

CARACTERÍSTICAS FÍSICAS Y PROPIEDADES MECÁNICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIÁMETRO DE 10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA

José Antonio Gramajo Bámaca

Asesorado por el Ing. Alfredo Enrique Beber Aceituno

Guatemala, noviembre de 2015

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

CARACTERÍSTICAS FÍSICAS Y PROPIEDADES MECÁNICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIÁMETRO DE 10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA POR

JOSÉ ANTONIO GRAMAJO BÁMACA

ASESORADO POR EL ING. ALFREDO ENRIQUE BEBER ACEITUNO

AL CONFERÍRSELE EL TÍTULO DE

INGENIERO CIVIL

GUATEMALA, NOVIEMBRE DE 2015

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

DECANO	Ing. Pedro Antonio Aguilar Polanco
VOCAL I	Ing. Angel Roberto Sic García
VOCAL II	Ing. Pablo Christian de León Rodríguez
VOCAL III	Inga. Elvia Miriam Ruballos Samayoa
VOCAL IV	Br. Raúl Eduardo Ticún Córdova
VOCAL V	Br. Henry Fernando Duarte García
SECRETARIA	Inga. Lesbia Magalí Herrera López

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO	Ing. Murphy Olympo Paiz Recinos
EXAMINADOR	Ing. Luis Manuel Sandoval Mendoza
EXAMINADOR	Ing. Juan Ramón Ordóñez Hernández
EXAMINADOR	Ing. Wuilliam Ricardo Yon Chavarría
SECRETARIO	Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

CARACTERÍSTICAS FÍSICAS Y PROPIEDADES MECÁNICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIÁMETRO DE 10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Civil,

con fecha 9 de mayo de 2014.

osé Antonio Gramajo Bámaca

Universidad de San Carlos de Guatemala FACULTAD DE INGENIERÍA Escuela de Ingeniería Civil

Guatemala, 30 de octubre de 2015

Ingeniero
José Gabriel Ordóñez Morales
Coordinador del Área de Materiales y Construcciones Civiles
Escuela de Ingeniería Civil
Facultad de Ingeniería
Presente.

Ingeniero Ordóñez:

Por este medio hago constar que he revisado el trabajo de graduación titulado "CARACTERÍSTICAS FÍSICAS Y PROPIEDADES MECÁNICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIÁMETRO DE 10 mm (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA", realizado por el estudiante José Antonio Gramajo Bámaca, tengo a bien manifestar que dicho trabajo de graduación ha sido ejecutado conforme a los requisitos establecidos por la Escuela de Ingeniería Civil.

Por tal motivo en mi calidad de asesor, doy mi aprobación al mismo y solicito darle el trámite correspondiente.

Agradeciendo la gentileza de su atención y colaboración, me suscribo de Usted,

Atentamente,

Ing. Civil Alfredo Beber Aceituno GENIERO CIVIL
Colegiado No. 3,079 COLEGIADO No. 3079

ID Y ENSEÑAD A TODOS

Universidad de San Carlos de Guatemala FACULTAD DE INGENIERÍA Escuela de Ingeniería Civil

Guatemala, 04 de noviembre de 2015

Ingeniero
Hugo Leonel Montenegro Franco
Director Escuela Ingeniería Civil
Facultad de Ingeniería
Universidad de San Carlos

Estimado Ingeniero Montenegro.

Le informo que he revisado el trabajo de graduación CARACTERÍSTICAS FÍSICAS Y PROPIEDADES MECÁNICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIÁMETRO DE 10 mm(3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA, desarrollado por el estudiante de Ingeniería Civil José Antonio Gramajo Bámaca, quien contó con la asesoría del Ing. Alfredo Enrique Beber Aceituno.

Considero este trabajo bien desarrollado y representa un aporte para la comunidad del área y habiendo cumplido con los objetivos del referido trabajo doy mi aprobación al mismo solicitando darle el trámite respectivo.

Atentamente,

ID Y ENSENAD A TODOS

Ing. Civil Jose Gabriel Ordónez Morales Coordinador del Área de Materiales y

Construcciones Civiles

AREA DE MATERIALES Y
CONSTRUCCIONES CIVILES
LISAC

/mrrm.

