España Estra

Ing. Maris Arelis España Estrada Colegiada No. 6,049



c.c. archivo MAEE / Im

> FINCA EL ZAPOTILLO, ZONA 5, CHIQUIMULA TELÉFONO DIRECTO: 7942-6800 PBX 7873-0300 www.cunori.edu.gt



D-TG-AT-217/2023

EL INFRASCRITO DIRECTOR DEL CENTRO UNIVERSITARIO DE ORIENTE DE LA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA, POR ESTE MEDIO HACE CONSTAR QUE: Conoció el documento de la investigación que efectuó el MILTON ARMANDO RAMÍREZ PASCUAL titulado estudiante "IMPLEMENTACIÓN DE LA METODOLOGÍA DE MAPEO DIGITAL DE SUELOS SOLÍM, EN LA MICROCUENCA DE XESIGUAN, MUNICIPIO DE RABINAL, DEPARTAMENTO DE BAJA VERAPAZ", trabajo que cuenta con el aval de su Asesora, de la carrera de Administración de Tierras. Por tanto, la Dirección del CUNORI, con base en las facultades que le otorgan las Normas y Reglamentos de Legislación Universitaria, AUTORIZA que el documento sea publicado como Trabajo de Graduación, a Nivel de Licenciatura, previo a obtener el título de INGENIERO EN ADMINISTRACIÓN DE TIERRAS.

Se extiende la presente en la ciudad de Chiquimula, a trece de septiembre de dos mil veintitrés.

Ban Carlos d "ID Y ENSEÑAD A TODOS" aibersibad u Lic. Zoot. Merlin Wilfrido Osorio López DIRECTOR CUNORI - USAC

c.c. Archivo MWOL/ars

## Dedicatoria

| A mi madre:                | Ángela Lorena Pascual López, por ser guía, por ser   |
|----------------------------|------------------------------------------------------|
|                            | mentor y pilar fundamental para alcanzar este logro; |
|                            | por amarme y brindarme su cariño, su apoyo,          |
|                            | confianza, por sus valores y enseñanzas y, sobre     |
|                            | todo, ser una madre ejemplar.                        |
| A mi padre:                | José Adelmo Ramírez Monroy, por estar y apoyarme     |
|                            | en mi proceso de formación académica, y brindarme    |
|                            | su cariño para lograr esta meta.                     |
| A mis hermanos y hermanas: | Adelmo José, Irvin Alexander, Lorena Guadalupe y     |
|                            | María Lizeth, por ser mi familia y por estar conmigo |
|                            | en cada momento de mi vida, su apoyo y cariño ha     |
|                            | sido y será pieza clave en los logros que obtenga,   |
|                            | gracias por estar.                                   |
| A mi familia:              | A mis abuelos, Nemecio Pascual, Mariano Ramírez,     |
|                            | que en paz descansen, por ser ejemplo de hombres     |
|                            | trabajadores; a mis abuelas, María Magdalena         |
|                            | López, Digna Monroy, por su cariño; asimismo, a mi   |
|                            | demás familia por el apoyo brindado.                 |

# Agradecimientos

| A Dios:                   | Por permitirme ser su hijo, por enseñarme el camino a     |
|---------------------------|-----------------------------------------------------------|
|                           | seguir y por siempre acompañarme en cada momento y        |
|                           | lugar; agradeciendo la vida y las oportunidades que me    |
|                           | brindó para encontrarlo y, con ello, demostrarme su       |
|                           | amor incondicional.                                       |
| AI CUNORI, -USAC-:        | Por ser la casa de estudios que me vio crecer en el       |
|                           | ámbito profesional; ser el alma máter, en este momento    |
|                           | de satisfacción personal y profesional.                   |
| A mi asesora:             | Inga. Maris Arelis España Estrada, por motivarme en el    |
|                           | proceso, por brindarme su apoyo, tiempo y los             |
|                           | conocimientos durante la investigación, así como la       |
|                           | formación profesional durante toda la carrera.            |
| A mis catedráticos:       | Por brindar sus conocimientos, compartiendo               |
|                           | enseñanzas durante mi proceso de formación y por los      |
|                           | consejos oportunos en su momento.                         |
| A mis amigos:             | Por brindarme su amistad, por guiarme más a la            |
|                           | voluntad de Dios y por animarme a seguir adelante,        |
|                           | perseverando en todo momento, por sus consejos y          |
|                           | buenos momentos compartidos.                              |
| A mi pueblo, San Jacinto, | Por verme nacer, crecer y compartir a lo largo de mi vida |
| Chiquimula                | con personas que me han enseñado la calidez de            |
|                           | personas, por aprender sus costumbres y sus               |
|                           | tradiciones; por abrirme las puertas a las oportunidades. |

| Contenido                                                        | Página |
|------------------------------------------------------------------|--------|
| Introducción                                                     | 1      |
| Marco conceptual                                                 | 2      |
| Planteamiento del Problema                                       | 2      |
| Justificación                                                    | 3      |
| Marco Teórico                                                    | 4      |
| Mapeo Digital de Suelos                                          | 4      |
| Software Solim Solution (Modelo de Inferencia de la Tierra)      | 4      |
| Sistema de Información Geográfica SIG                            | 4      |
| Sistema de Información Geográfica Libre y de Código Abierto QGIS | 5      |
| Sistema para Análisis Geocientíficos Automatizados SAGA          | 5      |
| Shapefile                                                        | 5      |
| Mapeo Participativo                                              | 5      |
| Muestreo de Suelo                                                | 6      |
| Uso del Suelo                                                    | 6      |
| Zonas Homogéneas                                                 | 6      |
| Clases Genéricas                                                 | 7      |
| Factores Formadores del Suelo                                    | 7      |
| Propiedades Fisicoquímicas del Suelo                             | 7      |
| Ph                                                               | 7      |
| Potasio                                                          | 7      |
| Fósforo                                                          | 8      |
| Materia Orgánica                                                 | 8      |
| Clases Texturales                                                | 8      |
| Arcilla                                                          | 8      |
| Arena                                                            | 8      |
| Limo                                                             | 9      |
| Marco Referencial                                                | 10     |
| Marco Metodológico                                               | 11     |
| Objetivos                                                        | 11     |
| Objetivo General                                                 | 11     |

# Índice General

| Objetivos Específicos                                                   | 11   |
|-------------------------------------------------------------------------|------|
| Definición del Área de Estudio                                          | 11   |
| Método Seleccionado                                                     | 11   |
| Flujograma de Trabajo                                                   | 12   |
| Diplomado de "Cartógrafos Comunitarios"                                 | 14   |
| Mapeo Participativo como Herramienta para la Obtención de Usos del Suel | lo14 |
| Módulo 1 Conceptos Básicos                                              | 14   |
| Módulo 2 Muestras de Suelo                                              | 17   |
| Módulo 3 Métodos de Representación Cartográfica                         | 17   |
| Módulo 4 Ejercicios Finales de Mapeo Comunitario                        | 18   |
| Herramienta Metodológica en QGIS                                        | 19   |
| Digitalización de Uso de Suelo                                          | 19   |
| Creación de Zonas Homogéneas                                            | 19   |
| Rasterización de Zonas Homogéneas                                       | 21   |
| Obtención de Capas Bases                                                | 21   |
| Identificación de Clases Topográficas                                   | 22   |
| Obtención de Capa de Clases Genéricas                                   | 23   |
| Elaboración de Estadísticas Zonales                                     | 23   |
| Herramienta Metodológica en SoLÍM                                       | 26   |
| Creación de GISDatabase en SoLÍM                                        | 26   |
| Creación de Reglas                                                      | 26   |
| Creación de Capas de Membresía                                          |      |
| Metodología en Campo                                                    | 32   |
| Distribución de Puntos para Muestrear                                   | 32   |
| Creación de Boleta Digital de Campo                                     | 34   |
| Muestreo de Suelo                                                       | 34   |
| Metodología en Laboratorio de Suelo                                     | 36   |
| Análisis de Muestras                                                    | 36   |
| Generación de Tabla de Observaciones                                    | 39   |
| Metodología de Gabinete Final                                           | 44   |
| Creación de Mapas de Propiedades Fisicoquímicas                         | 44   |
| Validación de los Mapas de las Propiedades Fisicoquímicas               | 45   |
| Resultados                                                              | 50   |

| Usos del Suelo en la Microcuenca                                                   | 50 |
|------------------------------------------------------------------------------------|----|
| Propiedades Físicas del Suelo                                                      | 52 |
| Clases Texturales del Suelo                                                        | 52 |
| Contenido de Materia Orgánica                                                      | 55 |
| Propiedades Químicas del Suelo                                                     | 57 |
| Contenido de Potasio en el Suelo                                                   | 57 |
| Dosificación de Fósforo en el Suelo                                                | 59 |
| Mapa de Acidez y Alcalinidad de los Suelos                                         | 61 |
| Unificación de las Propiedades Químicas del Suelo Clasificados por Valores Óptimos | 63 |
| Diplomado "Cartógrafos Comunitarios" y Socialización de Resultados                 | 65 |
| Conclusiones                                                                       | 67 |
| Recomendaciones                                                                    | 69 |
| Anexos                                                                             | 77 |
| Apéndices                                                                          | 79 |

# Índice de Figuras

| Figura                                      | Título                      | Página |
|---------------------------------------------|-----------------------------|--------|
| Figura 1. Mapa de ubicación de la microcu   | enca de Xesiguan            | 10     |
| Figura 2. Enfoque de la naturaleza compa    | rativa de SoLÍM             | 12     |
| Figura 3. Flujograma de trabajo             |                             | 13     |
| Figura 4. Mapa de ubicación de pobladores   | s del mapeo participativo   | 15     |
| Figura 5. Mapeo participativo para la ident | ificación del uso del suelo | 16     |
| Figura 6. Actividades dentro del diplomado  | "Cartógrafos Comunitarios"  | 17     |
| Figura 7. Módulo cuatro, diplomado "Cartóg  | grafos Comunitarios"        | 18     |
| Figura 8. Mapa de zonas homogéneas de l     | a Microcuenca de Xesiguan   | 20     |
| Figura 9. Condiciones de inferencia por val | iable                       | 31     |
| Figura 10. Mapa de ubicación de puntos m    | uestreados                  | 33     |
| Figura 11. Recolección de muestras de sue   | elo                         | 35     |
| Figura 12. Anotación de información sobre   | la muestra de suelo         | 35     |
| Figura 13. Secado de muestras de suelo      |                             | 36     |
| Figura 14. Análisis de textura de suelo     |                             | 37     |
| Figura 15. Informe de validación porcentaje | e de arena                  | 46     |
| Figura 16. Informe de validación porcentaje | e de limo                   | 47     |
| Figura 17. Informe de validación porcentaje | e de arcilla                | 47     |
| Figura 18. Informe de validación porcentaje | e de materia orgánica       | 48     |
| Figura 19. Informe de validación propiedad  | de potasio                  | 48     |
| Figura 20. Informe de validación propiedad  | de fósforo                  | 49     |
| Figura 21. Informe de validación propiedad  | de pH                       | 49     |
| Figura 22. Mapa de usos de suelo            |                             | 51     |
| Figura 23. Mapa de clases texturales del su | uelo                        | 54     |

| Figura 24. Contenido de materia orgánica en el suelo                 | 56 |
|----------------------------------------------------------------------|----|
| Figura 25. Contenido de potasio en el suelo                          | 58 |
| Figura 26. Dosificación de fósforo en el suelo                       | 60 |
| Figura 27. Mapa de acidez y alcalinidad de los suelos                | 62 |
| Figura 28. Clasificación de suelos por medio de propiedades químicas | 64 |
| Figura 29. Clausura Diplomado "Cartógrafos Comunitarios"             | 66 |
| Figura 30. Socialización de información del MDS                      | 66 |

# Índice de Tablas

| Tabla    | Título Pág                                                                       | jina |
|----------|----------------------------------------------------------------------------------|------|
| Tabla 1. | Listado de comunitarios en el mapeo participativo                                | 14   |
| Tabla 2. | Distribución de zonas homogéneas                                                 | 20   |
| Tabla 3. | Estadísticas zonales de la microcuenca de Xesiguan                               | 24   |
| Tabla 4. | Tabla de reglas enumeradas                                                       | 27   |
| Tabla 5. | Tabla de reglas de rango                                                         | 28   |
| Tabla 6. | Tabla de lista de covariables                                                    | 29   |
| Tabla 7. | Resultados de las muestras de suelo realizadas en laboratorio                    | 38   |
| Tabla 8. | Tabla de observación del porcentaje de arena                                     | 40   |
| Tabla 9. | Tabla de observación del porcentaje de limo                                      | 41   |
| Tabla 10 | . Tabla de observación del porcentaje de arcilla                                 | 41   |
| Tabla 11 | . Tabla de observación de porcentaje de materia orgánica                         | 42   |
| Tabla 12 | . Tabla de observación de la propiedad de potasio                                | 42   |
| Tabla 13 | . Tabla de observación de la propiedad de fósforo                                | 43   |
| Tabla 14 | . Tabla de observación de la propiedad de pH                                     | 43   |
| Tabla 15 | . Clases texturales de los suelos, según USDA                                    | 52   |
| Tabla 16 | . Combinaciones de los valores de las propiedades químicas presentes en el suelo | 63   |

#### Introducción

El municipio de Rabinal se ubica en la región norcentral del país, dentro del denominado corredor seco, siendo así vulnerable a las sequías lo que incide en la agricultura y los usos del suelo del territorio; el desconocimiento y falta de información sobre las propiedades físicas y químicas de los suelos en la microcuenca repercute en el avance de la frontera agrícola hacia suelos menos productivos, dificultando la posibilidad de lograr cultivos resistentes; afectando de esta manera la calidad de los suelos y la buena nutrición de la población.

El mapeo tradicional presenta debilidades al no expresar la diversidad del territorio mediante la clasificación de áreas según las relaciones de suelo-paisaje, además de que, representan altos costos y mayores tiempos para adquirir información del territorio; es por ello que realizar metodologías modernas y tecnológicas como el Mapeo Digital de Suelos -MDS-con enfoque en el software del Modelo de Inferencia del Suelo, por sus siglas en inglés Soil Land Inference Engine -SOLÍM-, siendo una herramienta eficaz que trabaja a base de principios estadísticos; un enfoque comparativo para predecir las condiciones del suelo en lugares no muestreados con información de puntos conocidos disponibles; permitiendo con ello, conocer los suelos de una manera más rápida, económica y dinámica.

La presente investigación tiene como finalidad analizar el comportamiento de las propiedades físicas y químicas del suelo, que permita conocer las condiciones de los suelos, los usos y la potencialidad de este, dentro de la microcuenca de Xesiguan.

1

#### Marco conceptual

#### Planteamiento del Problema

La microcuenca Xesiguan dentro del municipio de Rabinal se encuentra en el corredor seco, una franja vulnerable a las sequías donde se concentra la pobreza y el hambre (Escalón, 2019); el rápido crecimiento poblacional de las comunidades ha demandado mayores cantidades de alimento, sin embargo, en la ubicación geográfica que se encuentra y por las condiciones ambientales del territorio afecta a los pobladores, quienes han tenido que sobrevivir tratando de tener la mayor productividad posible en sus terrenos (Gramajo Cano, 2012).

La falta de información sobre las propiedades físicas y químicas de los suelos en la microcuenca se suma a la problemática existente, provocando que, los pobladores busquen nuevas tierras para explotar, avanzando la frontera agrícola hacia tierras nuevas que muchas veces son más pobres y menos productivas (Norman y Douglas, 1996), esto con el afán de poder realizar actividades como la agricultura y ganadería para sustentar la vida familiar.

El uso no adecuado de las tierras, según su capacidad, genera la degradación de los recursos naturales renovables; dando lugar a la reducción de la productividad de los suelos, lo cual se traduce al a la merma de las cosechas provocando la obstaculización del desarrollo local; asimismo para Agua y Suelo para la Agricultura - Catholic Relief Services (2018) el mapeo tradicional presenta debilidades al no expresar la diversidad del territorio mediante la clasificación de áreas según las relaciones de suelo-paisaje, además de que representan altos costos y mayores tiempos para adquirir información del territorio.

#### Justificación

Los levantamientos de información sobre las propiedades de los suelos son necesarios para obtener información detallada del estado en el que se encuentran; para la Organización de las Naciones Unidas para la Alimentación -FAO-, (s. f.) el mapeo del suelo se presenta en forma fácil de interpretar y permite ser utilizado para la realización de estudios ambientales y el ordenamiento territorial; la oferta de este tipo de servicios es cada vez más apreciada; dado el importante rol que juegan los suelos para enfrentar desafíos globales como el cambio climático, la escasez de agua y la creciente demanda de alimentos (Agua y Suelo para la Agricultura - Catholic Relief Services, 2018).

La herramienta del mapeo digital de suelos puede ser útil para obtener información en la microcuenca de Xesiguan sobre las propiedades físico y químicas del suelo, la identificación actual de los usos que existen (Gardi et al., 2014); además de permitir la gestión adecuada del territorio.

Para ASA (s. f.) el mapeo digital de suelos aporta criterios para la adaptación de las prácticas de manejo del suelo según las condiciones que poseen, así también, aumentan la productividad de las tierras agrícolas maximizando el potencial productivo de las familias, permitiendo tener acceso a los alimentos y reduciendo los problemas de degradación de suelos, así como, minimizando los impactos negativos sobre el medio ambiente (Zhu et al., 2018).

#### Marco Teórico

#### Mapeo Digital de Suelos

El mapeo digital de suelo es la generación de mapas de tipos o propiedades de suelos mediante relaciones cuantitativas (modelos de predicción) entre datos de suelos (observaciones de campo y datos de laboratorio) y variables ambientales (Angelini, 2012).

Para Colín García *et al.* (2017) "el mapeo digital de suelos es una herramienta eficaz para implementar algoritmos complicados, procesar abundantes bases de datos, obtener información de alta precisión y generar cartografía de alta resolución espacial".

#### Software Solim Solution (Modelo de Inferencia de la Tierra)

SoLÍM, una aplicación de predicción espacial en el mapeo de suelos, basado en tres principios básicos: principio de autocorrelación espacial; principio estadístico, y la heterogeneidad espacial. La idea básica detrás del enfoque SoLÍM es otro principio que, establece que "Mientras más similares sean las configuraciones geográficas de dos puntos (áreas), más similares los valores (procesos) de la variable objetivo en estos dos puntos (áreas)" (Zhu et al., 2018, p. 318).

Zhu et al. (2018) lo definen como:

Un enfoque comparativo para predecir las condiciones del suelo en un lugar no muestreado, (el valor de la propiedad del suelo a un nivel no muestreado se puede estimar por las similitudes en la configuración ambiental; entre la ubicación no muestreada y un prototipo conocido disponible. (p. 318)

#### Sistema de Información Geográfica SIG

Es un sistema de hardware, software y procedimientos elaborados para facilitar la obtención, gestión, manipulación, análisis, modelado, representación y salida de datos

espacialmente referenciados, para resolver problemas complejos de planificación y gestión (The Geographic Information Systems, 1990).

#### Sistema de Información Geográfica Libre y de Código Abierto QGIS

Es un Sistema de Información Geográfica (SIG) de Código Abierto licenciado bajo GNU - General Public License. QGIS es un proyecto oficial de Open Source Geospatial Foundation (OSGeo), soporta numerosos formatos y funcionalidades de datos vector, datos ráster y bases de datos. QGIS proporciona una creciente gama de capacidades a través de sus funciones básicas y complementos. Puede visualizar, gestionar, editar y analizar datos, y diseñar mapas imprimibles (QGIS, s. f.).

#### Sistema para Análisis Geocientíficos Automatizados SAGA

Es un Sistema de Información Geográfica (GIS) de código abierto utilizado para editar y analizar datos espaciales. Incluye una gran cantidad de módulos para el análisis de datos vectoriales (punto, línea y polígono), tabla, cuadrícula e imagen. Entre otros, el paquete incluye módulos para geoestadística, clasificación de imágenes, proyecciones, simulación de procesos dinámicos (hidrología, desarrollo del paisaje) y análisis del terreno (OsGeoLive, s.f.).