Mas de 134 años de Trabajo Académico y Mejora Contínua

PROGRAMA DE MICHAERIA
GETH. ACREDITARIO PIRA
Agencia Centramentacera de Acreditación de Programas de Arquitactum e Ingenter's penter's

PENICOO 2013 - 2015

http;//civil.ingenieria.usac.edu.gt

Universidad de San Carlos de Guatemala FACULTAD DE INGENIERÍA Escuela de Ingeniería Civil

El director de la Escuela de Ingeniería Civil, después de conocer el dictamen del Asesor Ing. Alfredo Enrique Beber Aceituno y del Coordinador del Área de Materiales y Construcciones Civiles Ing. José Gabriel Ordóñez Morales, al trabajo de graduación del estudiante José Antonio Gramajo Bámaca, titulado CARACTERÍSTICAS FÍSICAS Y PROPIEDADES MECÁNICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIÁMETRO DE 10 mm(3/8"). EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA, da por este medio su aprobación a dicho trabajo.

Ing. Hugo Leonel Montenegro Franco

Guatemala, noviembre 2015

ACAAI

DE MEEKT 1 CIVIL

Universidad de San Carlos De Guatemala

Ref. DTG.639.2015

El Decano de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Ingeniería Civil, al trabajo de graduación titulado: CARACTERÍSTICAS FÍSICAS Y PROPIEDADES BARRAS LAS ACERO MECANICAS DE REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIÁMETRO DE 10 MM (3/8"). EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA, presentado por el estudiante universitario: Antonio Gramajo Bámaca, y después de haber culminado las revisiones previas bajo la responsabilidad de las instancias correspondientes, se autoriza la impresión del mismo.

IMPRÍMASE.

Ing. Pedro Antonio Aguilar Polanco

Decano

Guatemala, noviembre de 2015

ACTO QUE DEDICO A:

Dios Por haberme regalado salud, entendimiento,

paciencia, perseverancia, y sobre todo por

permitirme llegar a esta meta tan importante.

Mis padres Antonio Gramajo y Odilia Bámaca, por haberme

dado el regalo de la vida.

Mi madre Odilia Bámaca, por haber llenado mi vida desde

pequeño con tanto amor, esfuerzos, dedicación,

trabajo, ejemplo y apoyo incondicional.

Mi hermana Mercedes Gramajo, por apoyarme en

momentos difíciles y brindarme su amistad,

consejos y tolerancia.

Mis tíos Miriam Bámaca, Oscar Bámaca, Cristina

Bámaca y Mario Bámaca, por su apoyo familiar,

moral y económico en mi carrera.

Mis abuelos Alejandro Bámaca, Anastacia Godínez (q. e. p.

d.) y Trinidad Laparra (q. e. p. d.), por haber

sido el máximo ejemplo de amor en la vida.

Axel Solórzano Por el enorme grado de hermandad y amistad

(q. e. p. d.) brindada.

Mis amigos

Ángel Salic, Nataly Larios, José Jeréz, Mynor Mayen, Marco Laparra, Zuly Corado, Fernando Barrios, Elena Gramajo, Ernesto Álvarez, Luis Mauricio, Elder Mauricio, Antonio Galindo, Juan Manuel Rivera, Omar González, Luis Icuté, Carina Muñoz, Gonzalo Orellana, Hilda Gordillo, Jonatan Jiménez y Ana Goretti, por la amistad, consejos, apoyo y cariño proporcionado en los momentos de alegría y de dificultad en varias áreas de mi vida.

Mis amigos de la Facultad

Héctor Soto, Telma Sequén, Carlos Corona, Bayron Gómez, Diego Seisdedos, Allan Martín, Rubeny García, Mynor De La Rosa, Obed Contreras, Migdalia Del Cid, Pilar López, Deborah Salazar, José Subuyuj, William Rodas y Rubén Santana, por el apoyo a nivel personal y académico.

AGRADECIMIENTOS A:

Universidad de San Carlos de Guatemala Por haberme permitido ser parte de tan prestigiosa casa de estudios superiores.

Facultad de Ingeniería

Por colocar retos en cada uno de los cursos impartidos y de esta manera explotar mi paciencia, capacidad y humildad.

Mis catedráticos

Por transmitirme cada día de clases sus conocimientos, habilidades y experiencias.

Mi asesor

Ing. Alfredo Beber, por su paciencia, tiempo y dedicación a mi trabajo de graduación.

Mis padrinos

Ing. Omar González e Ing. Luis Icuté, por su ejemplo profesional y apoyo desde el inicio y culminación de mi carrera universitaria.

Los ingenieros

Mario Corzo, Gabriel Ordoñez, Nicolás Guzmán, Andy Alonzo y Mario Arriola, por sus sugerencias académicas y apoyo laboral.

Centro de Investigaciones de la Facultad de Ingeniería Ing. Pablo De León, Emerson, David, Mauricio y Claudia. Por su apoyo en la realización de los ensayos correspondientes a mi trabajo de graduación.

Mis lugares de trabajo

Luarca Ingenieros Civiles y especialmente a la Escuela de Ingeniería Civil, área de Topografía y Transportes, por haberme proporcionado flexibilidad de horario para de esta manera haber obtenido conocimientos académicos y experiencia laboral al mismo tiempo.

ÍNDICE GENERAL

ÍNDI	CE DE IL	.USTRACI	ONES			IX	
LIST	A DE SÍN	MBOLOS				XV	
GLO	SARIO					XVII	
RES	UMEN					XXI	
OBJ	ETIVOS.					XXIII	
INTF	RODUCC	IÓN				XXV	
1.	LA CIU	DAD DE C	GUATEMALA	A Y LA CONST	RUCCIÓN	1	
	1.1.	Breve h	istoria y func	lación de la Ci	udad de Guatemala	1	
		1.1.1.	Primer tra	ıslado		1	
		1.1.2.	Segundo	traslado		2	
		1.1.3.	Último tra	slado		3	
			1.1.3.1.	La nueva G	uatemala de la Asur	nción 3	
	1.2.	Caracte	Caracterización de la Ciudad de Guatemala				
		1.2.1.	Infraestructura de la ciudad de Guatemala en				
			relación c	on la infraestru	uctura nacional	4	
			1.2.1.1.	Infraestructu	ura de edificación	5	
				1.2.1.1.1.	Educación	5	
				1.2.1.1.2.	Economía	5	
				1.2.1.1.3.	Construcción	6	
				1.2.1.1.4.	Agua y saneamie	ento 7	
				1.2.1.1.5.	Salud	7	
			1.2.1.2.	Infraestructu	ura vial	8	
				1.2.1.2.1.	Infraestructura	de	
					transportes	8	

				1.2.1.2.2.	Infraestructura	
					portuaria	8
		1.2.2.	Sectores of	o zonas de la c	iudad de Guatemala	9
		1.2.3.	Número d	e construccion	nes autorizadas según la	
			Unidad de	e Información	de la Municipalidad de	
			Guatemala	a		19
			1.2.3.1.	Sectores o z	onas con mayor número	
				de construcc	ciones autorizadas	20
			1.2.3.2.	Sectores o z	onas con menor número	
				de construcc	ciones autorizadas	20
	1.3.	La const	rucción en la	a ciudad de Gu	atemala	20
		1.3.1.	Problemát	icas en la cons	strucción	20
			1.3.1.1.	Causas		21
			1.3.1.2.	Efectos		22
				1.3.1.2.1.	Seguridad	22
				1.3.1.2.2.	Salud	24
				1.3.1.2.3.	Desproporción	24
				1.3.1.2.4.	Función	24
	1.4.	Fabrican	tes de ba	arras de ace	ero para refuerzo en	
		Guatema	ala			25
2.	EL ACE	RO				27
	2.1.	El acero	como mater	ial		27
		2.1.1.	Generalida	ades del acero		27
		2.1.2.	Definición	del acero		28
		2.1.3.	Tipos de a	acero		29
			2.1.3.1.	Aceros estru	cturales modernos	29
				2.1.3.1.1.	Aceros al carbón	30