#### Shapefile

Un shapefile es un formato sencillo y no topológico que se utiliza para almacenar la ubicación geométrica y la información de atributos de las entidades geográficas. Las entidades geográficas de un shapefile se pueden representar por medio de puntos, líneas o polígonos (áreas) (ArcMap, 2021).

#### Mapeo Participativo

El Mapeo Participativo es una herramienta de mapeo dinámico y visual para el desarrollo basado en la comunidad, se combina el uso de tecnologías geográficas y herramientas de desarrollo comunitario que permiten a los comunitarios analizar su entorno, visualizar los cambios; permite a técnicos poder recopilar información acerca de las

condiciones sociales y ambientales, que les permitan hacer el trabajo más eficazmente (Cobox Orozco et al., 2015).

#### Muestreo de Suelo

El muestreo de suelo es la actividad de recolección de las muestras de suelo (representativas), que permiten caracterizar el suelo en estudio. La muestra es definida como una parte representativa que presenta las mismas características o propiedades del material que se está estudiando; y se pueden realizar de dos formas: muestra simple; es la muestra obtenida de una sola extracción del suelo; y la muestra compuesta, se refiere a la muestra de suelo obtenida de varias extracciones o muestras simples (Mendoza y Espinoza, 2017).

#### Uso del Suelo

El uso de suelo se refiere a la ocupación de una superficie determinada en función de su capacidad agrológica y por tanto de su potencial de desarrollo, se clasifica de acuerdo con su ubicación como urbano o rural, representa un elemento fundamental para el desarrollo de la ciudad y sus habitantes ya que es a partir de éstos que se conforma su estructura urbana y por tanto se define su funcionalidad (Procuraduría Ambiental y del Ordenamiento Territorial de Distrito Federal, 2003).

#### Zonas Homogéneas

Las áreas o zonas homogéneas de tierra son espacios de la superficie terrestre que presentan características y /o cualidades similares en cuanto a las condiciones del clima, relieve, material litológico o depósitos superficiales y de suelos, que expresan la capacidad productiva de las tierras (Instituto Geográfico Agustín Codazzi, s.f.).

#### **Clases Genéricas**

Es la intersección de los factores de formación de suelo con las zonas homogéneas (Dorantes *et al.*, 2018).

#### Factores Formadores del Suelo

La formación del suelo está influenciada por cinco factores independientes, pero que interactúan entre sí para dar lugar al suelo. Estos factores son: material parental, clima, relieve o topografía, organismos y el tiempo (Instituto para la Innovación Tecnológica en Agricultura, [INTAGRI] 2017).

#### Propiedades Fisicoquímicas del Suelo

Las propiedades químicas se relacionan con la calidad y disponibilidad de agua y nutrimentos en el suelo, entre ellas, cabe resaltar: pH, materia orgánica, P, N y, K; de la misma forma, las características físicas reflejan la manera como el suelo almacena y provee agua a las plantas y, permite el desarrollo radical, entre ellas se encuentran propiedades como: estructura, densidad aparente, profundidad y capacidad de almacenamiento (Calderón-Medina *et al.*, 2018).

#### Ph

Según Catalán Salas (2016) el pH es una de las variables más importantes en los suelos agrícolas, pues afecta directamente a la absorción de los nutrientes del suelo por las plantas; el pH óptimo de estos suelos debe variar entre 5,5 y 7,5 rango en el cual los nutrientes son fácilmente asimilables en los cultivos.

#### Potasio

El potasio es uno de los nutrimentos más importantes en el crecimiento y desarrollo de las plantas, ya que participa en diferentes procesos bioquímicos y fisiológicos, desempeña funciones esenciales en la activación enzimática, síntesis de proteínas, fotosíntesis, entre otras (INTAGRI, 2017).

#### Fósforo

El fósforo es un nutriente esencial para el crecimiento de las plantas, realizando un papel importante en la fotosíntesis, en el transporte de nutrientes, en la síntesis y como transmisor de energía (Álvaro, 2019).

#### Materia Orgánica

La materia orgánica está hecha de compuestos tales como los carbohidratos, ligninas y proteínas, la materia orgánica almacena muchos nutrientes del suelo, mejora su estructura, sueltan suelos de arcilla, ayudan a prevenir la erosión y mejoran la capacidad de retención de nutrientes y agua de los suelos arenosos o toscos (Pascual-S Izquierdo y Venegas Yuste, s. f.).

#### **Clases Texturales**

La textura del suelo indica el contenido relativo de partículas de diferente tamaño, como la arena, el limo y la arcilla, la textura identifica la cantidad de agua y aire que retiene y la velocidad con la que el agua puede penetrar en el suelo (Organización de las Naciones Unidas para la Alimentación y la Agricultura, s.f.).

#### Arcilla

La arcilla son partículas muy finas y forman barro cuando están saturadas de agua. Los suelos arcillosos son pesados, no drenan ni se desecan fácilmente y contienen buenas reservas de nutrientes. Son fértiles, pero difíciles de trabajar cuando están muy secos (Lanza et al., 1999).

#### Arena

Los suelos arenosos, son más sueltos, más fáciles de trabajar, pero tienen pocas reservas de nutrientes aprovechables por las plantas (Lanza et al., 1999).

# Limo

Los suelos limosos tienen gránulos de tamaño intermedio son fértiles y fáciles de trabajar, formando terrones fáciles de desagregar cuando se encuentran secos (Lanza et al., 1999).

#### Marco Referencial

El departamento de Baja Verapaz está situado en la región norcentral del país; limita al norte con el departamento de Alta Verapaz, al sur con Guatemala, al este con El Progreso y al oeste con Quiché. Su cabecera es la ciudad de Salamá, el departamento se formó durante el gobierno de Justo Rufino Barrios y tiene una extensión territorial de 3124 km<sup>2</sup> y población de aproximadamente 245 787 habitantes (Rodríguez, 2021).

Rabinal es uno de los municipios más antiguos en la región de las Verapaces. Fue fundado en 1537, por Fray Bartolomé de las Casas y Fray Pedro de Angulo; reconocido como la "Cuna del Folklore Nacional" por su valioso aporte cultural e histórico. (Rodríguez, 2016)

Se define como el área de estudio la microcuenca de Xesiguan, ubicada en el municipio de Rabinal, con las coordenadas 15° 05' 05" N y 90° 29' 24" O (Sistema Coordenado GTM, Zona 15.5, Datum WGS 84), representado a través de la figura 1.

## Figura 1





#### Marco Metodológico

#### Objetivos

#### **Objetivo General**

Implementar la metodología SoLÍM para generar información de uso del suelo y propiedades fisicoquímicas de la microcuenca de Xesiguan

#### **Objetivos Específicos**

- a) Determinar el uso actual del suelo mediante mapeo participativo en la microcuenca de Xesiguan.
- b) Generar información cartográfica sobre las propiedades físicas y químicas de la microcuenca.
- c) Socializar la cartografía generada con pobladores de la microcuenca de Xesiguan.

#### Definición del Área de Estudio

Se define la microcuenca de Xesiguan dentro del municipio de Rabinal, departamento de Baja Verapaz, como área de estudio para la implementación de la metodología SoLÍM, dicho proceso se llevó a cabo durante los meses de mayo a octubre del año 2021.

#### Método Seleccionado

Se utilizó el método de Mapeo Digital de Suelos con base en el Modelo de Inferencia de la Tierra SoLÍM, el cual se basa en modelos comparativos de predicción entre dos o más tipos de suelos con características similares, es decir, la metodología funciona a través del valor de una muestra obtenida en campo como referencia de un tipo de suelo específico según sus condiciones, y la relaciona con espacios territoriales con rasgos parecidos a los de la muestra obtenida; la clasificación de los suelos con características similares sirven como base dentro de la microcuenca de Xesiguan para delimitar las áreas a trabajar, así como, tener categorizado los tipos de suelos en el territorio para la planificación de las actividades sobre la obtención de los datos en campo. La metodología se realizó con base en el manual

"Generación de un mapa de propiedad basado en reglas y lógica difusa" (ver anexo 2), el cual describe la secuencia de procesos para generar mapas de propiedades por medio de SoLÍM, (Dorantes et al., 2018). El enfoque comparativo de la metodología se visualiza gráficamente en la figura 2.

#### Figura 2

Enfoque de la naturaleza comparativa de SoLÍM



**Nota:** Reproducido de Revista de Agronomía e Industria Animal de la RUDN [Imagen] por Zhu *et a.I* (2018).

#### Flujograma de Trabajo

A través del siguiente flujograma se describe los procesos llevados a cabo para la realización del presente estudio; las actividades efectuadas se visualizan en la figura 3.

# Figura 3

## Flujograma de trabajo



#### Diplomado de "Cartógrafos Comunitarios"

#### Mapeo Participativo como Herramienta para la Obtención de Usos del Suelo

El uso de suelo dentro de la microcuenca es la información base para la realización del proyecto; para conocer los diferentes tipos de uso de suelo dentro del área de estudio se utilizó la herramienta del mapeo participativo; esta actividad se llevó a cabo dentro del marco del Diplomado de Cartógrafos Comunitarios, en el cual Cáritas Baja Verapaz, por medio de los grupos de trabajo en la que tiene presencia a través de proyectos, dirige un grupo de personas pertenecientes a la región, es decir, pobladores de las comunidades dentro de la microcuenca como asistentes en dicho proceso educativo.

#### Módulo 1 Conceptos Básicos

El mapeo participativo se llevó a cabo dentro del marco del diplomado "Cartógrafos Comunitarios" el cual se impartió dentro de las instalaciones de Caritas Verapaz a las personas cuya institución nombró para tal efecto; dichos participantes se enlistan en la tabla 1, misma que detalla nombre y lugar poblado al que pertenecen; además, en la figura 4 se presenta el mapa de ubicación de dichos participantes.

#### Tabla 1

| No. | Nombre                                | Lugar Poblado |
|-----|---------------------------------------|---------------|
| 1   | Andrea González Acoj                  | Pahoj         |
| 2   | Walfre Xitumul Canahuí                | Chiticoy      |
| 3   | Luis Alberto Mendoza de Paz           | Chirrúm       |
| 4   | Romeo Alvarado González               | Chiticoy      |
| 5   | Nilson Waldemar García Córdova        | Guachipilin   |
| 6   | Florentina González Acoj de Hernández | Chategua Alta |
| 7   | Baudilio Jerónimo Tecú                | Nimacabaj     |
| 8   | Rutilia Tum Cuxom                     | Xesiguan      |
| 9   | Guillermo Alvarado Alvarado           | Pachica       |
| 10  | Biviana Sánchez                       | Pachalum      |

Listado de comunitarios en el mapeo participativo

# Figura 4

Mapa de ubicación de pobladores del mapeo participativo



En el módulo uno se realizó la impartición de conceptos básicos relacionados a la cartografía con temas varios tales como: ¿Qué es un cartógrafo?, los roles, importancia, los mapas y sus elementos, variables visuales, ortofotos, imágenes satelitales, uso de suelo, propiedades fisicoquímicas de los suelos y zonas homogéneas; en este espacio se procede a la utilización de imágenes de los servidores Google Satélite impresos en formatos A0; para que cada uno de los presentes delimiten con marcadores de colores los diferentes tipos de uso de suelo existentes según su conocimiento del sector sobre las imágenes. Los participantes identificaron y graficaron los usos de cultivo, café, bosque, caña de azúcar, hortalizas, cultivo de manía, pastizales, así como arbustos y matorrales; información que sirve como base para la ejecución de las demás actividades dentro del proyecto del MDS. En la figura 5 se aprecia la realización del mapeo participativo con pobladores de las comunidades pertenecientes a la microcuenca.

## Figura 5

Mapeo participativo para la identificación del uso del suelo



#### Módulo 2 Muestras de Suelo

En este módulo, se procede en la continuación de conceptos enfocados a los suelos, desde temas como: los factores formadores del suelo y sus componentes, la materia orgánica, las propiedades fundamentales del suelo como textura y estructura; asimismo se realiza una actividad de campo relacionada a la forma correcta de tomar una muestra de suelo, esto con el fin de evidenciar parte de la ejecución del proyecto de MDS con información adquirida por los participantes.

#### Módulo 3 Métodos de Representación Cartográfica

En este módulo se detalla más la creación de los mapas, de las variables como puntos, líneas y polígonos y su aplicación dentro de los mapas; en este espacio los participantes realizan sus propios mapas con base en los conocimientos adquiridos enfocados a situaciones o problemas de su localidad, así como croquis de dichas comunidades (ver figura 6).

#### Figura 6

Actividades dentro del diplomado "Cartógrafos Comunitarios"



## Módulo 4 Ejercicios Finales de Mapeo Comunitario

Para finalizar el diplomado, el último módulo contempló la actividad final, siendo esta la creación de un mapa general de su comunidad enfocado a un tema, problema o característica afín, según la creatividad del cartógrafo; en la figura 7 se presenta la exposición de uno de los cartógrafos presentes en la actividad.

# Figura 7

Módulo cuatro, diplomado "Cartógrafos Comunitarios"



#### Herramienta Metodológica en QGIS

#### Digitalización de Uso de Suelo

La información del uso del suelo de la microcuenca se procede a la digitalización por medio del Software de Información Geográfica QGIS; para ello se realiza la creación de un archivo shapefile tipo polígono, en el cual se realiza la digitalización de los usos de suelos, resultado de la actividad previa del mapeo participativo; posteriormente se realiza la verificación de errores topológicos del archivo creado; comprobando así que sobre los polígonos que contengan la información sobre el uso de suelo no existan traslapes, duplicados o espacios vacíos entre trazos, esto con el fin de realizar el proceso de la metodología como corresponda.

#### Creación de Zonas Homogéneas

Las zonas homogéneas representan áreas con características similares, en este sentido, se realiza la creación de dichas áreas con base en los usos de mayor predominancia en la región; por medio de la información recabada en el mapeo participativo se establecen seis zonas homogéneas para la microcuenca de Xesiguan. La creación de estas áreas se realiza de forma similar a la anterior; por medio de fotointerpretación<sup>1</sup> de los usos de suelo se analiza las áreas en las que predomina usos del suelo sobre otros, es decir, los usos de suelo de menor tamaño son absorbidos por lo de mayor frecuencia; marcando de esta manera límites entre las áreas homogéneas con respecto a otras; estos datos se guardan sobre otro archivo shapefile de tipo polígono, se precede a la verificación de errores topológicos como traslapes o vacíos entre capas. La clasificación y cantidad de zonas homogéneas creadas se describen la tabla 2; asimismo, esta información se presenta de forma gráfica en la figura 8.

<sup>&</sup>lt;sup>1</sup> La fotointerpretación es la acción o el proceso de examinar imágenes, con el propósito de identificar objetos o condiciones por medio de la interpretación de quien lo visualiza, analizando y realizando acciones según el proceso que se quiera realizar.

# Tabla 2

Distribución de zonas homogéneas

| Zona homogénea | Cantidad |
|----------------|----------|
| Café           | 2        |
| Bosque         | 2        |
| Granos básicos | 2        |

# Figura 8

Mapa de zonas homogéneas de la Microcuenca de Xesiguan



#### Rasterización de Zonas Homogéneas

Con el archivo shapefile de zonas homogéneas creado a partir del uso del suelo, se realiza la conversión de la información del archivo vectorial<sup>2</sup> a tipo ráster<sup>3</sup>, este procedimiento se ejecuta a través de la herramienta de Rasterize<sup>4</sup> de SAGA; se designa un valor de píxel de 30, este número significa que cada píxel de información de la capa representa en la realidad 30 metros, siendo este valor estandarizado presente en todas las demás capas que serán creadas.

#### Obtención de Capas Bases

La metodología comprende la utilización de información sobre el territorio; para ello se considera como capa base el Modelo Digital de Elevación -DEM-, que sirve como archivo cartográfico principal en el que se identifica la superficie territorial mediante datos de elevación y además permite generar modelos digitales secundarios como el Índice de Posición Topográfico -TPI-, y el Índice Topográfico de Humedad -TWI-; dichas capas serán de utilidad en el proceso de MDS.

El DEM, una representación visual y matemática de los valores altimétricos que permite demostrar las formas de relieve del territorio con respecto al nivel medio del mar, y que, están contenidos en un archivo de tipo ráster, el cual se genera utilizando equipo de cómputo y software especializados; los cuales han sido generados para Guatemala por medio del Instituto Geográfico Nacional; a partir de esta capa, y por medio del software de QGIS, se realiza la creación de las capas que contendrán los atributos del terreno. Se despliegan para ellos las

<sup>&</sup>lt;sup>2</sup> Un archivo vectorial es un formato de tipos para imágenes que existen para trabajar con fotografías, gráficos, logotipos y demás imágenes digitales; no emplean pixeles, creándose con ecuaciones matemáticas, líneas puntos y polígonos, que forman la representación de una imagen; permiten aumentar o reducir su tamaño sin perder resolución, aunque de menor utilidad para trabajar imágenes complejas.

<sup>&</sup>lt;sup>3</sup> Un ráster consta de una matriz de celdas (o píxeles) organizadas en filas y columnas (o una cuadrícula) en la que cada celda contiene un valor que representa información, como la temperatura; Los datos almacenados en formato ráster representan fenómenos del mundo real, suelen utilizarse para visualizar datos geográficos, transmitir información adicional acerca de entidades geográficas.

<sup>&</sup>lt;sup>4</sup> La herramienta Rasterize, convierte geometrías de archivos vectoriales (puntos, líneas y polígonos) a una imagen de tipo ráster, (pixeles) en el que la información de la capa vectorial es convertida a pixeles, en el que cada celda y columna almacena datos espaciales para una amplia variedad de aplicaciones.

herramientas de SAGA de: Topographic position index y Saga Wetness index, por sus siglas en inglés, traducidas a TPI y TWI mencionadas anteriormente, estas capas sirven como base en el proceso metodológico por contener información sobre características del territorio.

#### Identificación de Clases Topográficas

Posteriormente a la generación de los atributos del terreno, en el software de QGIS se crea la capa llamada clases de topografía o comúnmente denominada topoclases, en la cual las capas creadas con anterioridad, índices de posición topográfica e índice de humedad topográfico, se combinan; este proceso da como resultado una capa de áreas homogéneas del territorio a través de los valores de dichas capas; cabe resaltar que este procedimiento se ejecuta interpretando los distintos grupos de clases topográficas que se dispongan al momento de ejecutar la herramienta de SAGA llamada K-means clustering for grids<sup>5</sup>, en este procedimiento se concluye con el establecimiento de siete tipos de topoclases en cada zona homogénea dentro de la microcuenca (42 tipos de clases topográficas en total) de las cuales, según la interpretación entre otros valores de grupos, son las que más se ajustan a la realidad del terreno.

Además de lo anterior, en esta etapa se realiza un filtrado con un valor de umbral de 11 (valor o cantidad limite en la que será filtrada la capa), el cual resulta útil al eliminar polígonos más pequeños y remplazándolos con el valor que contiene el píxel que se encuentra en el polígono vecino más grande.

<sup>&</sup>lt;sup>5</sup> K-means clustiring for grids (Análisis de conglomerados para grillas), es un algoritmo de clasificación no supervisada que agrupa objetos en un número de grupos basándose en las características que contengan las capas; es decir, agrupa los datos a través de la reducción de distancias en cada uno de los elementos con respecto al centro del grupo, crea información más o menos homogénea entre las capas analizadas.
### Obtención de Capa de Clases Genéricas

Se utilizó la herramienta de "Rastes Calculator"<sup>6</sup>, colocando como capa de entrada las zonas homogéneas y como capa adicional la de topoclases; asimismo, se selecciona el método de remuestreo utilizando el valor de vecino más cercano para que no exista interpolación, es decir, que no permita mezcla de valores que se produzcan por estos pixeles de menor escala; de esta manera se obtiene la capa de clases genéricas con valores únicos por cada zona homogénea delimitada en la microcuenca. Es decir, se efectúan operaciones o cálculos matemáticos entre los pixeles pertenecientes a las capas de zonas homogéneas y la capa de clases topográficas del terreno, este procedimiento combina la información para dar un valor por cada píxel de en la nueva capa creada llamada clases genéricas del suelo.

#### Elaboración de Estadísticas Zonales

La capa de estadística zonal, o datos de información, es el resultado de la extracción de datos entre capas, este proceso utiliza como capa principal el archivo de topoclases; añadiendo las capas adicionales de zonas homogéneas y atributos del terreno (TPI y TWI); estos valores son generados dentro de QGIS con la herramienta llamada "Zonal Ráster Statistics<sup>7</sup>", que permite analizar valores estadísticos en las capas introducidas, brindando información con respecto a la media; cuyo valor es el resultado de dividir la suma de un conjunto de números entre la cantidad de los mismos; así también los datos sobre la desviación estándar, siendo esta la medida de la dispersión en una distribución de datos; la misma indica que, entre más dispersa está una distribución, más grande es su desviación estándar. Por lo tanto, a mayor grado de desviación, los valores tienden a un alejamiento superior con respecto a los datos de la media.

<sup>&</sup>lt;sup>6</sup> Realiza operaciones algebraicas usando capas ráster; esta herramienta permite que la capa resultante contenga valores calculados de acuerdo con la expresión, conteniendo los valores numéricos y cualesquiera de las referencias de la capa.

<sup>&</sup>lt;sup>7</sup> Permite al usuario calcular estadísticas en los píxeles de una banda ráster que se encuentran dentro de polígonos/zonas en una capa vectorial que se dispongan.

Derivado de lo anterior, se depuró información innecesaria para el fin metodológico, concluyendo con los campos que contienen datos de interés como: clases genéricas, zonas homogéneas, valores sobre la media y desviación estándar del TPI y TWI. La información obtenida se visualiza como resultado en la tabla 3, la cual se compone de seis columnas: clases genéricas, simbolizada por 3 dígitos, siendo el primer número la zona homogénea a la que pertenece, seguidamente de otros dos que representan el tipo de clase del suelo; la segunda columna: zona homogénea, básicamente es el número de área a la que pertenece; la siguientes, son los valores sobre la media y la desviación estándar del índice de posición topográfico e índice de humedad topográfico respectivamente dentro de la tabla.

#### Tabla 3

| Entadíationa | zonoloo | dala | Microcuspoo    | do Voniguon |
|--------------|---------|------|----------------|-------------|
| Estauisticas | zunales | ueic | IVIICIOCUEIICa |             |
|              |         |      |                |             |

| Clases genéricas | Zonas homogéneas | TPI Media   | TPI D.E    | TWI Media  | TWI D.E    |
|------------------|------------------|-------------|------------|------------|------------|
| 101              | 1                | -1.13555916 | 4.570435   | 7.75065741 | 0.88853303 |
| 102              | 1                | 4.30332703  | 5.37763959 | 7.13727816 | 0.8573579  |
| 103              | 1                | 12.3917217  | 6.75879571 | 6.58886112 | 0.6410728  |
| 104              | 1                | -10.8091838 | 4.41216642 | 10.6520478 | 1.49217503 |
| 105              | 1                | -7.32927584 | 5.77418129 | 8.25828955 | 0.84387617 |
| 106              | 1                | -2.24221047 | 4.50161816 | 9.52551265 | 1.01167962 |
| 107              | 1                | -2.34163701 | 3.45066551 | 11.7176668 | 1.20795856 |
| 201              | 2                | -1.21398599 | 4.38021469 | 7.55697038 | 0.7670029  |
| 202              | 2                | 4.06684512  | 5.81340132 | 7.05081366 | 0.77925446 |
| 203              | 2                | 11.5558682  | 7.03406656 | 6.5526481  | 0.61048738 |
| 204              | 2                | -10.3509434 | 8.34275307 | 9.6387571  | 1.96714637 |
| 205              | 2                | -8.47836861 | 5.42381816 | 8.15386054 | 0.83117635 |
| 206              | 2                | -2.78248424 | 4.52703165 | 9.47397142 | 1.08201274 |
| 207              | 2                | -3.91729894 | 4.01992394 | 11.5711013 | 1.77631978 |
| 301              | 3                | -1.21072585 | 5.02060596 | 7.65269865 | 0.90748457 |
| 302              | 3                | 3.13443212  | 6.82922895 | 7.16428258 | 0.91453046 |
| 303              | 3                | 12.2208205  | 8.0808008  | 6.50364945 | 0.7462622  |

| Clases genéricas | Zonas homogéneas | TPI Media   | TPI D.E    | TWI Media  | TWI D.E    |
|------------------|------------------|-------------|------------|------------|------------|
| 304              | 3                | -9.00059333 | 9.51450042 | 9.162733   | 2.05463139 |
| 305              | 3                | -8.05765952 | 7.45876371 | 7.92829844 | 0.98580326 |
| 306              | 3                | -1.54325863 | 5.22219377 | 9.36715681 | 1.13433913 |
| 307              | 3                | -3.13713714 | 3.32902912 | 11.664208  | 1.28806783 |
| 401              | 4                | -1.22477294 | 4.41267195 | 7.55907735 | 0.88678547 |
| 402              | 4                | 3.51661178  | 6.75406538 | 7.11760676 | 0.92110072 |
| 403              | 4                | 9.67090118  | 10.0213919 | 6.5542895  | 0.78372564 |
| 404              | 4                | -8.47414498 | 9.05002936 | 9.41889814 | 2.10942453 |
| 405              | 4                | -8.22191004 | 7.24704387 | 7.97773992 | 0.98359454 |
| 406              | 4                | -1.67785171 | 5.76852259 | 9.08738696 | 1.22405755 |
| 407              | 4                | -5.07880514 | 3.39545235 | 11.4168837 | 1.50397464 |
| 501              | 5                | -0.72463049 | 5.12644252 | 7.55281719 | 0.80288745 |
| 502              | 5                | 4.31773481  | 5.9539736  | 7.12242307 | 0.87354918 |
| 503              | 5                | 9.93981266  | 9.7493893  | 6.57170778 | 0.75413757 |
| 504              | 5                | -7.88561856 | 8.50942966 | 9.44259895 | 1.96395763 |
| 505              | 5                | -7.92936754 | 7.14531345 | 7.95222766 | 0.97146371 |
| 506              | 5                | -1.79572618 | 5.67227782 | 9.23684595 | 1.28802119 |
| 507              | 5                | -2.89932314 | 5.74057207 | 11.0660378 | 1.74359432 |
| 601              | 6                | -1.04103283 | 3.32679186 | 7.74312066 | 0.66895831 |
| 602              | 6                | 4.7401918   | 4.62757761 | 7.16516756 | 0.67766335 |
| 603              | 6                | 12.2194725  | 5.56536587 | 6.56980626 | 0.510305   |
| 604              | 6                | -11.5238775 | 6.69014498 | 10.2695923 | 1.6210749  |
| 605              | 6                | -8.18602888 | 4.17880931 | 8.35164226 | 0.77054608 |
| 606              | 6                | -0.721749   | 3.11421295 | 9.96436796 | 0.89422982 |
| 607              | 6                | -0.63231193 | 1.95686603 | 12.3418915 | 1.16066883 |

### Herramienta Metodológica en SoLÍM

#### Creación de GISDatabase en SoLÍM

En el software de SoLÍM se realiza la creación de un nuevo proyecto en el que se efectuarán procedimientos con base en el manual de MDS; primero, se realiza la creación de una capa, la cual se nombrará GISDatabase; dentro de la misma se producirá un archivo llamado KnowledgeBase.

Dentro del menú principal de SoLÍM utilizando los campos de: Data Format Conversion (conversión del formato de datos) y seguidamente con la opción de GDAL Supported-Raster Formats -> 3dr; se procede a la conversión de las capas existentes a un formato nativo del programa, para ello se introducirán las capas ráster establecidas en la etapa metodológica con QGIS, este proceso se realiza individualmente con cada una de las capas de zonas homogéneas, TPI y TWI; mismas que se guardarán a capas con extensión ".3dr"<sup>8</sup>. Finalmente, se añaden al programa las nuevas capas creadas en este proceso con el fin de observar la correcta conversión de los archivos.

#### Creación de Reglas

A partir del archivo CSV de las estadísticas zonales se procede a crear las diferentes reglas a utilizar, estas reglas tendrán por nombre: Reglas Rango, Reglas Enumeradas y Covariables; dichos archivos se realizan por medio de hojas electrónicas del programa Excel de Office. Para la tabla denominada reglas enumeradas se establecen los criterios de la información que lleva cada columna: primera; identifica con un numero correlativo a cada uno de los 42 valores instituidos; segunda; se traslada la información sobre la media de los campos de TPI; tercera, se realiza el mismo procedimiento que el anterior con el campo de TWI; cuarta, los datos de la desviación estándar de la capas TPI se multiplican por 2, esto con el fin de

<sup>&</sup>lt;sup>8</sup> Los archivos 3dr están relacionados a tipos de archivos primarios que únicamente pueden visualizarse con aplicaciones destinadas a este tipo de extensión n uno aplicación, se clasifican generalmente como Data Files siendo archivos de datos en lugar de documentos.

ampliar en un 50% la apertura de los datos que se pretenden obtener más adelante; quinta, se efectúa lo anterior que el campo de TWI; para la sexta y séptima columna se concretan los datos sobre la media y la desviación estándar (multiplicado por 2), del campo de zonas homogéneas, dichas columnas se le brinda un valor de 0 al ser capas que no contienen valores sobre los mencionados. La tabla de reglas enumeradas se presenta en la tabla 4.

## Tabla 4

Tabla de reglas enumeradas

| Solim ID | TPI Media  | TPI 2 D.E  | TWI Media | TWI 2 D.E   | Zonas<br>homogéneas<br>Media | Zonas homogéneas<br>2 D.E |
|----------|------------|------------|-----------|-------------|------------------------------|---------------------------|
| 1        | -1.1355592 | 9.14086999 | 7.7506574 | 1.777066069 | 0                            | 0                         |
| 2        | 4.303327   | 10.7552792 | 7.1372782 | 1.714715795 | 0                            | 0                         |
| 3        | 12.391722  | 13.5175914 | 6.5888611 | 1.282145596 | 0                            | 0                         |
| 4        | -10.809184 | 8.82433285 | 10.652048 | 2.984350058 | 0                            | 0                         |
| 5        | -7.3292758 | 11.5483626 | 8.2582896 | 1.687752335 | 0                            | 0                         |
| 6        | -2.2422105 | 9.00323631 | 9.5255127 | 2.023359244 | 0                            | 0                         |
| 7        | -2.341637  | 6.90133101 | 11.717667 | 2.415917129 | 0                            | 0                         |
| 8        | -1.213986  | 8.76042939 | 7.5569704 | 1.534005797 | 0                            | 0                         |
| 9        | 4.0668451  | 11.6268026 | 7.0508137 | 1.558508912 | 0                            | 0                         |
| 10       | 11.555868  | 14.0681331 | 6.5526481 | 1.220974751 | 0                            | 0                         |
| 11       | -10.350943 | 16.6855061 | 9.6387571 | 3.934292746 | 0                            | 0                         |
| 12       | -8.4783686 | 10.8476363 | 8.1538605 | 1.662352695 | 0                            | 0                         |
| 13       | -2.7824842 | 9.05406331 | 9.4739714 | 2.164025479 | 0                            | 0                         |
| 14       | -3.9172989 | 8.03984787 | 11.571101 | 3.552639551 | 0                            | 0                         |
| 15       | -1.2107259 | 10.0412119 | 7.6526986 | 1.814969145 | 0                            | 0                         |
| 16       | 3.1344321  | 13.6584579 | 7.1642826 | 1.829060927 | 0                            | 0                         |
| 17       | 12.220821  | 16.1616016 | 6.5036495 | 1.492524392 | 0                            | 0                         |
| 18       | -9.0005933 | 19.0290008 | 9.162733  | 4.109262778 | 0                            | 0                         |
| 19       | -8.0576595 | 14.9175274 | 7.9282984 | 1.971606518 | 0                            | 0                         |
| 20       | -1.5432586 | 10.4443875 | 9.3671568 | 2.268678255 | 0                            | 0                         |
| 21       | -3.1371371 | 6.65805824 | 11.664208 | 2.57613565  | 0                            | 0                         |
| 22       | -1.2247729 | 8.82534391 | 7.5590773 | 1.773570931 | 0                            | 0                         |
| 23       | 3.5166118  | 13.5081308 | 7.1176068 | 1.842201433 | 0                            | 0                         |
| 24       | 9.6709012  | 20.0427838 | 6.5542895 | 1.567451289 | 0                            | 0                         |
| 25       | -8.474145  | 18.1000587 | 9.4188981 | 4.21884906  | 0                            | 0                         |
| 26       | -8.22191   | 14.4940877 | 7.9777399 | 1.967189073 | 0                            | 0                         |
| 27       | -1.6778517 | 11.5370452 | 9.087387  | 2.448115107 | 0                            | 0                         |
| 28       | -5.0788051 | 6.7909047  | 11.416884 | 3.007949273 | 0                            | 0                         |
| 29       | -0.7246305 | 10.252885  | 7.5528172 | 1.6057749   | 0                            | 0                         |
| 30       | 4.3177348  | 11.9079472 | 7.1224231 | 1.747098358 | 0                            | 0                         |

| 31 | 9.9398127  | 19.4987786 | 6.5717078 | 1.508275148 | 0 | 0 |
|----|------------|------------|-----------|-------------|---|---|
| 32 | -7.8856186 | 17.0188593 | 9.4425989 | 3.927915254 | 0 | 0 |
| 33 | -7.9293675 | 14.2906269 | 7.9522277 | 1.942927412 | 0 | 0 |
| 34 | -1.7957262 | 11.3445556 | 9.236846  | 2.576042385 | 0 | 0 |
| 35 | -2.8993231 | 11.4811441 | 11.066038 | 3.487188648 | 0 | 0 |
| 36 | -1.0410328 | 6.65358372 | 7.7431207 | 1.337916628 | 0 | 0 |
| 37 | 4.7401918  | 9.25515522 | 7.1651676 | 1.355326698 | 0 | 0 |
| 38 | 12.219473  | 11.1307317 | 6.5698063 | 1.02060999  | 0 | 0 |
| 39 | -11.523878 | 13.38029   | 10.269592 | 3.242149795 | 0 | 0 |
| 40 | -8.1860289 | 8.35761862 | 8.3516423 | 1.541092164 | 0 | 0 |
| 41 | -0.721749  | 6.2284259  | 9.964368  | 1.788459631 | 0 | 0 |
| 42 | -0.6323119 | 3.91373205 | 12.341892 | 2.321337663 | 0 | 0 |

La tabla reglas rango para sus columnas se determinan a continuación; primera, el correlativo brindado previamente a cada uno de los datos; segunda, la media del campo TPI con un valor de 0 al haberse establecido en la tabla reglas enumeradas; tercera, mismo proceso que el anterior con el campo de TWI; cuarta, se describe la zona homogénea a la que pertenece cada una de las clases de suelo. La tabla de reglas rango se detalla a continuación.

### Tabla 5

| Solim_ID | TPI Media | TWI Media | Zonas homogéneas |
|----------|-----------|-----------|------------------|
| 1        | 0         | 0         | 1                |
| 2        | 0         | 0         | 1                |
| 3        | 0         | 0         | 1                |
| 4        | 0         | 0         | 1                |
| 5        | 0         | 0         | 1                |
| 6        | 0         | 0         | 1                |
| 7        | 0         | 0         | 1                |
| 8        | 0         | 0         | 2                |
| 9        | 0         | 0         | 2                |
| 10       | 0         | 0         | 2                |
| 11       | 0         | 0         | 2                |
| 12       | 0         | 0         | 2                |
| 13       | 0         | 0         | 2                |
| 14       | 0         | 0         | 2                |
| 15       | 0         | 0         | 3                |
| 16       | 0         | 0         | 3                |
| 17       | 0         | 0         | 3                |
| 18       | 0         | 0         | 3                |

## Tabla de reglas de rango

| 19 | 0 | 0 | 3 |
|----|---|---|---|
| 20 | 0 | 0 | 3 |
| 21 | 0 | 0 | 3 |
| 22 | 0 | 0 | 4 |
| 23 | 0 | 0 | 4 |
| 24 | 0 | 0 | 4 |
| 25 | 0 | 0 | 4 |
| 26 | 0 | 0 | 4 |
| 27 | 0 | 0 | 4 |
| 28 | 0 | 0 | 4 |
| 29 | 0 | 0 | 5 |
| 30 | 0 | 0 | 5 |
| 31 | 0 | 0 | 5 |
| 32 | 0 | 0 | 5 |
| 33 | 0 | 0 | 5 |
| 34 | 0 | 0 | 5 |
| 35 | 0 | 0 | 5 |
| 36 | 0 | 0 | 6 |
| 37 | 0 | 0 | 6 |
| 38 | 0 | 0 | 6 |
| 39 | 0 | 0 | 6 |
| 40 | 0 | 0 | 6 |
| 41 | 0 | 0 | 6 |
| 42 | 0 | 0 | 6 |

La regla de covariable se limita a tres columnas con los nombres de los campos a usados en cada una de las tablas siendo estos: TPI, TWI y zonas homogéneas; cabe mencionar que este dato se debe de escribir tal cual se asignaron desde el principio de la metodología y en cada una de las tablas a utilizarse; esta información se describe en la tabla 6.

## Tabla 6

Tabla de lista de covariables

TPI TWI Zonas homogéneas Cada una de las tablas creadas y detalladas precedentemente se guardan con una extensión .csv (archivos delimitados por comas); formato que lee el software Autolim<sup>9</sup>, y seguidamente se ingresan según el orden que el programa de indique; él, automáticamente crea el archivo llamado KnowledgeBase, este mismo archivo se remplaza con el archivo original creado por el software de SoLÍM.

#### Creación de Capas de Membresía

Posteriormente al cambio del archivo que contiene las reglas, se procede a la creación de las capas de membresía, o bien, la capa con los valores óptimos para la obtención de las muestras de suelo; para este procedimiento se abre en el programa de SoLÍM el proyecto que se tiene de la metodología, ya en el software se puede visualizar en la pestaña de KnowledgeBase los datos relacionados a cada uno de los valores que tenemos del suelo; en la figura 9 se ejemplifica los valores óptimos del campo de TWI y la clase de suelo 1 de la zona homogénea 1.

<sup>&</sup>lt;sup>9</sup> Es un software que permite que las tablas que contienen los parámetros establecidos en las reglas creadas se unifiquen en un único archivo llamado KnowledgeBase, permitiendo al programa de Solim solution, analice y ejecute dichos códigos.

Condiciones de inferencia por variable



En el apartado de Inference<sup>10</sup> (inferencia), se realiza el salvado de las 42 capas de membresía; dichos archivos se guardan en formato .3dr, para ello se crea una carpeta en la que se incluirán el resultado de este procedimiento, la cual será utilizada en la metodología de gabinete final. Asimismo, las inferencias producidas se guardan en formato .TIFF para que puedan ser importados en el software de QGIS que permite la visualización de estos archivos de una mejor manera y en continuidad con la metodología.

<sup>&</sup>lt;sup>10</sup> La herramienta de inferencia genera un archivo de valores de membresía para cada clase genérica de suelo definida por las reglas en el archivo KnowledgeBase presente en el proyecto, es decir, proyecta los valores sobre cada uno de los campos permitiendo visualizar los valores más altos en los cuales es recomendable establecer los puntos para realizar las muestras.

### Metodología en Campo

### Distribución de Puntos para Muestrear

Para la determinación de los puntos de muestreo se utilizó el Software de Información Geográfica de Qgis, en este proceso se realiza la descarga de capas de carreteras y caminos de Google Maps, con la herramienta de OSM Download<sup>11</sup>, dichos elementos se usarán para identificar las vías de acceso a los posibles puntos para la obtención de las muestras de suelo.

En el programa se añaden las capas de membresía y se hace un análisis visual entre los valores óptimos de las clases de suelo priorizando aquellos en los que existan rutas accesibles a los puntos; en este caso, se distribuyen tres posibles puntos según en cada clase genérica presente por cada zona homogénea que existe (figura 10), esto por cubrir cualquier inconveniente que surja en la realización en la fase de muestreo, así como, la dispersión de los puntos en toda el área de la microcuenca.

Una vez finalizada la distribución de los puntos se procede a la exportación de imágenes georreferenciadas de cada una de las zonas homogéneas para ser utilizadas en campo.

<sup>&</sup>lt;sup>11</sup> Es un complemento del software de Qgis que permite la descarga de datos como: puntos, polígonos y líneas del servidor OSM (OpenStreetMap) de un área específica.

Mapa de ubicación de puntos muestreados



### Creación de Boleta Digital de Campo

Utilizando el software KoBoToolbox<sup>12</sup> una aplicación de fácil uso en dispositivos móviles en la cual se formula una boleta que permite la recolección de información en campo en ella, se capturan datos acerca del número de muestra, la clasificación del suelo (clase genérica), el tipo de uso que se le da; además de incluir datos adicionales como: la cantidad de vegetación, topografía del lugar, textura del suelo, e incluir la ubicación geográfica y añadir una fotografía como referencia (anexo 2).

#### Muestreo de Suelo

Una vez iniciado el trabajo en campo, y tomando en cuenta factores climáticos, físicos o de otra índole, se prioriza la obtención de la muestra en aquellos lugares con accesibilidad; para ello se usan las imágenes o vistas creadas de los puntos de muestra utilizando el software de Avanza Maps<sup>13</sup> que permite ubicarse dentro de la zona, usando el GPS del móvil, sin necesidad de tener datos móviles o por cuestiones propiamente de carecer del servicio por ser áreas montañosas sin acceso a la misma.

Molina (2002) menciona que el muestreo debe ser lo más representativo posible del área a investigar, basado en la toma de suficientes submuestras de áreas no muy grandes que garanticen la mejor representación posible por efectos de la variabilidad en la fertilidad del suelo; de tal modo, en la etapa del muestreo por cada punto ubicado se realiza la extracción de dieciséis submuestras abarcando la mayor cantidad del territorio posible, dichas muestras se efectúan a una profundidad de 30 cm con un barreno Edelman<sup>14</sup> (figura 11); las submuestras se mezclan entre sí, y al finalizar se cuartea la tierra. La muestra se deposita en una bolsa de

<sup>&</sup>lt;sup>12</sup> es un conjunto de herramientas para la recopilación de datos de campo para su uso en entornos desafiantes siendo un software gratuito y de código abierto.

<sup>&</sup>lt;sup>13</sup> Es una aplicación de mapas móviles que le permite descargar mapas para usarlos sin conexión en teléfonos o tableta iOS y Android.

<sup>&</sup>lt;sup>14</sup> Barreno manual para muestreo que se adapta a diversos tipos de suelos. Es el tipo de barreno más usado para suelos. El diseño típico de esta barrena permite un mínimo de fricción durante la penetración en el suelo y poco esfuerzo para retirarlo.

papel, misma que contiene una bolsa plástica, y posteriormente se colocan las etiquetas que contiene la información necesaria sobre la muestra levantada (figura 12).

Al finalizar la toma de la muestra del suelo, se realiza la captura de información relaciona al punto obtenido por medio de la boleta digital en el lugar.

# Figura 11

Recolección de muestras de suelo



# Figura 12

Anotación de información sobre la muestra de suelo



### Metodología en Laboratorio de Suelo

### Análisis de Muestras

Previamente al análisis de la muestra se realizó el secado de los ejemplares de la tierra obtenidas en la etapa anterior, para ello se utilizaron superficies de cartón en las que se colocaron y tendiéndose uniformemente se realiza el secado respectivo para dichas muestras, este proceso se visualiza en la figura 13.

## Figura 13

Secado de muestras de suelo



Posteriormente las muestras del suelo extraídas en la microcuenca de Xesiguan, se analizaron en el laboratorio de suelos del Centro Universitario de Oriente -CUNORI-, a través de un profesional experto para dicha actividad; a cada una de las muestras de suelo se realizó el estudio respectivo sobre la propiedad de: pH,), fosforo (P), potasio (K), así como de los porcentajes de materia orgánica (%MO) y de textura de suelos (%arcilla, %arena y %limo). A cada una de las diferentes muestras se le efectuó el procedimiento debido. En el laboratorio se procedió al tamizado de las muestras; esto se refiere al triturado de la muestra, o bien, la filtración de la tierra para reducir el tamaño de las partículas de la tierra por cada modelo de suelo; la materia se coloca sobre una superficie plana en la que se golpea con un mazo de madera; seguidamente se utiliza un colador especial en la que se introduce y se sacude para obtener partículas finas de la tierra. Posteriormente de cada especie tamizada se divide en contenedores o recipientes de laboratorio colocando la cantidad de tierra en gramos que indicará el geólogo, esto se realizaba por medio de una pesa digital y dependía del tipo de análisis. En la figura 14 se visualiza el procedimiento del método de Bouyoucos, en el que, por medio de un densímetro utilizado, se determina la textura de suelos, en el cual el encargado analiza la distribución del tamaño de partículas debido a la suspensión que es medida por el hidrómetro a diferentes tiempos, tomando en cuenta la temperatura.

Los resultados obtenidos en el análisis del laboratorio respectivo se describen por medio de la tabla 5; y se detallan por el número de la muestra llevada.

#### Figura 14





# Resultados de las muestras de suelo realizadas en laboratorio

| No. de  | Clase    | рН   | Р     | К      | %MO  | Arcilla | Limo  | Arena | Clase textural    |
|---------|----------|------|-------|--------|------|---------|-------|-------|-------------------|
| muestra | genérica | -    |       |        |      |         |       |       |                   |
| 1011    | 1        | 6.7  | 30.99 | 166.61 | 4.35 | 34.27   | 31.65 | 34.08 | Franco Arcillosa  |
| 1012    | 1        | 6.77 | 23.24 | 180.34 | 6.69 | 27.94   | 31.65 | 40.41 | Franco Arcillosa  |
| 1022    | 2        | 7.08 | 17.17 | 136.16 | 4.03 | 32.16   | 29.54 | 38.3  | Franco Arcillosa  |
| 1023    | 2        | 7.02 | 13.28 | 74.65  | 3.78 | 49.04   | 31.65 | 19.31 | Arcillosa         |
| 1033    | 3        | 7.01 | 37.64 | 142.71 | 5.42 | 32.16   | 27.43 | 40.41 | Franco Arcillosa  |
| 1041    | 4        | 6.95 | 42.08 | 183.44 | 3.02 | 27.94   | 33.76 | 38.3  | Franco Arcillosa  |
| 1052    | 5        | 6.96 | 28.89 | 244.25 | 5.87 | 30.05   | 29.54 | 40.41 | Franco Arcillosa  |
| 1061    | 6        | 7.22 | 17.76 | 178.8  | 6.25 | 34.27   | 31.65 | 34.08 | Franco Arcillosa  |
| 1063    | 6        | 7.24 | 45.83 | 127.13 | 3.97 | 23.72   | 33.76 | 42.52 | Franco            |
| 1072    | 7        | 7.25 | 28.89 | 90.11  | 3.02 | 27.94   | 27.43 | 44.63 | Franco Arcillosa  |
| 2012    | 1        | 7.22 | 26.52 | 166.56 | 3.65 | 23.72   | 31.65 | 44.63 | Franco            |
| 2021    | 2        | 7.33 | 14.62 | 108.21 | 3.91 | 21.61   | 27.43 | 50.96 | Franco Arcillosa  |
|         |          |      |       |        |      |         |       |       | Arenosa           |
| 2032    | 3        | 7.17 | 41.5  | 226.53 | 6.75 | 23.72   | 35.87 | 40.41 | Franco            |
| 2033    | 3        | 7.12 | 82.37 | 188.45 | 6.82 | 17.39   | 44.31 | 38.3  | Franco            |
| 2042    | 4        | 7.48 | 84.86 | 63.9   | 3.72 | 27.94   | 29.54 | 42.52 | Franco Arcilloso  |
| 2052    | 5        | 7.12 | 53.1  | 383.1  | 4.16 | 23.72   | 35.87 | 40.41 | Franco            |
| 2062    | 6        | 7.66 | 37.64 | 87.21  | 3.97 | 30.05   | 29.54 | 40.41 | Franco Arcilloso  |
| 2063    | 6        | 7.57 | 29.3  | 74.83  | 2.7  | 36.38   | 16.88 | 46.74 | Arcillosa Arenosa |
| 2072    | 7        | 7.46 | 21.21 | 178.85 | 4.47 | 32.16   | 29.54 | 38.3  | Franco Arcillosa  |
| 2073    | 7        | 7.29 | 86.55 | 178.85 | 6.75 | 27.94   | 29.54 | 42.52 | Franco Arcillosa  |
| 3011    | 1        | 7.14 | 84.04 | 60.1   | 2.83 | 25.83   | 29.54 | 44.63 | Franco Arcillosa  |
| 3021    | 2        | 7.41 | 22.89 | 41.4   | 1.75 | 36.38   | 37.98 | 25.64 | Franco Arcillosa  |
| 3032    | 3        | 7.53 | 18.36 | 123.34 | 6.75 | 34.27   | 31.65 | 34.08 | Franco Arcillosa  |
| 3033    | 3        | 6.93 | 21.54 | 105.18 | 5.68 | 32.16   | 29.54 | 38.3  | Franco Arcillosa  |
| 3042    | 4        | 7.1  | 34.63 | 49.44  | 2.83 | 27.94   | 29.54 | 42.52 | Franco Arcillosa  |
| 3043    | 4        | 7.02 | 88.22 | 71.5   | 0.3  | 27.94   | 27.43 | 44.63 | Franco Arcillosa  |
| 3051    | 5        | 6.81 | 50.77 | 70.61  | 0.12 | 30.05   | 27.43 | 42.52 | Franco Arcillosa  |
| 3061    | 6        | 6.77 | 45.17 | 28.53  | 0.89 | 25.83   | 31.65 | 42.52 | Franco Arcillosa  |
| 3063    | 6        | 7.24 | 80.69 | 28.53  | 6.28 | 37.14   | 29.54 | 33.32 | Franco Arcillosa  |
| 3072    | 7        | 6.91 | 13.08 | 59.43  | 6.64 | 32.92   | 33.76 | 33.32 | Franco Arcillosa  |
| 4013    | 1        | 7.04 | 60.63 | 105.86 | 3.23 | 28.7    | 29.54 | 41.76 | Franco Arcillosa  |
| 4021    | 2        | 7.09 | 18.67 | 54.3   | 6.46 | 32.92   | 27.43 | 39.65 | Franco Arcillosa  |
| 4023    | 2        | 6.91 | 25.76 | 54.3   | 4.73 | 28.7    | 27.43 | 43.87 | Franco Arcillosa  |
| 4033    | 3        | 7.2  | 79.86 | 84.56  | 3.17 | 24.48   | 31.65 | 43.87 | Franco            |
| 4043    | 4        | 6.89 | 49.28 | 26.11  | 1.67 | 28.7    | 35.87 | 35.43 | Franco Arcillosa  |

| 4053 | 5 | 6.81 | 87.38 | 185.81 | 4.61 | 32.92 | 18.99 | 48.09 | Franco Arcillosa |
|------|---|------|-------|--------|------|-------|-------|-------|------------------|
|      |   |      |       |        |      |       |       |       | Arenosa          |
| 4061 | 6 | 6.8  | 17.17 | 63.14  | 6.76 | 37.14 | 33.76 | 29.1  | Franco Arcillosa |
| 4063 | 6 | 6.83 | 17.76 | 63.14  | 5.68 | 32.92 | 27.43 | 39.65 | Franco Arcillosa |
| 4071 | 7 | 7.02 | 81.53 | 102.76 | 4.25 | 28.7  | 29.54 | 41.76 | Franco Arcillosa |
| 4073 | 7 | 7.06 | 11.48 | 110.35 | 6.76 | 28.7  | 33.76 | 37.54 | Franco Arcillosa |
| 5012 | 1 | 6.75 | 16.59 | 75.69  | 3.23 | 32.92 | 25.32 | 41.76 | Franco Arcillosa |
| 5013 | 1 | 6.22 | 14.35 | 87.89  | 6.64 | 35.03 | 29.54 | 35.43 | Franco Arcillosa |
| 5022 | 2 | 6.73 | 11.48 | 107.13 | 3.83 | 32.92 | 27.43 | 39.65 | Franco Arcillosa |
| 5032 | 3 | 7.06 | 21.54 | 102.08 | 2.39 | 35.03 | 21.1  | 43.87 | Franco Arcillosa |
| 5041 | 4 | 7.48 | 14.08 | 156.06 | 3.41 | 70.9  | 10.55 | 18.55 | Arcillosa        |
| 5051 | 5 | 6.9  | 14.86 | 225.01 | 5.86 | 37.14 | 25.32 | 37.54 | Franco Arcillosa |
| 5052 | 5 | 7.05 | 13.81 | 113.05 | 3.53 | 35.03 | 23.21 | 41.76 | Franco Arcillosa |
| 5061 | 6 | 6.76 | 30.99 | 50.8   | 1.97 | 28.7  | 21.1  | 50.2  | Franco Arcillosa |
|      |   |      |       |        |      |       |       |       | Arenosa          |
| 5063 | 6 | 6.77 | 12.5  | 215.61 | 4.37 | 60.35 | 21.1  | 18.55 | Arcillosa        |
| 5071 | 7 | 7.76 | 12.76 | 188.73 | 5.2  | 35.03 | 25.32 | 39.65 | Franco Arcillosa |
| 6011 | 1 | 7.45 | 58.96 | 76.03  | 4.49 | 35.03 | 31.65 | 33.32 | Franco Arcillosa |
| 6021 | 2 | 6.98 | 81.53 | 144.58 | 4.36 | 28.7  | 21.1  | 50.2  | Franco Arcillosa |
|      |   |      |       |        |      |       |       |       | Arenosa          |
| 6031 | 3 | 7.42 | 88.22 | 66.55  | 2.29 | 28.7  | 25.32 | 45.98 | Franco Arcillosa |
|      |   |      |       |        |      |       |       |       | Arenosa          |
| 6032 | 3 | 7.55 | 74.84 | 88.64  | 1.51 | 24.48 | 29.54 | 45.98 | Franco           |
| 6043 | 4 | 7.4  | 59.8  | 65.95  | 2.48 | 24.48 | 35.87 | 39.65 | Franco           |
| 6051 | 5 | 6.89 | 79.02 | 119.85 | 2.09 | 28.7  | 27.43 | 43.87 | Franco Arcillosa |
| 6061 | 6 | 7.04 | 87.38 | 363.24 | 2.48 | 35.03 | 40.09 | 24.88 | Franco Arcillosa |
| 6062 | 6 | 7.19 | 72.33 | 363.24 | 2.87 | 37.14 | 33.76 | 29.1  | Franco Arcillosa |
| 6071 | 7 | 7.54 | 58.96 | 95.79  | 4.29 | 28.7  | 31.65 | 39.65 | Franco Arcillosa |
| 6072 | 7 | 7.01 | 21.87 | 38.86  | 6.75 | 28.7  | 31.65 | 39.65 | Franco Arcillosa |

### Generación de Tabla de Observaciones

A través del Software de información geográfica QGIS se extraen los valores de la capa de clases genéricas y los datos obtenidos en laboratorio de los puntos muestreados para este procedimiento se utiliza la herramienta "Add raster values to points"<sup>15</sup> de SAGA. Del resultado se obtendrá un archivo tipo. SCV con todos los datos relacionados a las propiedades de pH,

<sup>&</sup>lt;sup>15</sup> Esta herramienta guarda la información de las cuadrículas de las posiciones de los puntos en la capa de puntos seleccionada y la agrega a la capa resultante.

fósforo, potasio, asimismo sobre los porcentajes en el suelo de arcilla, arena, limo, materia orgánica; así como, información adicional con respecto al número de muestra y clase genérica de los puntos muestreados.

En este proceso se utilizan las hojas electrónicas del software de Excel y se procede al desglosamiento de los datos según el tipo de análisis que se incluyen en las denominadas tablas de observaciones, obteniendo un archivo tipo .txt (delimitado por texto) el cual contendrá el número del punto y la información sobre la propiedad físico o química del suelo; cada una de las tablas de observación se presentan y detallan a continuación.

## Tabla 8

| No. | Dato Arena | No. | Dato Arena | No. | Dato Arena |
|-----|------------|-----|------------|-----|------------|
| 1   | 38.3       | 16  | 39.7066667 | 31  | 30.155     |
| 2   | 40.41      | 17  | 41.465     | 33  | 37.54      |
| 3   | 38.3       | 18  | 33.32      | 34  | 39.65      |
| 4   | 44.63      | 19  | 42.52      | 35  | 38.9466667 |
| 5   | 40.41      | 20  | 25.64      | 36  | 26.99      |
| 6   | 28.805     | 21  | 44.63      | 37  | 43.87      |
| 7   | 37.245     | 22  | 34.375     | 39  | 39.65      |
| 8   | 40.41      | 23  | 43.87      | 41  | 47.035     |
| 9   | 39.355     | 24  | 35.43      | 42  | 33.32      |
| 10  | 42.52      | 25  | 39.65      |     |            |
| 11  | 40.41      | 26  | 48.09      |     |            |
| 12  | 40.41      | 27  | 41.76      |     |            |
| 13  | 48.85      | 28  | 41.76      |     |            |
| 14  | 44.63      | 29  | 34.375     |     |            |
| 15  | 33.32      | 30  | 43.87      |     |            |

### Tabla de observación del porcentaje de arena

| No. | Dato Limo | No. | Dato Limo  | No. | Dato Limo  |
|-----|-----------|-----|------------|-----|------------|
| 1   | 32.705    | 16  | 30.9466667 | 31  | 16.88      |
| 2   | 27.43     | 17  | 28.485     | 33  | 25.32      |
| 3   | 33.76     | 18  | 33.76      | 34  | 27.43      |
| 4   | 27.43     | 19  | 27.43      | 35  | 26.7266667 |
| 5   | 29.54     | 20  | 37.98      | 36  | 36.925     |
| 6   | 30.595    | 21  | 29.54      | 37  | 30.2433333 |
| 7   | 31.65     | 22  | 30.595     | 39  | 31.65      |
| 8   | 29.54     | 23  | 31.65      | 41  | 24.265     |
| 9   | 40.09     | 24  | 35.87      | 42  | 31.65      |
| 10  | 29.54     | 25  | 31.65      |     |            |
| 11  | 29.54     | 26  | 18.99      |     |            |
| 12  | 35.87     | 27  | 27.43      |     |            |
| 13  | 22.155    | 28  | 29.54      |     |            |
| 14  | 31.65     | 29  | 21.1       |     |            |
| 15  | 29.54     | 30  | 21.1       |     |            |

Tabla de observación del porcentaje de limo

# Tabla 10

Tabla de observación del porcentaje de arcilla

| No. | Dato Arcilla | No. | Dato Arcilla | No. | Dato Arcilla |
|-----|--------------|-----|--------------|-----|--------------|
| 1   | 28.995       | 16  | 29.3466667   | 31  | 52.965       |
| 2   | 32.16        | 17  | 30.05        | 33  | 37.14        |
| 3   | 27.94        | 18  | 32.92        | 34  | 32.92        |
| 4   | 27.94        | 19  | 30.05        | 35  | 34.3266667   |
| 5   | 30.05        | 20  | 36.38        | 36  | 36.085       |
| 6   | 40.6         | 21  | 25.83        | 37  | 25.8866667   |
| 7   | 31.105       | 22  | 35.03        | 39  | 28.7         |
| 8   | 30.05        | 23  | 24.48        | 41  | 28.7         |
| 9   | 20.555       | 24  | 28.7         | 42  | 35.03        |
| 10  | 27.94        | 25  | 28.7         |     |              |
| 11  | 30.05        | 26  | 32.92        |     |              |
| 12  | 23.72        | 27  | 30.81        |     |              |
| 13  | 28.995       | 28  | 28.7         |     |              |
| 14  | 23.72        | 29  | 44.525       |     |              |
| 15  | 37.14        | 30  | 35.03        |     |              |

| No. | Dato Materia | No. | Dato Materia | No. | Dato Materia |
|-----|--------------|-----|--------------|-----|--------------|
|     | Orgánica     |     | Orgánica     |     | Orgánica     |
| 1   | 5.11         | 16  | 3.49         | 31  | 3.47         |
| 2   | 5.42         | 17  | 2.99         | 33  | 5.86         |
| 3   | 3.02         | 18  | 6.64         | 34  | 3.83         |
| 4   | 3.02         | 19  | 0.12         | 35  | 5.02333333   |
| 5   | 5.87         | 20  | 1.75         | 36  | 2.675        |
| 6   | 3.905        | 21  | 2.83         | 37  | 2.09333333   |
| 7   | 5.52         | 22  | 6.22         | 39  | 5.52         |
| 8   | 3.97         | 23  | 3.17         | 41  | 3.225        |
| 9   | 6.785        | 24  | 1.67         | 42  | 4.49         |
| 10  | 3.72         | 25  | 5.505        |     |              |
| 11  | 5.61         | 26  | 4.61         |     |              |
| 12  | 4.16         | 27  | 5.595        |     |              |
| 13  | 3.305        | 28  | 3.23         |     |              |
| 14  | 3.65         | 29  | 3.17         |     |              |
| 15  | 6.28         | 30  | 2.39         |     |              |

Tabla de observación de porcentaje de materia orgánica

# Tabla 12

Tabla de observación de la propiedad de potasio

| No. | Dato Potasio | No. | Dato Potasio | No. | Dato Potasio |
|-----|--------------|-----|--------------|-----|--------------|
| 1   | 152.965      | 16  | 67.1033333   | 31  | 134.555      |
| 2   | 142.71       | 17  | 88.34        | 33  | 225.01       |
| 3   | 183.44       | 18  | 59.43        | 34  | 107.13       |
| 4   | 90.11        | 19  | 70.61        | 35  | 117.436667   |
| 5   | 244.25       | 20  | 41.4         | 36  | 528.17       |
| 6   | 105.405      | 21  | 60.1         | 37  | 73.7133333   |
| 7   | 173.475      | 22  | 97.07        | 39  | 67.325       |
| 8   | 87.21        | 23  | 84.56        | 41  | 132.215      |
| 9   | 207.49       | 24  | 26.11        | 42  | 76.03        |
| 10  | 63.9         | 25  | 106.555      |     |              |
| 11  | 253.395      | 26  | 185.81       |     |              |
| 12  | 383.1        | 27  | 243.87       |     |              |
| 13  | 91.52        | 28  | 105.86       |     |              |
| 14  | 166.56       | 29  | 133.205      |     |              |
| 15  | 351.53       | 30  | 102.08       |     |              |

| No. | Dato Fósforo | No. | Dato Fósforo | No. | Dato Fósforo |
|-----|--------------|-----|--------------|-----|--------------|
| 1   | 31.795       | 16  | 32.72        | 31  | 13.945       |
| 2   | 37.64        | 17  | 54.88        | 33  | 14.86        |
| 3   | 42.08        | 18  | 13.08        | 34  | 11.48        |
| 4   | 28.89        | 19  | 50.77        | 35  | 14.5666667   |
| 5   | 28.89        | 20  | 22.89        | 36  | 79.855       |
| 6   | 15.225       | 21  | 84.04        | 37  | 74.2866667   |
| 7   | 27.115       | 22  | 17.465       | 39  | 40.415       |
| 8   | 37.64        | 23  | 79.86        | 41  | 80.275       |
| 9   | 61.935       | 24  | 49.28        | 42  | 58.96        |
| 10  | 84.86        | 25  | 46.505       |     |              |
| 11  | 53.88        | 26  | 87.38        |     |              |
| 12  | 53.1         | 27  | 22.215       |     |              |
| 13  | 21.96        | 28  | 60.63        |     |              |
| 14  | 26.52        | 29  | 21.745       |     |              |
| 15  | 80.69        | 30  | 21.54        |     |              |

Tabla de observación de la propiedad de fósforo

# Tabla 14

Tabla de observación de la propiedad de pH

| No. | Dato pH | No. | Dato pH    | No. | Dato pH    |
|-----|---------|-----|------------|-----|------------|
| 1   | 7.23    | 16  | 7.13333333 | 31  | 7.265      |
| 2   | 7.01    | 17  | 6.975      | 33  | 6.9        |
| 3   | 6.95    | 18  | 6.91       | 34  | 6.73       |
| 4   | 7.25    | 19  | 6.81       | 35  | 6.91       |
| 5   | 6.96    | 20  | 7.41       | 36  | 7.115      |
| 6   | 7.05    | 21  | 7.14       | 37  | 7.45666667 |
| 7   | 6.735   | 22  | 6.815      | 39  | 7.275      |
| 8   | 7.66    | 23  | 7.2        | 41  | 6.935      |
| 9   | 7.145   | 24  | 6.89       | 42  | 7.45       |
| 10  | 7.48    | 25  | 7.04       |     |            |
| 11  | 7.375   | 26  | 6.81       |     |            |
| 12  | 7.12    | 27  | 7          |     |            |
| 13  | 7.45    | 28  | 7.04       |     |            |
| 14  | 7.22    | 29  | 6.765      |     |            |
| 15  | 7.24    | 30  | 7.06       |     |            |

#### Metodología de Gabinete Final

#### Creación de Mapas de Propiedades Fisicoquímicas

Utilizando el software de SoLIM se procede a la creación de los archivos sobre las propiedades del suelo, esto se realiza en el programa al acceder al menú de "Product derivation > Propierty Map", en la ventana emergente para la creación de mapas de propiedad se introduce en el directorio de mapas borrosos la carpeta que contiene las inferencias de los archivos guardados en formato .3dr en la etapa de creación de capas de membresía realizado en su momento.

Asimismo, se incorporan en el apartado de observación, el archivo tipo .txt que contiene los datos de la propiedad que se desea crear, este proceso se repite con cada una de las tablas de observación. El programa crea los archivos de las propiedades en formato .3dr; por lo conveniente se procede a la conversión de este formato a uno que permita la visualización en el software de Qgis.

Dentro de Solim se accede a la pestaña de "Utilities", opción de "Data Format Conversion" y se selecciona "3dr > Grid Ascii"; en la ventana emergente se selecciona la capa de la propiedad en formato .3dr creadas recientemente, esta herramienta hace la conversión entre tipos de archivos es decir transforma los archivos de las capas de propiedad de .3dr a .asc; formato de datos en lugar de documentos, lo que significa que está destinado para ser visto por aplicaciones como Qgis; este procedimiento se efectúa con cada una de las capas .3dr.

A continuación, se realiza por medio del software de QGIS, la creación de los mapas de propiedad utilizando las capas generadas en Solim; dentro del programa se insertan los archivos y se procede con la creación de las respectivas imágenes.

Utilizando las capas de %arcilla, %limo y %arena por medio de la calculadora ráster se realiza la siguiente fórmula para la creación de la capa de clases texturales del suelo mediante la fórmula que determina el Departamento de Agricultura de USA -USDA- (Guerrero, 2015):

("limo% @1" + (1.5 \* "arcilla% @1") < 15) \* 1 + ((1.5 \* "arcilla% @1" >= 15) and (("limo% @1" + 2 \* "arcilla% @1") < 30)) \* 2 + (("arcilla% @1" >= 7 and "arcilla% @1" < 20 and "arcna% @1" > 52 and "limo% @1" + 2 \* "arcilla% @1" >= 30) or ("arcilla% @1" < 7 and "limo% @1" < 50 and "limo% @1" + 2 \* "arcilla% @1" >= 30)) \* 3 + ("arcilla% @1" < 7 and "arcilla% @1" < 27 and "limo% @1" + 2 \* "arcilla% @1" >= 30)) \* 3 + ("arcilla% @1" >= 7 and "arcilla% @1" < 27 and "limo% @1" < 27 and "limo% @1" >= 28 and "limo% @1" < 50 and "arcna% @1" <= 52) \* 4 + (("limo% @1" >= 50 and "arcilla% @1" >= 12 and "arcilla% @1" < 27) or ("limo% @1" <= 50 and "limo% @1" < 12)) \* 5 + ("limo% @1" < 27) or ("limo% @1" < 12)\* 6 + ("arcilla% @1" >= 20 and "arcilla% @1" < 12)) \* 5 + ("limo% @1" < 28 and "arcilla% @1" < 40) \* 7 + ("arcilla% @1" >= 27 and "arcilla% @1" < 40 and "arcna% @1" < 20 and "arcilla% @1" <= 45) \* 8 + ("arcilla% @1" >= 27 and "arcilla% @1" < 40 and "arcna% @1" <= 20) \* 9 + ("arcilla% @1" >= 35 and "arcilla% @1" >= 40 and "arcna% @1" >= 40 and "limo% @1" < 40 and "arcilla% @1" >= 40 and "limo% @1" < 40 and "limo% @1" < 40 and "limo% @1" >= 40 and "limo% @1" < 40 and "limo% @1" <

Donde a través de ella se calcula el tipo de textura que posee el suelo y puede variar

según el porcentaje presente; este se deduce con las variaciones de las partículas que

contiene y por medio de las siguientes ecuaciones para conocer su clasificación:

- 1. Arenoso: ("% de limo" + (1.5 \* "% de arcilla") < 15) \* 1
- 2. Arenosa Franca: ((1.5 \* "% Arcilla" >= 15 ) y ( ( "% Limo" + 2 \* "% Arcilla" ) < 30 ) ) \* 2
- 3. Franca: (("%Arcilla >= 7 y < 27; "%Limo" >= 28 y < 50 y "%Arena" <= 52) \* 4
- Franca limosa: (("%Limo" >= 50; "%Arcilla" >= 12 y < 27 o "%Limo" >= 50 y < 80; "%Arcilla" < 12) ) \* 5</li>
- 5. Limoso: ( ( "%Limo" >= 50; "%Arcilla" >= 12 y < 27 ) o ( "%Limo" >= 50 y < 80; "%Arcilla" < 12 ) ) \* 5 + ( "%Limo" >= 80; "%Arcilla" < 12)\* 6
- 6. Franco arcillosa: ("%Arcilla" >= 27 y < 40; "%Arena@1" > 20 y <= 45) \* 8
- 7. Arcillosa arenosa: ("%Arcilla" >= 35; "%Arena" > 45) \* 10
- 8. Arcillosa limosa: ("%Arcilla; "%Limo" >= 40) \* 11
- 9. Arcillosa: ("%Arcilla" >= 40; "%Arena" <= 45; "%Limo" < 40) \* 12

Finalmente, con las capas creadas se procede a la elaboración de cada uno de los

mapas obtenidos por medio de las propiedades físico y químicas del suelo, realizando las

clasificaciones pertinentes para su interpretación, según las condiciones de estos.

#### Validación de los Mapas de las Propiedades Fisicoquímicas

Utilizando el software de Excel se realiza la creación de las tablas de validación de cada

una de las propiedades fisicoquímicas del suelo, se obtiene un archivo tipo txt (delimitado por

texto) y a través del software de Solim solution se realiza la creación de los informes de

validación por medio de la herramienta "property validation" esto para un análisis estadístico de

precisión con respecto a los puntos de muestras realizados presenten márgenes normales. Los

informes de validación se presentan a continuación.

# Figura 15

# Informe de validación porcentaje de arena

| The Accuracy Report (C:                                                                                                                                                                                                                       | The Accuracy Report (C:\MDS\XESIGUAN ARCHIVOS\Lookup\Mapa_Propiedades\Arena.3dr vs C:\MDS\XESIGUAN ARCHIVOS\TABLA\validaciones\validacion Arena.txt) |                 |           |           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-----------|--|--|--|
| Total Number of Points:60Number of Points Masked Out:0Number of Points with NO DATA:0Number of Points with Valid Values:60                                                                                                                    |                                                                                                                                                      |                 |           |           |  |  |  |
| Results based on the 60 points which have both inferred and observed values:<br>RMSE: 6.553093<br>Agreement Coefficient: 0.439486<br>Mean Absolute Error: 4.806779<br>Standard Deviation of Observed Values: 7.041346<br>Mean Error: 0.639616 |                                                                                                                                                      |                 |           |           |  |  |  |
| Points Masked Out (0 po<br>(none)                                                                                                                                                                                                             | ints)                                                                                                                                                |                 |           |           |  |  |  |
| Points with NO DATA (0<br>(none)                                                                                                                                                                                                              | points)                                                                                                                                              |                 |           |           |  |  |  |
| Points with Inferred ar                                                                                                                                                                                                                       | d Observed Values                                                                                                                                    | (60)            |           |           |  |  |  |
| PointID                                                                                                                                                                                                                                       | X                                                                                                                                                    | Y               | Inferred  | Observed  |  |  |  |
| 1                                                                                                                                                                                                                                             | 123459.546875                                                                                                                                        | 1670159.625000  | 38.661171 | 34.080002 |  |  |  |
| 2                                                                                                                                                                                                                                             | 122720.125000                                                                                                                                        | 1670657.000000  | 38.973961 | 40.410000 |  |  |  |
| 3                                                                                                                                                                                                                                             | 122695.523438                                                                                                                                        | 1670508.250000  | 37.430965 | 38.299999 |  |  |  |
| 4                                                                                                                                                                                                                                             | 124316.796875                                                                                                                                        | 1666952.125000  | 38.065620 | 19.309999 |  |  |  |
| 5                                                                                                                                                                                                                                             | 124274.554688                                                                                                                                        | 1667006.625000  | 38.814793 | 40.410000 |  |  |  |
| 6                                                                                                                                                                                                                                             | 123300.851563                                                                                                                                        | 1669282.125000  | 38.927612 | 38.299999 |  |  |  |
| 7                                                                                                                                                                                                                                             | 121535.429688                                                                                                                                        | 1670930.125000  | 40.576595 | 40.410000 |  |  |  |
| 8                                                                                                                                                                                                                                             | 123473.265625                                                                                                                                        | 1669529.875000  | 37.982250 | 34.080002 |  |  |  |
| 9                                                                                                                                                                                                                                             | 124379.242188                                                                                                                                        | 1667134.250000  | 38.145298 | 42.520000 |  |  |  |
| 10                                                                                                                                                                                                                                            | 121827.968750                                                                                                                                        | 1671003.875000  | 38.457531 | 44.630001 |  |  |  |
| 11                                                                                                                                                                                                                                            | 124692.179688                                                                                                                                        | 1672033.750000  | 44.279671 | 44.630001 |  |  |  |
| 12                                                                                                                                                                                                                                            | 122714.328125                                                                                                                                        | 1673510.250000  | 44.783737 | 50.959999 |  |  |  |
| 13                                                                                                                                                                                                                                            | 124602.085938                                                                                                                                        | 1672695.625000  | 42.285492 | 40.410000 |  |  |  |
| 14                                                                                                                                                                                                                                            | 128323.492188                                                                                                                                        | 1665250.500000  | 42.634903 | 38.299999 |  |  |  |
| 15                                                                                                                                                                                                                                            | 124586.562500                                                                                                                                        | 1672769.375000  | 41.740505 | 42.520000 |  |  |  |
| 16                                                                                                                                                                                                                                            | 124433.179688                                                                                                                                        | 1672560.875000  | 43.034752 | 40.410000 |  |  |  |
| 17                                                                                                                                                                                                                                            | 124905.476563                                                                                                                                        | 1672792.250000  | 42.295532 | 40.410000 |  |  |  |
| 10                                                                                                                                                                                                                                            | 10001/ 100075                                                                                                                                        | 1665/1/1 975000 | 13 634034 | A6 740002 |  |  |  |

### Informe de validación porcentaje de limo

The Accuracy Report (C:\MDS\XESIGUAN ARCHIVOS\Lookup\Mapa\_Propiedades\Limo.3dr vs C:\MDS\XESIGUAN ARCHIVOS\TABLA\validaciones\validacion Limo.txt) Total Number of Points: 60 Number of Points With NO DATA: 0 Number of Points with NO DATA: 0 Results based on the 60 points which have both inferred and observed values: RMSE: 4.242062 Agreement Coefficient: 0.695364 2.980853 Wean Absolute Error: 2.980853 Standard Deviation of Observed Values: 5.457522 Mean Error: 0.029095 Points Masked Out (0 points) (none) Points with NO DATA (0 points) (none) Points with Inferred and Observed Values (60) PointID Inferred Observed х 123459.546875 1670159.625000 29.868120 1 31.650000 122720.125000 122695.523438 1670657.000000 1670508.250000 31.650000 29.844568 30.044312 3 4 124316.796875 124274.554688 1666952.125000 1667006.625000 29.984316 30.298601 31.650000 27.430000 5 123300.851563 121535.429688 123473.265625 1669282.125000 1670930.125000 30.853264 29.103695 33.759998 29.540001 6 31.650000 8 1669529.875000 30.160845 9 10 124379.242188 121827.968750 1667134.250000 30.087362 1671003.875000 29.708271 33.759998 27.430000 11 12 124692.179688 122714.328125 1672033.750000 1673510.250000 30.125214 30.239380 31.650000 27.430000 13 14 15 124602.085938 128323.492188 1672695.625000 31.355116 1665250.500000 31.608030 35.869999 44.310001 124586.562500 1672769.375000 32.194302 29.540001 16 17 124433.179688 124905.476563 1672560.875000 30.938494 1672792.250000 31.316217 35.869999 29.540001

## Figura 17

#### Informe de validación porcentaje de arcilla

| Total Number of Points:       60         Number of Points With NoTA:       0         Number of Points With NoTA:       0         Results based on t60 points with NotA:       0.57379         Results based on t60 points:       0.677379         Mean Absolute Error:       0.677379         Points with No DATA (0 points):       0.67774         Points with Inferred and Observed Values:       60*         Points 1       122726.155248       1.164767       0.557404         1       122726.155248       166952.12588       31.476657       34.2708001         3       122726.125680       31.476657       34.2708001       34.2708001         3       122726.125808       31.95069       34.2771       32.1608001       31.181471       7.540801         3       122726.55248       166952.125888       30.31715       36.499991       38.31715       36.499991       34.2708001                                                                                                                      | The Accuracy Report (C:\M                                                                                                                             | DS\XESIGUAN ARC⊨                                         | IIVOS\Lookup\Mapa | _Propiedades\Arcilla.3d | r vs C:\MDS\XESIGUAN ARCHIVOS\TABLA\validaciones\validacion Arcilla.txt) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------|-------------------------|--------------------------------------------------------------------------|
| Results based on the 60 points which have both inferred and observed values:         MSE:       6.428234         Agreement Coefficient:       0.677379         Mean Absolute Error:       4.120894         Standard Deviation of Observed Values:       8.071726         Mean Error:       -0.668710         Points Wasked Out (0 points)<br>(none)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Number of Points:<br>Number of Points Masked O<br>Number of Points with NO<br>Number of Points with Val                                         | 60<br>ut: 0<br>DATA: 0<br>id Values: 60                  |                   |                         |                                                                          |
| Points Masked Out (0 points)<br>(none)         Points with No DATA (0 points)<br>(none)         Points with Inferred and Observed Values       60         Points with Inferred and Observed Values       60         Point S       Y       Inferred       Observed         1       123459.54687       1670657.00000       31.4706907       34.270000         2       122720.125000       1670657.00000       31.181471       27.940001         3       122695.521438       1670598.25000       32.524727       32.160000         4       124316.79687       1660552.15500       30.86100       32.160000         5       124274.56488       1667080.25000       30.19715       30.40001         6       123300.851563       1669529.17500       30.319715       30.49999         8       124473.265625       1669529.17500       31.456901       34.270000         9       124373.265625       1669529.87500       31.456901       34.270000         10       124373.265625       1669529.87500       31.456901       34.270000         11       124373.265625       1669529.87500       31.456901       34.270000         12       124373.265625       1669529.87500       31.68591       34.270000                                                                                                                              | Results based on the 60 p<br>RMSE: 6.428234<br>Agreement Coefficient:<br>Mean Absolute Error: 4<br>Standard Deviation of Obs<br>Mean Error: -0.668710 | oints which have<br>0.677379<br>.120898<br>erved Values: | 8.071726          | nd observed values:     |                                                                          |
| Points with No DATA (0 points)<br>(none)         Points with Inferred and Observed Values (60)         PointD       X       Y       Inferred       Observed         1       123459-546875       1670159.62500       31.470697       34.270000         2       122720.125000       1670657.00000       31.181471       27.940001         3       122695.523438       1670508.25000       32.524727       32.160000         4       124316.796875       1660522.15200       30.86610       32.160000         5       124274.55468       1667026.2500       30.86610       32.160000         6       123300.851563       1669282.12500       30.21912       27.940001         7       121353.429688       1670930.12500       30.19175       30.429999         8       12347.265625       166952.07500       31.85901       34.270000         9       12437.265625       167193.25000       31.85901       34.270000         10       121827.96875       167193.25000       31.85901       34.270000         11       124692.179688       167203.375000       31.83192       27.940001         12       12474.38125       167314.25000       32.5595106       23.719999         12<                                                                                                                                                 | Points Masked Out (0 poin<br>(none)                                                                                                                   | ts)                                                      |                   |                         |                                                                          |
| Points with Inferred and Observed Value         (60)           Point ID         X         Y         Inferred         Observed           1         123405-056475         1670159.0520         31.470697         34.270000           2         122720.125000         1670657.00000         31.181471         27.940001           3         122695.52343         16705802         32.524727         32.160000           4         12415.796875         1660592.12500         32.954727         32.160000           5         124274.55468         1660592.12500         30.80610         32.160000           6         123300.851563         1669282.12500         30.21912         27.940001           7         12153.429688         1670930.12500         30.19715         30.427000           8         12347.265625         1669282.12500         31.9175         30.427000           9         12437.265625         1667194.25000         31.67312         37.19999           10         121827.96875         167193.8700         31.83192         27.94001           11         124692.179688         167293.7500         25.55166         23.71999           12         12147.48215         167510.25000         25.55166         23.71999                                                                                  | Points with NO DATA (0 po<br>(none)                                                                                                                   | ints)                                                    |                   |                         |                                                                          |
| PointID         X         Y         Inferred         Observed           1         123459.546875         1670159.62500         31.470697         34.270606           2         12270.125000         1670657.60000         31.181471         27.940001           3         122695.52438         1670658.25000         32.524727         32.160000           4         124316.796875         1666952.125000         30.86610         32.160000           5         124274.554688         1667066.62500         30.88610         32.160000           6         123300.851563         1669282.125000         30.219122         27.940001           7         12153.424688         1667906.32500         31.856901         34.270000           9         12437.92488         1667142.5000         31.185192         27.940001           11         12487.968750         167083.375000         31.85192         27.940001           11         12487.968750         1671003.87500         31.834192         27.940001           12         121437.94288         1672033.75000         32.595166         23.719999           12         124432.49218         1672695.625000         26.595302         23.719999           13         124602.085938                                                                                       | Points with Inferred and                                                                                                                              | Observed Values                                          | (60)              |                         |                                                                          |
| 1         123459.546875         1670159.625000         31.470697         34.270000           2         122702.125000         1670557.000000         31.181471         27.940001           3         122695.52438         1670508.25000         32.52727         32.160000           4         124316.795875         1666952.125000         31.950069         49.040001           5         124274.55488         1667066.25000         08.86100         32.160000           6         123300.851563         166928.125000         30.319715         30.049999           8         123473.255625         1669529.87500         31.85901         34.270000           9         124379.24218         1667144.25000         31.767332         27.940001           11         124692.179688         167203.375000         31.8192         27.940001           12         122714.328125         167310.25000         31.8192         27.940001           12         122714.328125         167310.25000         31.8591         34.192           12         122714.328125         167310.25000         24.97681         21.61001           13         124602.085938         1672695.7500         26.59292         23.719999           14         12832.492118 <td>PointID</td> <td>X</td> <td>Y</td> <td>Inferred</td> <td>Observed</td> | PointID                                                                                                                                               | X                                                        | Y                 | Inferred                | Observed                                                                 |
| 2         122720.12500         1670657.00000         31.181471         27.940001           3         122695.52343         1670508.25000         32.524727         32.16000           4         124316.796875         1666952.12500         31.95069         49.040001           5         124274.55648         1667066.62500         30.86610         32.16000           6         123300.851563         1669282.12500         30.21912         27.940001           7         12153.42968         1670930.12500         30.1915         30.49999           8         12347.265625         1669282.987500         31.85901         34.27000           9         124379.42188         1667142.5900         31.67332         23.719999           10         121827.968750         167103.87500         31.83192         27.940001           11         124692.179688         1672093.75000         25.55106         23.719999           12         1217.14.38125         1672093.75000         25.55106         23.719999           13         124692.085938         1672695.625000         25.757661         17.38999           14         12832.492118         165255.505000         25.575661         17.38999           15         124565.652500                                                                                | 1                                                                                                                                                     | 123459.546875                                            | 1670159.625000    | 31.470697               | 34.270000                                                                |
| 3       122695.52343       1670508.25000       32.524727       32.16000         4       124316.796875       1666952.125000       30.950690       32.16000         5       124274.55468       1667066.65200       30.86610       32.16000         6       12330.85153       1667086.65200       30.1912       27.94001         7       12153.429688       1670930.12500       30.1915       30.49999         8       12347.3265625       1669529.87500       31.856901       34.270000         9       12437.94188       1667144.25000       31.167332       27.940001         10       12827.968550       1671033.75000       25.595106       27.940001         11       12469.179688       1672050.65500       25.595106       27.940001         12       12714.38125       1673510.25000       25.595106       27.940001         13       12460.885938       167265.5000       25.595106       23.719999         14       12832.49218       1652505.000       25.575061       17.389999         15       12456.552500       1672695.652600       25.575061       17.38999         16       124433.17968       1672769.75000       26.62628       29.719999         16       1244                                                                                                                                               | 2                                                                                                                                                     | 122720.125000                                            | 1670657.000000    | 31.181471               | 27,940001                                                                |
| 4       124316.796875       1666952.125000       31.950069       49.040001         5       124274.55468       1667006.62500       30.88610       32.16000         6       123308.851563       1667020.12500       30.1912       27.940001         7       121535.42968       1670930.12500       30.319715       30.40999         8       12347.242188       1667134.25000       31.1767332       23.719999         10       121827.96875       167103.87500       31.834192       27.940001         11       124692.179688       1677033.75000       23.719999         12       12714.328125       167203.75000       24.976811       21.61001         13       124602.085938       1672505.62500       26.359392       23.719999         14       12823.492188       1665250.505000       25.757611       17.839999         15       124586.562200       1672769.375002       26.06528       27.94001         16       12433.179688       1672505.02500       26.05726       23.719999         15       124586.562900       167269.375002       26.05286       27.94001         16       12433.179688       1672505.02500       26.02752       23.719999         15       124586.562900 </td <td>3</td> <td>122695.523438</td> <td>1670508.250000</td> <td>32.524727</td> <td>32.160000</td>                                   | 3                                                                                                                                                     | 122695.523438                                            | 1670508.250000    | 32.524727               | 32.160000                                                                |
| 5       124274.55488       1667066.62500       30.886610       32.16000         6       123300.851563       1669282.12500       30.21912       27.94001         7       121535.429688       1670930.12500       30.21975       30.49999         8       12347.326525       1669529.87500       31.856901       34.27000         9       124379.42188       1667134.25000       31.76732       23.71999         10       121827.968750       1671003.87500       31.834192       27.940001         11       124692.179688       1672033.75000       25.595166       23.719999         12       12714.38125       1672693.625000       26.359322       23.719999         13       124602.085938       1672695.625000       25.757661       17.38999         14       12832.49218       1665250.950000       25.757661       17.38999         15       124565.65200       167269.37500       26.62628       27.940001         16       12433.17968       1672769.37500       26.62528       27.940001         16       12433.17968       167269.625000       26.9752       23.719999         16       12433.17968       1672769.25000       26.62628       29.940001         16 <td< td=""><td>4</td><td>124316.796875</td><td>1666952.125000</td><td>31.950069</td><td>49.040001</td></td<>                                        | 4                                                                                                                                                     | 124316.796875                                            | 1666952.125000    | 31.950069               | 49.040001                                                                |
| 6         123300.85153         1669220.125000         30.219122         27.940001           7         121535.429688         1670930.125000         30.319715         30.049999           8         123473.265625         1669529.875000         31.856901         34.270000           9         124373.265625         1669529.875000         31.856901         34.270000           10         121827.968750         1671003.875000         31.8102         27.940001           11         124692.179688         1672033.75000         25.595106         23.719999           12         122714.328125         1673510.25000         26.595106         23.719999           13         124602.085593         1672695.65200         26.59532         23.719999           14         12832.49218         1665250.50000         25.757061         17.389999           15         124586.562500         1672695.75002         26.62268         29.40001           16         124433.17968         1672792.250000         26.382455         30.49999           17         124905.476553         1672692.25000         26.388245         36.30041                                                                                                                                                                                         | 5                                                                                                                                                     | 124274.554688                                            | 1667006.625000    | 30.886610               | 32.160000                                                                |
| 7       121535.42968       1670930.12500       30.319715       30.40999         8       123473.265625       1669529.87500       31.856901       34.27000         9       124379.42188       1667134.25000       31.767332       23.719999         10       121827.96875       167103.87500       31.834192       27.940001         11       124692.179688       167203.75000       25.595166       23.719999         12       122714.328125       1673510.25000       26.35932       23.719999         13       124602.085938       167265.62500       26.35932       23.719999         14       12832.492188       1665250.505002       25.757611       17.839999         15       124586.562500       1672769.375002       26.065288       27.94001         16       12433.179688       1672505.02500       26.02752       23.719999         17       124905.476503       1672769.250000       26.026752       23.719999         17       124905.476503       1672769.250000       26.08245       36.049999         18       142911.104375       165144.87644       36.38644       36.38644                                                                                                                                                                                                                                    | 6                                                                                                                                                     | 123300.851563                                            | 1669282.125000    | 30.219122               | 27.940001                                                                |
| 8         123473.265625         1669529.875000         31.856961         34.270000           9         124379.242188         1667134.250000         31.85091         23.719999           10         121827.968750         1671003.875000         31.834192         27.940001           11         124692.179688         1672033.75000         25.595106         23.719999           12         12714.38125         1673510.25000         26.595106         23.719999           13         124602.085938         1672695.625000         26.359392         23.719999           14         12832.49218         1665250.50000         25.757061         17.38999           15         124586.565200         1672769.375000         26.026722         27.940001           16         12433.179688         167269.675000         26.026722         27.940001           16         12433.179688         1672509.250000         26.026752         27.940001           17         124905.476563         167279.250000         26.038245         30.049999           19         121214.104275         1655444.972640         25.66644         36.30604                                                                                                                                                                                     | 7                                                                                                                                                     | 121535.429688                                            | 1670930.125000    | 30.319715               | 30.049999                                                                |
| 9         124379,24218         1667134,25000         31.76732         23.719999           10         121827,968750         1671003,875000         31.834192         27.940001           11         124692,179688         1672033,75000         25.595166         23.719999           12         122714,328125         1673510,25000         24.976881         21.610001           13         12460,2685938         1672505,625000         25.57661         17.389999           14         12832,3492188         16625205,60000         25.57661         17.389999           15         124586,562500         167269,375000         26.025752         27.19999           16         12433,179688         1672769,255000         26.025752         27.19999           17         124905,476563         1672792,250000         26.038245         30.049999           18         12911,100375         165444,975000         25.66684         36.390001                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                     | 123473.265625                                            | 1669529.875000    | 31.856901               | 34.270000                                                                |
| 10         121827.968750         1671003.875000         31.834192         27.940001           11         124692.179688         1672033.75000         25.595106         23.719999           12         122714.328125         1673510.25000         24.976881         21.610001           13         124602.085938         1672695.62500         26.359392         23.719999           14         128323.492188         1665250.505000         25.757611         17.839999           15         124586.562500         1672769.375000         26.05288         27.940001           16         12433.179688         1672500.87500         26.026752         23.719999           17         124905.476563         1672729.250000         26.038245         30.049999           18         1492114.104375         1655444.976404         2         5.64644         36.380401                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                     | 124379.242188                                            | 1667134.250000    | 31.767332               | 23.719999                                                                |
| 11       124692.17968       1672033.75000       25,595166       23,719999         12       12271.438125       167510.25000       24,07681       21,610001         13       124602.085938       1672695.65200       26,359392       23,719999         14       12832.49218       1665250,50000       25,757061       17.389999         15       12456.562500       1672769.37500       26,62208       27.940001         16       12433.17968       1672769.25000       26,026752       23.719999         17       124905.476563       1672769.25000       26,038245       30.049999         19       129714.100275       1656444.976000       25.66664       36.30004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                    | 121827.968750                                            | 1671003.875000    | 31.834192               | 27.940001                                                                |
| 12       122714.32812       1673510.25000       24.976881       21.61001         13       124602.08593       1672695.62500       26.359392       23.71999         14       128232.492188       1665250.5000       25.75061       17.38999         15       124586.562500       167269.37500       26.02572       27.94001         16       12433.17968       1672792.25000       26.02572       23.71999         17       12490.476563       1672792.25000       25.65684       30.04999         18       12911.100375       16544.875000       25.56684       36.9001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                    | 124692.179688                                            | 1672033.750000    | 25.595106               | 23.719999                                                                |
| 13     124602.085593     1672695.62500     26.359392     23.719999       14     128323.492188     1665250.50000     25.75761     17.389999       15     124586.562500     1672769.37500     26.065288     27.940001       16     12433.179688     1672560.87500     26.026752     23.719999       17     124905.476563     1672792.250000     26.38245     30.049999       18     128214.100375     165544 872000     25.66684     36.380001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                    | 122714.328125                                            | 1673510.250000    | 24.976881               | 21.610001                                                                |
| 14       128323.492188       1665250.500000       25.757061       17.389999         15       124586.562500       1672769.375002       26.065208       27.940001         16       124433.179688       1672560.875000       26.026752       23.719999         17       124905.475653       1672792.250000       26.56684       30.049999         18       128214.100375       165444.875000       25.566684       36.390001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                    | 124602.085938                                            | 1672695.625000    | 26.359392               | 23.719999                                                                |
| 15     124586.562509     1672769.37500     26.065208     27.940001       16     12443.17968     1672560.87500     26.026752     23.719999       17     124096.476563     1672792.25000     26.38245     30.409999       18     129214.100375     1665444.875000     25.65684     36.390001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                    | 128323.492188                                            | 1665250.500000    | 25.757061               | 17.389999                                                                |
| 16         124433.17968         1672560.87500         26.026752         23.719999           17         124905.476563         1672792.25000         26.38245         30.049999           19         129214.100375         1656444.975000         26.66664         36.380201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                    | 124586.562500                                            | 1672769.375000    | 26.065208               | 27.940001                                                                |
| 17         124905.476563         1672792.250000         26.388245         30.049999           18         128214         108275         1665444         875000         26.56864         36.3880001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                                                                                    | 124433.179688                                            | 1672560.875000    | 26.026752               | 23.719999                                                                |
| 18 17871A 108775 1665AAA 875000 75 65068A 26 380001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                    | 124905.476563                                            | 1672792.250000    | 26.388245               | 30.049999                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 0                                                                                                                                                   | 128214 100375                                            | 1665/// 875000    | 25 650694               | 36 380001                                                                |

### Informe de validación porcentaje de materia orgánica

```
The Accuracy Report (C:\MDS\XESIGUAN ARCHIVOS\Lookup\Mapa_Propiedades\MO.3dr vs C:\MDS\XESIGUAN ARCHIVOS\TABLA\validaciones\validacion MO.txt)
 Total Number of Points:
Number of Points Masked Out: 0
Number of Points with NO DATA: 0
Number of Points with Valid Values: 60
Results based on the 60 points which have both inferred and observed values:

RMSE: 1.551058

Agreement Coefficient: 0.532202

Mean Absolute Error: 1.273577

Standard Deviation of Observed Values: 1.784247

Mean Error: -0.003630
Points Masked Out (0 points)
(none)
Points with NO DATA (0 points)
        (none)
 Points with Inferred and Observed Values (60)
                                                                                                                                                      Observed
4.350000
6.690000
       PointID
                                                                                                            Inferred
                                                123459.546875
122720.125000
                                                                             1670159.625000
1670657.000000
                                                                                                           4.313819
4.321710
        1
                                                122695.523438
124316.796875
124274.554688
                                                                             1670508.250000
1666952.125000
1667006.625000
                                                                                                           4.385010
4.570024
                                                                                                                                                      4.030000
3.780000
        3
                                                                                                           4.537508
4.039915
4.348756
        5
                                                                                                                                                      5.420000
        6
                                                123300.851563
121535.429688
                                                                             1669282.125000
1670930.125000
                                                                                                                                                      3.020000
                                                                                                          4.348756
4.601782
4.622424
4.291018
4.408011
4.332118
                                                123473.265625
124379.242188
121827.968750
                                                                                                                                                      6.250000
3.970000
        8
9
                                                                              1669529.875000
                                                                              1667134.25000
1671003.875000
        10
                                                                                                                                                       3.020000
                                                124692.179688
122714.328125
                                                                             1672033.750000
1673510.250000
                                                                                                                                                      3.650000
3.910000
        11
12
13
14
15
                                                                                                          4.552118
4.696101
4.748380
4.704938
4.496094
4.691349
4.445135
                                                124602.085938
                                                                              1672695.625000
                                                                                                                                                       6.750000
                                                128323.492188
124586.562500
                                                                              1665250.500000
1672769.375000
                                                                                                                                                       6.820000
                                                                                                                                                       3.720000
                                                124980.902900
124433.179688
124905.476563
128214 100375
                                                                              1672792.25000
1672792.25000
1665444 875000
        16
17
                                                                                                                                                      4.160000
3.970000
         18
```

## Figura 19

#### Informe de validación propiedad de potasio

| The Accuracy Report (C:\M                                                                                                                                                                                                                         | The Accuracy Report (C:\MDS\XESIGUAN ARCHIVOS\Lookup\Mapa_Propiedades\K2.3dr vs C:\MDS\XESIGUAN ARCHIVOS\TABLA\validaciones\validacion K_2.txt) |                |            |            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|------------|--|--|
| Total Number of Points:60Number of Points Masked Out:0Number of Points with NO DATA:0Number of Points with Valid Values:60                                                                                                                        |                                                                                                                                                 |                |            |            |  |  |
| Results based on the 60 points which have both inferred and observed values:<br>RMSE: 72.884068<br>Agreement Coefficient: 0.580020<br>Mean Absolute Error: 54.851742<br>Standard Deviation of Observed Values: 78.747808<br>Mean Error: -2.051209 |                                                                                                                                                 |                |            |            |  |  |
| Points Masked Out (0 poin<br>(none)                                                                                                                                                                                                               | ts)                                                                                                                                             |                |            |            |  |  |
| Points with NO DATA (0 po<br>(none)                                                                                                                                                                                                               | ints)                                                                                                                                           |                |            |            |  |  |
| Points with Inferred and                                                                                                                                                                                                                          | Observed Values                                                                                                                                 | (60)           |            |            |  |  |
| PointID                                                                                                                                                                                                                                           | х                                                                                                                                               | Ŷ              | Inferred   | Observed   |  |  |
| 1                                                                                                                                                                                                                                                 | 123459.546875                                                                                                                                   | 1670159.625000 | 104.651070 | 166.610001 |  |  |
| 2                                                                                                                                                                                                                                                 | 122720.125000                                                                                                                                   | 1670657.000000 | 105.075829 | 180.339996 |  |  |
| 3                                                                                                                                                                                                                                                 | 122695.523438                                                                                                                                   | 1670508.250000 | 130.416122 | 136.160004 |  |  |
| 4                                                                                                                                                                                                                                                 | 124316.796875                                                                                                                                   | 1666952.125000 | 186.590485 | 74.650002  |  |  |
| 5                                                                                                                                                                                                                                                 | 124274.554688                                                                                                                                   | 1667006.625000 | 138.968033 | 142.710007 |  |  |
| 6                                                                                                                                                                                                                                                 | 123300.851563                                                                                                                                   | 1669282.125000 | 139.201172 | 183.440002 |  |  |
| 7                                                                                                                                                                                                                                                 | 121535.429688                                                                                                                                   | 1670930.125000 | 194.639832 | 244.250000 |  |  |
| 8                                                                                                                                                                                                                                                 | 123473.265625                                                                                                                                   | 1669529.875000 | 161.459442 | 178.800003 |  |  |
| 9                                                                                                                                                                                                                                                 | 124379.242188                                                                                                                                   | 1667134.250000 | 175.366501 | 127.129997 |  |  |
| 10                                                                                                                                                                                                                                                | 121827.968750                                                                                                                                   | 1671003.875000 | 160.497635 | 90.110001  |  |  |
| 11                                                                                                                                                                                                                                                | 124692.179688                                                                                                                                   | 1672033.750000 | 137.397385 | 166.559998 |  |  |
| 12                                                                                                                                                                                                                                                | 122714.328125                                                                                                                                   | 1673510.250000 | 137.891891 | 108.209999 |  |  |
| 13                                                                                                                                                                                                                                                | 124602.085938                                                                                                                                   | 1672695.625000 | 138.939926 | 226.529999 |  |  |
| 14                                                                                                                                                                                                                                                | 128323.492188                                                                                                                                   | 1665250.500000 | 139.625092 | 188.449997 |  |  |
| 15                                                                                                                                                                                                                                                | 124586.562500                                                                                                                                   | 1672769.375000 | 205.904312 | 63.900002  |  |  |
| 16                                                                                                                                                                                                                                                | 124433.179688                                                                                                                                   | 1672560.875000 | 217.549759 | 383.100006 |  |  |
| 17                                                                                                                                                                                                                                                | 124905.476563                                                                                                                                   | 1672792.250000 | 147.021255 | 87.209999  |  |  |
| 19                                                                                                                                                                                                                                                | 17871/ 100375                                                                                                                                   | 1665/// 875000 | 173 251663 | 7/ 830000  |  |  |

### Informe de validación propiedad de fósforo

The Accuracy Report (C:\MD5\XESIGUAN ARCHIVO5\Lookup\Mapa\_Propiedades\P.3dr vs C:\MD5\XESIGUAN ARCHIVO5\TABLA\validaciones\validacion P.txt) Total Number of Points: 60 Number of Points: 60 Number of Points Masked Out: 0 Number of Points with NO DATA: 0 Number of Points with Valid Values: 60 Results based on the 60 points which have both inferred and observed values: RMSE: 19.813108 Agreement Coefficient: 0.777087 Mean Absolute Error: 14.935013 Standard Deviation of Observed Values: 26.931401 Mean Error: -0.873735 Points Masked Out (0 points) (none) Points with NO DATA (0 points) (none) Points with Inferred and Observed Values (60) PointID Inferred Observed 123459.546875 1670159.625000 1 25,867561 30.990000 122720.125000 122695.523438 124316.796875 124274.554688 1670657.000000 1670508.250000 23.240000 26.188589 24.906927 3 1666952.125000 1667006.625000 26.884380 32.160389 13.280000 37.639999 4 5 6 123300.851563 1669282.125000 36,142109 42.080002 121535.429688 123473.265625 1670930.125000 1669529.875000 28.056051 28.332117 28.889999 17.760000 8 9 10 11 12 13 14 15 124379.242188 121827.968750 1667134.250000 1671003.875000 28.211639 25.877506 45.830002 28.889999 124692.179688 1672033.750000 34,332546 26.520000 122714.328125 124602.085938 1673510.250000 1672695.625000 34.296860 54.136169 14.620000 128323.492188 124586.562500 1665250.500000 1672769.375000 1672560.875000 54.372326 72.365410 44.548500 82.370003 84.860001 53,099998 16 124433.179688 124905.476563 128214 100375 1672792.250000 53.224949 37.639999 17 19

# Figura 21

#### Informe de validación propiedad de pH

| The Accuracy Report (C:\/                                                                                                                                                                                                                     | The Accuracy Report (C:\MDS\XESIGUAN ARCHIVOS\Lookup\Mapa_Propiedades\pH.3dr vs C:\MDS\XESIGUAN ARCHIVOS\TABLA\validaciones\validacion Ph.txt) |                |          |          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------|--|--|
| Total Number of Points:60Number of Points Masked Out:0Number of Points with NO DATA:0Number of Points with Valid Values:60                                                                                                                    |                                                                                                                                                |                |          |          |  |  |
| Results based on the 60 points which have both inferred and observed values:<br>RMSE: 0.229160<br>Agreement Coefficient: 0.648252<br>Mean Absolute Error: 0.179852<br>Standard Deviation of Observed Values: 0.285397<br>Mean Error: 0.018382 |                                                                                                                                                |                |          |          |  |  |
| Points Masked Out (0 poin<br>(none)                                                                                                                                                                                                           | nts)                                                                                                                                           |                |          |          |  |  |
| Points with NO DATA (0 po<br>(none)                                                                                                                                                                                                           | pints)                                                                                                                                         |                |          |          |  |  |
| Points with Inferred and                                                                                                                                                                                                                      | Observed Values                                                                                                                                | (60)           |          |          |  |  |
| PointID                                                                                                                                                                                                                                       | х                                                                                                                                              | Ŷ              | Inferred | Observed |  |  |
| 1                                                                                                                                                                                                                                             | 123459.546875                                                                                                                                  | 1670159.625000 | 6.988929 | 6.700000 |  |  |
| 2                                                                                                                                                                                                                                             | 122720.125000                                                                                                                                  | 1670657.000000 | 6.985133 | 6.770000 |  |  |
| 3                                                                                                                                                                                                                                             | 122695.523438                                                                                                                                  | 1670508.250000 | 7.004494 | 7.080000 |  |  |
| 4                                                                                                                                                                                                                                             | 124316.796875                                                                                                                                  | 1666952.125000 | 7.058994 | 7.020000 |  |  |
| 5                                                                                                                                                                                                                                             | 124274.554688                                                                                                                                  | 1667006.625000 | 7.062804 | 7.010000 |  |  |
| 6                                                                                                                                                                                                                                             | 123300.851563                                                                                                                                  | 1669282.125000 | 7.017045 | 6.950000 |  |  |
| 7                                                                                                                                                                                                                                             | 121535.429688                                                                                                                                  | 1670930.125000 | 7.091118 | 6.960000 |  |  |
| 8                                                                                                                                                                                                                                             | 123473.265625                                                                                                                                  | 1669529.875000 | 7.069265 | 7.220000 |  |  |
| 9                                                                                                                                                                                                                                             | 124379.242188                                                                                                                                  | 1667134.250000 | 7.067559 | 7.240000 |  |  |
| 10                                                                                                                                                                                                                                            | 121827.968750                                                                                                                                  | 1671003.875000 | 7.058547 | 7.250000 |  |  |
| 11                                                                                                                                                                                                                                            | 124692.179688                                                                                                                                  | 1672033.750000 | 7.295921 | 7.220000 |  |  |
| 12                                                                                                                                                                                                                                            | 122714.328125                                                                                                                                  | 1673510.250000 | 7.294495 | 7.330000 |  |  |
| 13                                                                                                                                                                                                                                            | 124602.085938                                                                                                                                  | 1672695.625000 | 7.354939 | 7.170000 |  |  |
| 14                                                                                                                                                                                                                                            | 128323.492188                                                                                                                                  | 1665250.500000 | 7.347104 | 7.120000 |  |  |
| 15                                                                                                                                                                                                                                            | 124586.562500                                                                                                                                  | 1672769.375000 | 7.377355 | 7.480000 |  |  |
| 16                                                                                                                                                                                                                                            | 124433.179688                                                                                                                                  | 1672560.875000 | 7.320441 | 7.120000 |  |  |
| 17                                                                                                                                                                                                                                            | 124905.476563                                                                                                                                  | 1672792.250000 | 7.353005 | 7.660000 |  |  |
| 19                                                                                                                                                                                                                                            | 12821/ 100375                                                                                                                                  | 1665/// 275000 | 7 3000/3 | 7 570000 |  |  |

#### Resultados

#### Usos del Suelo en la Microcuenca

El Instituto Nacional de Bosques Guatemala (INAB, 2000) menciona en el documento de clasificación de tierras por capacidad de uso que, las tierras metamórficas o los valles con cubiertas de pómez, como es el caso del municipio de Rabinal, en estas regiones predomina los usos tales como: tierras de bosques, cultivos de subsistencia (maíz y frijol). Asimismo, la principal actividad es la agricultura, teniendo un uso en el sector agrícola del 11,59% de la superficie; un 43.41% pertenece a bosque natural, el 44.38% lo ocupan áreas con arbustos (pastos) matorrales y el restante a zonas áridas (arenosas) y cuerpos de agua (Municipalidad de Rabinal, s.f).

A través del mapeo participativo desarrollado durante el diplomado "Cartógrafos Comunitarios", se determinó que, el uso del suelo dentro de la microcuenca de Xesiguan queda distribuido en los siguientes tipos: los suelos que comprenden áreas de uso forestal, equivalen a un 41%; mientras que, los suelos de uso agrícola comprenden el 59% dentro de la microcuenca, mismo que se encuentra subdividido por los siguientes usos: granos básicos (cultivos de maíz y frijol) representan el 29%; el 17% lo ocupan los suelos utilizados para el monocultivo de café; el 11% son los suelos sin uso, es decir, los matorrales, montes o malezas; y por último, el 2% lo integran los usos de suelo utilizado para pastizales, hortalizas, caña de azúcar y la siembra de manía. Por medio de la figura 22, se representa de forma gráfica cada uno de los usos del suelo identificados.

Mapa de usos de suelo



### Propiedades Físicas del Suelo

Dentro de la microcuenca de Xesiguan, a través de la metodología del Mapeo Digital de Suelos, se identificó las propiedades de clases texturales del suelo, además del porcentaje de materia orgánica que se encuentra sobre el mismo, dando como resultados los siguientes mapas.

### Clases Texturales del Suelo

A través de los datos obtenidos se determinó las clases de textura de suelo, quedando como resultado la clasificación de suelos franco, franco arcilloso y arcilloso; por medio de la figura 23 se muestra la clase de textura que presenta el suelo en la microcuenca de Xesiguan, mismo que identifica que, el suelo franco arcilloso abarca el 54% del territorio, seguidamente del suelo franco con un 41% y, por último, con el 5% lo ocupa el tipo arcilloso, presente únicamente en parte de la zona homogénea de cultivo (granos básicos).

La Organización de las Naciones Unidas para la Alimentación y la Agricultura (s.f.) indica que, "los suelos se clasifican por clases texturales según las proporciones de partículas de arena, limo y arcilla según la tabla 15; describiendo las clases texturales, así como los valores que contiene dicha clasificación".

### Tabla 15

| Nombres de los<br>suelos (textura<br>general)          | Arenoso | Limoso | Arcilloso | Clase textural |
|--------------------------------------------------------|---------|--------|-----------|----------------|
| Suelos<br>arenosos                                     | 86-100  | 0-14   | 0-10      | Arenoso        |
| (textura gruesa)                                       | 70-86   | 0-30   | 0-15      | Franco arenoso |
| Suelos francos<br>(textura<br>moderadamente<br>gruesa) | 50-70   | 0-50   | 0-20      | Franco arenoso |
|                                                        | 23-52   | 28-50  | 7-27      | Franco         |

Clases texturales de los suelos, según USDA

| Suelos francos         | 20-50 | 74-88  | 0-27   | Franco limoso            |
|------------------------|-------|--------|--------|--------------------------|
| (textura<br>mediana)   | 0-20  | 88-100 | 0-12   | Limoso                   |
| Suelos francos         | 20-45 | 15-52  | 27-40  | Franco arcilloso         |
| (textura               | 45-80 | 0-28   | 20-35  | Franco arenoso arcilloso |
| moderadamente<br>fina) | 0-20  | 40-73  | 27-40  | Franco limoso arcilloso  |
| Suelos                 | 45-65 | 0-20   | 35-55  | Arcilloso arenoso        |
| arcillosos             | 0-20  | 40-60  | 40-60  | Arcilloso limoso         |
| (textura fina)         | 0-45  | 0-40   | 40-100 | Arcilloso                |

**Nota:** Adaptado de Textura del suelo, [imagen] por Organización de las Naciones Unidas para la Alimentación y la Agricultura, (s.f.).

https://www.fao.org/fishery/docs/CDrom/FAO\_Training/FAO\_Training/General/x6706s/.!33791!x 6706s06.htm#:~:text=La%20textura%20del%20suelo%20puede,una%20elevada%20proporci% C3%B3n%20de%20arena.

Calvo (2022) menciona que el suelo franco engloba los tres tipos de suelo ya que está compuesto de arcilla, arena y limo, que viene a ser el tipo de suelo ideal de forma general. Los suelos de tipo franco se consideran de productividad agrícola, al contener valores uniformes en cuanto a textura suelta de la arena; fertilidad apropiada por los limos y al retener humedad adecuada por la arcilla; según estas proporciones el suelo que contiene estas características es la zona homogénea de bosque dentro de la microcuenca.

El suelo de tipo arcilloso se manifiesta en parte de la zona homogénea de cultivo, al sur de la microcuenca, si bien contienen reservas de nutrientes, este tipo de suelo es difícil de trabajar en áreas muy secas.

El tipo de suelo franco arcilloso contiene valores más altos de los adecuados con respecto a la arcilla, siendo la que más predomina en el área de la microcuenca al estar presente en las zonas homogéneas de zonas de café, zona de bosque (Oeste) y Cultivo (Norcentral).

Mapa de clases texturales del suelo



#### Contenido de Materia Orgánica

La materia orgánica (MO) y el carbono orgánico (CO) juegan un papel relevante en el mantenimiento y mejora de las propiedades fisicoquímicas, siendo importante el carácter dinámico del suelo; los cambios en una propiedad afectarán otras propiedades del suelo. (Docampo, s.f.). La Figura 24 representa el contenido de materia orgánica encontrado en los suelos de la microcuenca de Xesiguan, sobre la misma se disponen porcentajes de contenido que rondan entre 0,12 y 6,79 %; para Molina (2002), dicho componente mejora muchas propiedades químicas, físicas y microbiológicas que favorecen el crecimiento de las plantas; y se clasificarían en menos de 2% de materia orgánica tienen bajo contenido; 2 a 5% medio, siendo deseable el valor sea superior al 5%.

La materia orgánica es el componente principal que determina la calidad y productividad del suelo. La fertilidad, la disponibilidad de agua, la susceptibilidad a la erosión, la compactación, e incluso, la resistencia de las plantas a los insectos y las enfermedades, asimismo, almacena y suministra los nutrientes para las plantas y estabiliza la acidez del suelo. (Docampo, s.f.)

Según las clasificaciones mencionadas, la microcuenca dispone de valores medios de materia orgánica representando un total del 98% en la microcuenca; el restante 2% lo ocupa los valores óptimos en cuanto a materia orgánica.

Contenido de materia orgánica en el suelo



### Propiedades Químicas del Suelo

La metodología del MDS permitió la obtención de propiedades químicas del suelo, información sobre la alcalinidad y acidez, así como potasio y fósforo del suelo; esta información se presenta por medio de los mapas siguientes.

### Contenido de Potasio en el Suelo

Dentro de la microcuenca de Xesiguan se encontraron valores de potasio entre los rangos de 26.11 y 363.24 ppm; según la tabla de Análisis Técnicos S.A de C.V, el contenido de la propiedad de potasio extractable en el suelo se clasificó de la siguiente manera: menor a 150 ppm, bajo; entre 150 a 250 ppm, tienen un nivel medio; y los valores entre los 250 a 800 ppm se consideran de alto contenido de potasio (Agrolab, s. f.); cabe resaltar que el potasio es absorbido rápidamente por las plantas al ser un nutriente inmediatamente disponible, además que se presentan en suelos que contienen principalmente arcillas. La figura 25 muestra el contenido de esta propiedad en donde, se observa que las zonas homogéneas de café cuentan con niveles bajos con respecto a los normales; asimismo, ambas áreas de cultivo se encuentran entre valores bajos y medios de potasio, como resultado en la microcuenca se identifica que, el 58% se encuentra en rangos menores a 150 ppm considerados como valores bajos; el 40% pertenece a valores medios (150-250 ppm); y, por último, el 2% los disponen los valores altos de potasio.

Contenido de potasio en el suelo


#### Dosificación de Fósforo en el Suelo

El P es un elemento identificado en la microcuenca al ser de importancia en la nutrición de las plantas; el contenido de este, disponible en el suelo se expresa en mg/l o ppm, siendo el nivel; Quinteros (2002) menciona que, los niveles por debajo de 5 mg kg-1 son muy bajos, entre 5 y 10 mg kg-1 son bajos, entre 10 y 20 mg kg-1 medios y por encima de 20 a 25 mg kg-1, pueden considerarse adecuados. Asimismo, Molina (2002) considera que el óptimo de fósforo se encuentra entre 20 y 50 ppm. además menciona que, "os suelos que han sido manejados con cultivos intensivos durante muchos años y con dosis altas de fertilizantes, llegan a alcanzar valores altos de P; por lo anterior, la figura 26 muestra la clasificación de esta propiedad en los rangos de: menor a 20 se consideran bajos; entre 20 a 50 óptimos; y por encima de 50 ppm se categoriza como alta, demostrando así que, en el caso de la zona homogénea de cultivo cercana a la cabecera municipal de Rabinal, se visualiza una mayor concentración de fósforo, caso contrario a la zona de igual nombre en el área sur de la microcuenca.

De lo anterior se encontró como resultado que, el 51% se encuentra en rangos arriba de 50 ppm considerados como valores altos; el 40% pertenece a valores óptimos (20-50 ppm); el restante 9% pertenece a los valores bajos de fósforo.

Dosificación de fósforo en el suelo



## Mapa de Acidez y Alcalinidad de los Suelos

El pH del suelo está directamente relacionado con el porcentaje de saturación de acidez, cuando el pH es inferior a 5 se considera como ácido, lo que provoca que, el aluminio incremente y cause toxicidad a las raíces de las plantas; asimismo se considera como pH óptimo para la mayoría de los cultivos los valores entre 6 y 7 (Molina, 2002).

La figura 27 identifica la distribución de los suelos dentro de la microcuenca, demostrando que, en su mayoría, la microcuenca supera los valores óptimos, considerándolo, así como suelos alcalinos, en términos de porcentajes representa el 82%, mientras que el 18% se encuentra con suelos neutros, específicamente en área sur del territorio.

Mapa de acidez y alcalinidad de los suelos



#### Unificación de las Propiedades Químicas del Suelo Clasificados por Valores Óptimos

A través de las propiedades químicas encontradas en el suelo de la microcuenca de Xesiguan; se procedió a la realización de un mapa de potencialidad del suelo, tomando en cuenta los rangos (bajos, medios u óptimos) de cada propiedad, los cuales son mencionados con anterioridad en la investigación; por lo anterior, en la tabla 16 se organizan o clasifican las condiciones o rangos por cada una de las propiedades identificadas con la metodología, a fin de realizar un mapa de potencialidad de los suelos basado en la información obtenida.

#### Tabla 16

| Potencial     | Combinación | Propiedad   |             |          |
|---------------|-------------|-------------|-------------|----------|
|               |             | Potasio (K) | Fósforo (P) | рН       |
| Nivel Óptimo  | 1           | Bueno       | Bueno       | Neutro   |
|               | 2           | Bueno       | Bueno       | Alcalino |
| Nivel Medio   | 3           | Bueno       | Bajo        | Neutro   |
|               | 4           | Bajo        | Bueno       | Neutro   |
| Nivel Raio    | 5           | Bajo        | Bajo        | Neutro   |
|               | 6           | Bajo        | Bueno       | Alcalino |
| Nivel Crítico | 7           | Вајо        | Вајо        | Alcalino |

Combinaciones de los valores de las propiedades químicas presentes en el suelo

Estas combinaciones se representan de forma gráfica en la figura 28, encontrando que, el 53% del territorio presenta niveles medios en cuantos a las condiciones de las propiedades; seguido de un 46% que ocupan los niveles bajos en las propiedades químicas; y un 1% que representa los niveles críticos en sus componentes.

Clasificación de suelos por medio de propiedades químicas



#### Diplomado "Cartógrafos Comunitarios" y Socialización de Resultados

La ejecución del diplomado concluyó con el otorgamiento a diez personas de comunidades dentro de la microcuenca de Xesiguan en el municipio de Rabinal con el título de Cartógrafos Comunitarios avalado por el Centro Universitario de Oriente -CUNORI-, de la Universidad de San Carlos de Guatemala (ver figura 29); mediante el cual se les impartieron conocimientos básicos sobre conceptos cartográficos, usos de suelo, creación, análisis y lectura de mapas temáticos (ver apéndice 1); dentro del marco de la evaluación cada uno de los presentes elaboraron mapas de problemas locales, los cuales fueron expuestos por los mismos; dichos mapas fueron elaborados a creatividad de los pobladores utilizando los aprendizajes adquiridos en lo largo de los cuatro módulos.

Aunado a lo anterior, se realizó la socialización de los resultados obtenidos en campo sobre cada una de las propiedades fisicoquímicas del suelo presentes en la microcuenca de Xesiguan; esta información se proporcionó por medio de presentaciones y la impresión de los diferentes mapas temáticos con su simbología y explicados en función a los rangos o valores por cada propiedad presentada, con el propósito de brindarles información acerca de la situación actual en la que sen encuentra los suelos en la microcuenca (ver figura 30).

Clausura Diplomado "Cartógrafos Comunitarios"



# Figura 30

Socialización de información del MDS



#### Conclusiones

- El uso del suelo en la microcuenca de Xesiguan está distribuido por un 41% de uso forestal, y un 59% de uso agrícola; este mismo se encuentra subdividido de la siguiente manera: granos básicos (cultivos de maíz y frijol) ocupan el 29%, el monocultivo de café, 17%; los matorrales, montes o malezas mantienen el 11%; y, por último, el 2% lo integran los usos de suelo agrícola utilizado para pastizales, hortalizas, caña de azúcar y la siembra de manía.
- Según las clasificaciones de las propiedades físicas se identificaron tres tipos de clases texturales en el territorio, las cuales están comprendidas de la siguiente manera: suelos franco arcilloso abarcan el 54%; suelo franco un 41%, y un 5% lo ocupa el arcilloso; materia orgánica 98% con valores medios y un 2% valores óptimos.
- 3. Asimismo, las propiedades químicas reflejan que la microcuenca de Xesiguan dispone de los siguientes porcentajes: potasio, el 58% se encuentra en rangos menores a 150 ppm; el 40% pertenece a valores medios (150-250 ppm); y, por último, el 2% los disponen los valores altos. Para fósforo se encontró que, el 51% se encuentra en rangos arriba de 50 ppm (valores altos); el 40% pertenece a valores óptimos (20-50 ppm); y el restante 9% pertenece a valores bajos; por último, el pH demostró que los suelos alcalinos representan el 82%, mientras que el 18% se encuentra con suelos neutros.
- 4. Se identificó la potencialidad del suelo mediante la combinación de las propiedades químicas del suelo, mismo que permitió la identificación de los rangos siguientes dentro de la microcuenca: el 53% del territorio presenta niveles medios; un 46% lo ocupan los niveles bajos; y un 1% muestra niveles críticos.
- 5. Se socializaron los resultados de cada una de las propiedades físico y químicas del suelo obtenidos en la microcuenca a los pobladores que participaron dentro de los cuatro talleres ejecutados en el marco del diplomado "Cartógrafos Comunitarios", a

67

quienes que se les otorgó un reconocimiento por su participación en el mismo, el cual permitió la obtención de información sobre los usos del suelo en el territorio por medio del desarrollo de mapeo participativo, actividad llevada a cabo en uno de sus módulos.

#### Recomendaciones

- Brindar seguimiento a los talleres en cuanto a formación cartográfica y divulgación de información para el conocimiento de los pobladores de la microcuenca de Xesiguan, sobre los usos de suelo y condiciones de las propiedades físico y químicas que presenta el territorio.
- 2. Replicar la metodología de SoLIM Solution para extensiones territoriales, a fin de conocer las condiciones de las propiedades fisicoquímicas de los suelos, enfocado a obtener información de interés que se necesite, realizando las mejoras que se consideren pertinentes en cuanto a los procesos metodológicos, con el objetivo que se adapte a las circunstancias de los lugares poblados, microcuencas, cuencas o municipios en los que se quiera implementar.
- Actualizar periódicamente la información acerca de las propiedades fisicoquímicas presentes en la microcuenca de Xesiguan, a manera de conocer las condiciones actuales en beneficio de la calidad de vida de los pobladores y los suelos.
- Implementar proyectos de conservación y uso sostenible de los bosques, así como la utilización de herramientas para el cuidado y mantenimiento de los suelos utilizando para ello la información presente en este documento.
- 5. Buscar estrategias para la divulgación y comunicación de la presente metodología con el objetivo de replicar la información por unidades académicas, municipalidades u órganos estatales, a fin de conocer las condiciones de los suelos en cada uno de sus territorios a manera de crear proyectos, programas, estrategias que contribuyan a la conservación de los suelos y agua, el desarrollo territorial y mejorar la calidad de vida de sus pobladores.

# Referencias

- Agrolab. (s.f). *Guía de referencia para la interpretación, análisis de suelo Agrolab.* http://www.agrolab.com.mx/sitev002/sitev001/assets/interpretacion\_fertsuel. pdf
- Agua y Suelo para la Agricultura. (s.f). *Introducción al mapeo digital del suelo (MDS)*. ASA/CRS. https://asa.crs.org/wp-content/uploads/2020/10/Mapeo-digital.pdf
- Agua y Suelo para la Agricultura-Catholic Relief Services. (2018). *Mapeo digital de propiedades funcionales de suelos*. ASA/CRS. https://asa.crs.org/wp-content/uploads/2018/09/Broshure-extendido-digital.compressed.pdf
- Álvaro, G.J. (10 de diciembre de 2019). *El fósforo y su importancia en el crecimiento vegetal*. Fertibox. https://www.fertibox.net/single-post/fosforo-agricultura



- Angelini, M. (19 de julio de 2012). Mapeo digital de suelos: aplicado a la agricultura de precisión [presentación en papel]. 1er. Congreso de Valor
   Agregado en Origen y 11º Curso Internacional de Agricultura de Precisión y Expo de Máquinas Precisas. https://docplayer.es/75559872-Mapeo-digital-de-suelos.html
- ArcMap. (2021). ¿Qué es un shapefile? ArcGIS Desktop. https://desktop.arcgis.com/es/arcmap/latest/manage-data/shapefiles/whatis-a-shapefile.htm

Calderón-Medina, C. L., Bautista-Mantilla, G. P. y Rojas-González, S. (2018).
Propiedades químicas, físicas y biológicas del suelo, indicadores del estado de diferentes ecosistemas en una terraza alta del departamento del Meta. *Orinoquia, 22*(2), 141-157.
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/524

Calvo, A. (14 de enero de 2022). Importancia del color del suelo agrícola en los cultivos. Agroptima Blog. https://www.agroptima.com/es/blog/importanciadel-color-del-suelo-agricola-en-loscultivos/#:~:text=Suelos%20francos&text=Es%20un%20suelo%20que%20e ngloba,forma%20general%20para%20la%20agricultura.

Catalán Salas, G. (2016). El pH del suelo en la agricultura. Agropal. http://www.agropal.com/es/el-ph-del-suelo/

Cobox Orozco, Y. M., Tax Sapón, M. O., Iscamey Pérez, M. V., Lopez Godínez, V. L., Solórzano Gudiel, A. G., Méndez Galindo, J. P., Batres, G. A., Pérez, D. M., Pelicó Pelicó, O. R., Reyes, A. E., González Pérez, R. E. y Solís, I. (2015). Mapeo participativo comunitario -MPC-: una experiencia aplicada en el noveno plan de acción, Dipecho 2014-2015. A. Ochoa (Rev.). CARE/COOPI/ https://dipecholac.net/docs/files/1037-mpc-dipecho-2014-2015.pdf

Colín García, G., Fernández Reynoso, D. S. Colín García, G., Fernández Reynoso, D. S., Martínez Menez, M. R., Ríos Berber, J. D., Sánchez Guzmán, P., Rubio Granados, E. e Ibáñez Castillo, L. A. (2017).
Clasificación digital de suelos a través de covariables ambientales de la cuenca del río Mixteco. *Terra Latinoamericana, 35*(4), 281-291. https://www.scielo.org.mx/scielo.php?script=sci\_arttext&pid=S0187-57792017000400281

- Docampo, R. (s.f.). La importancia de la materia orgánica del suelo y su manejo en producción frutícula. INIA Las Brujas – Estación Experimental "Wilson Ferreira Aldunate". (Serie Actividades de Difusión no. 687). http://www.ainfo.inia.uy/digital/bitstream/item/1199/1/128221131113111309. pdf
- Dorantes, M., Fuentes, B. y Owen, P. (2018). Tutorial generación de un mapa de propiedad basado en reglas y lógica difusa [Documento electrónico]. USDA-UARK Digital Soil Mapping.

Escalón, S. (18 de septiembre de 2019). *Guatemala: de cómo unos campesinos de Rabinal vencieron la sequía*. Nomada. https://nomada.gt/identidades/guatemala-rural/guatemala-de-como-unos-campesinos-de-rabinal-vencieron-la-sequia/

Gardi, C., Angelini, M., Barceló, S., Comerma, J., Cruz Gaistardo, C., Encina Rojas, A., Jones, A., Krasilnikov, P., Mendonça Santos Brefin, M.L., Montanarella, L., Muniz Ugarte, O., Schad, P., Vara Rodríguez, M.I., Vargas, R. (eds). (2014). Cartografía de suelos. En *Atlas de suelos de América Latina y el Caribe* (pp.56-115). Comisión Europea - Oficina de Publicaciones de la Unión Europea. https://www.gpgservicesec.com/ download/libros/ATLAS-DE-SUELOS-LATINOAMERICA-Y-EL-CARIBE.pdf https://ainfo.cnptia.embrapa.br/digital/bitstream/item/113237/1/ATLAS-LAC.pdf



Gramajo Cano, C. A. (2012). Caracterización y propuesta de un plan de manejo para la microcuenca del Río Canchel, Cubulco, Baja Verapaz, Guatemala, Centro América [tesis de licenciatura, Universidad de San Carlos de Guatemala, Facultad de Agronomía]. Repositorio del Sistema Bibliotecario Universidad de San Carlos de Guatemala. http://www.repositorio.usac.edu.gt/6135/1/C%C3%89SAR%20ANTONIO%2 0GRAMAJO%20CANO.pdf/

Guerrero, J. (6 de abril de 2015). Clases texturales de suelo utilizando el raster calculator de QGIS. El Blog de José Guerrero. https://joseguerreroa.wordpress.com/2015/04/06/clases-texturales-de-suelo-utilizando-el-raster-calculator-de-qgis/

Instituto Geográfico Agustín Codazzi. (s.f.). ¿Qué son las zonas homogéneas? IGAC. https://www.igac.gov.co/es/contenido/que-son-las-zonashomogeneas

Instituto Nacional de Bosques Guatemala. (2000). Clasificación de tierras por capacidad de uso. https://www.inab.gob.gt/images/centro\_descargas/manuales/Clasificaci%C3 %B3n%20de%20tierras%20por%20capacidad%20de%20uso.pdf

Instituto para la Innovación Tecnológica en Agricultura. (2017). Las funciones del potasio en la nutrición vegetal. Serie Nutrición Vegetal (100). https://www.intagri.com/articulos/nutricion-vegetal/las-funciones-del-potasioen-la-nutricion-vegetal

Instituto para la Innovación Tecnológica en Agricultura. (2017). Los factores de formación del suelo. Serie Suelos (27). https://www.intagri.com/articulos/horticultura-protegida/los-factores-de-formacion-del-suelo Lanza, G., Minnick, G., Villegas, V., Ramallo, J. y Calbimontes, G. (coords.).
(1999). El suelo, diferencias según su aspecto físico y químico. En Educación ambiental para el trópico de Cochabamba (Tema 3). Proyecto
"Jatun Sacha'a" UNDCP – VIMDESALT – FAO. https://www.fao.org/3/ah645s/ah645s04.htm

Instituto de Hidrología, Meteorología y Estudios Ambientales. (s.f.). Medición de la humedad del suelo. http://documentacion.ideam.gov.co/openbiblio/bvirtual/012406/Cap15.pdf

Mendoza, R. B. y Espinoza, A. (2017). Guía técnica para muestreo de suelos. Universidad Nacional Agraria y Catholic Relief Services. https://repositorio.una.edu.ni/3613/1/P33M539.pdf

Molina, E. (2002). Análisis del suelo y su interpretación. Centro de
 Investigaciones Agronómicas-Infoagro.
 http://www.infoagro.go.cr/Inforegiones/RegionCentralOriental/Documents/Su
 elos/SUELOS-AMINOGROWanalisiseinterpretacion.pdf

Municipalidad de Rabinal. (s.f). Ampliación sistema de agua potable aldea El Sauce, Rabinal, Baja Verapaz. https://www.munirabinal.laip.gt/index.php?preview=1&option=com\_dro pfiles&format=&task=frontfile.download&catid=596&id=1 X5j3YpwiQIG7ZKFdO0WJ6WUdwDUasZXg&Itemid=100000000000

Norman, D. y Douglas, M. (1996). Desarrollo de sistemas agrícolas y conservación del suelo. Organización de las Naciones Unidas para la Agricultura y la Alimentación. https://books.google.co.ve/books?id=DmM04rsfTSYC&printsec=frontcover& hl=es&source=gbs\_ge\_summary\_r&cad=0#v=onepage&q&f=false Organización de las Naciones Unidas para la Alimentación y la Agricultura. (s.f.). *Levantamiento de suelos*. Portal de suelos de la FAO. https://www.fao.org/soils-portal/soil-survey/es/

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (s.f.). Textura del suelo. En *Suelo* (tema 6). Colección FAO Capacitación. https://www.fao.org/fishery/docs/CDrom/FAO\_Training/FAO\_Training/Gener al/x6706s/x6706s06.htm

OsGeoLive. (s.f.). SAGA: SIG de escritorio.

https://live.osgeo.org/es/overview/saga\_overview.html#:~:text=SAGA%20(Si stema%20para%20An%C3%A1lisis%20Geocient%C3%ADficos,%2C%20ta bla%2C%20cuadr%C3%ADcula%20e%20imagen.

- Pascual-S. Izquierdo, R. y Venegas Yuste, S. (s.f.). La materia orgánica del suelo: papel de los microorganismos. Universidad de Granada. https://www.ugr.es/~cjl/MO%20en%20suelos.pdf
- Procuraduría Ambiental y del Ordenamiento Territorial del Distrito Federal. (2003). Uso de suelo: informe anual 2003, apéndice temático. https://paot.org.mx/centro/paot/informe2003/temas/suelo.pdf

QGIS. (s.f.). QGIS - el SIG líder de código abierto para escritorio. https://www.qgis.org/es/site/about/index.html

Quinteros, C. E. (2002). Dosificación del fósforo según tipos de suelos. Informaciones Agronómicas del Cono Sur, (16), 8-10. http://www.ipni.net/publication/ialacs.nsf/0/C6F5001B54460C798525799C0058C6CC/\$FILE/nota2.pdf

- Rodríguez, M. (21 de diciembre 2021). *Departamento de Baja Verapaz*. DeGuate. https://www.deguate.com/departamentos/baja-verapaz/
- Rodríguez, M. (7 de noviembre 2016). *Historia del municipio de Rabinal, Baja Verapaz*. DeGuate. https://www.deguate.com/departamentos/baja-verapaz/historia-del-municipio-de-rabinal-baja-verapaz/
- The Geographic Information Systems. (1990). *Introducción a los SIG.* GisWeb. https://www.geogra.uah.es/gisweb/1modulosespanyol/IntroduccionSIG/GIS Module/GISTheory.htm
- Zhu, A. X., Qin, C. Z, Liang, P. y Du, F. (2018). Digital soil mapping for smart agriculture: the solim method and software platforms. *Rudn Journal of Agronomy and Animal Industries, 13*(4), 317-335.
   https://agrojournal.rudn.ru/agronomy/article/view/19429





# Anexos

# Anexo 1. Boleta digital de campo

| MAPEO DIGITAL DE                                                  | SUELOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UBICACIÓN                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| latitud (x.y °)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| longitud (x.y °)                                                  | 64 Wile Prolongacion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| altitud (m)                                                       | State of the state |
| precisión (m)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | Bar Altora Han 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NÚMERO DE MUESTRA:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLASE GENÉRICA:                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIPO DE USO:                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bosque                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Agrosilvopastoril                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 🔘 Café                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Matorral                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Granos básicos                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Franco<br>Franco arcilioso<br>Arcilloso                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PENDIENTE                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O Poca                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O Moderada                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alta                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PEDREGOSIDAD                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O Poca                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moderada                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alta                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Poca                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moderada                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| récnico                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Câmbara Flores, Jennifer Saraí<br>Ramírez Pascual, Milton Armando | Colindres Juárez, Alvaro Raúl Méndez Pérez, Byron Estuardo Sandoval Valdés, Duice María Zabaleta Ramirez, Darwin Anibal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ECHA                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /yyy-mm-dd                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FOTOGRAFÍA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Haga clic aquí para subir el archivo. (<10                        | MB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

\_\_\_\_\_

......

OBSERVACIONES

DESERVACIONES

Anexo 2. Tutorial, Generación de un mapa de propiedad basado en Reglas y Lógica Difusa.

https://drive.google.com/file/d/1I\_NO\_gYipqae6VZ-oi3bA3MSZ-ICb9EO/view?usp=sharing

## Tutorial – Generación de un Mapa de Propiedad Basado en Reglas y Lógica Difusa

#### Descripción:

El presente tutorial muestra una secuencia de procesos necesarios para generar mapas de propiedades en el programa de Soil Land Inference Engine (SoLIM) basados en reglas y un método para la evaluación estadística de estos. El presente tutorial sigue la metodología del equipo USDA-UARK utilizando SoLIM. La validación estadística de los mapas de propiedades se lleva a cabo dentro de SoLIM. Los datos de muestras de suelo utilizadas en la preparación del presente tutorial fueron compartidos por Andrés Búcaro, CRS, y las capas del resto de las covariables fueron descargadas de sitios de acceso público.

Los procesos necesarios en este tutorial requieren del ejecutable SoLIM Solutions 2015 (https://solim.geography.wisc.edu/software/index.htm), una plataforma SIG y un software estadístico. Gracias a su simplicidad, los procesos pueden ejecutarse en diferentes plataformas SIG, sin embargo, se recomienda el uso de QGIS3.4 long-term release(https://agis.org/en/site/forusers/download.html) debido a su libre acceso. En cuanto al software estadístico requerido, cualquier hoja de cálculo con

fórmulas estadísticas básicas es más que suficiente (ej. LibreOffice, Excel).

#### Esquema general:

- Preparación de los insumos para el mapa de clases genéricas
- Creación del mapa de clases genéricas
- Generación de la tabla de estadística zonal Guardar un nuevo proyecto en SoLIM
- Creación de un GISDatabase en SOLIM
- Obtención del KnowledgeBase para SoLIM a partir del programa AutoLIM
- Adición de las reglas enumeradas al KnowledgeBase

Elaborado por: Minerva Dorantes, Bryan Fuentes y Phillip Owens Adaptado por: Alvaro Raúl Colindres Juárez

## Apéndices

Apéndice 1. Guía sobre el Diplomado "Cartógrafos Comunitarios"

https://drive.google.com/file/d/1Q4HCQkCbnMQpyeouSZLQigN7HdEy\_rqe/view?usp=sharing



# Diplomado Cartógrafos Comunitarios

MAPEO DIGITAL DE SUELOS Este material es posible gracias al apoyo del Pueblo de los Estados Unidos de América.