			2.1.3.1.2.	Aceros	de	baja	
				aleación	У	alta	
				resistenci	a		31
			2.1.3.1.3.	Aceros	al	eados	
				térmicam	ente tra	atados	
				para la co	nstruc	ción	31
			2.1.3.1.4.	Acero par	a refue	rzo	33
2.2.	Propied	ades genera	les del acero.				33
	2.2.1.	Alta resis	tencia				33
	2.2.2.	Uniformid	ad				33
	2.2.3.	Durabilida	ad				34
	2.2.4.	Ductilidad	ł				34
	2.2.5.	Tenacida	d				35
	2.2.6.	Composid	ción química				35
	2.2.7.	Otros					38
2.3.	Relación	Relación del esfuerzo deformación					
	2.3.1.	Diagrama	típico de esfu	uerzo deform	ación p	ara el	
		acero					41
2.4.	Barras o	de acero par	a refuerzo				42
	2.4.1.	Clasificad	ión de las	barras de	acero	para	
		refuerzo .					45
		2.4.1.1.	Barras de a	cero certifica	das		45
		2.4.1.2.	Barras de a	cero no certi	ficadas		47
	2.4.2.	Caracterís	sticas físicas c	le las barras	de ace	ro	48
	2.4.3.	Propiedad	des mecánicas	s de las barra	as de ad	cero	48
		2.4.3.1.	Resistencia				49
		2.4.3.2.	Rigidez				49

			2.4.3.2.1.	Modulo de elasticidad
				o módulo de Young
				(E)50
			2.4.3.2.2.	Módulo de rigidez (G)50
		2.4.3.3.	Elasticidad.	50
			2.4.3.3.1.	Limite elástico5
			2.4.3.3.2.	Límite de
				proporcionalidad52
			2.4.3.3.3.	Límite de fluencia o
				punto cedente52
		2.4.3.4.	Plasticidad.	53
		2.4.3.5.	Capacidad	energética53
			2.4.3.5.1.	Módulo de resilencia53
			2.4.3.5.2.	Módulo de tenacidad53
	2.4.4.	Configura	ciones de corı	⁻ ugas5 ₄
2.5.	Normas	utilizadas po	or fabricantes	de barras de acero para
	refuerzo			55
	2.5.1.	Coguanor		55
		2.5.1.1.	Norma Co	guanor NTG 36 011,
			tercera revis	sión, año 201356
2.6.	Ensayos	de laborato	rio a los mate	riales56
	2.6.1.	Observac	iones en un er	nsayo58
		2.6.1.1.	Falla o fract	ura59
	2.6.2.	Ensayo de	e tracción o te	nsión60
	2.6.3.	Ensayo de	e doblado	62
2.7.	Adheren	cia		63
	2.7.1.	Causas de	e la adherenci	a64
DESAR	ROLLO E	XPERIMEN ⁻	ΓAL	65

3.

3.1.	Toma de muestras e identificación de las mismas						65
	3.1.1.	Valor cuar	ntitativo de la m	uestra			65
	3.1.2.	Identificac	ción de las mues	stras			67
	3.1.3.	Toma de r	muestras				68
3.2.	Ensayo	s de laborato	rio				71
	3.2.1.	Ensayo de	e tensión				72
		3.2.1.1.	Característica	as físicas	obteni	das,	
			previas a r	ealizar el	ensayo	de	
			tensión				73
			3.2.1.1.1.	Masa de la	as mues	tras	73
			3.2.1.1.2.	Longitud	de	las	
				muestras.			74
			3.2.1.1.3.	Masa unita	aria		75
			3.2.1.1.4.	Espaciami	ento e	entre	
				corrugas	de	las	
				muestras.			75
			3.2.1.1.5.	Ancho de	ribete de	e las	
				muestras.			76
			3.2.1.1.6.	Altura de	ribete de	e las	
				muestras.			77
			3.2.1.1.7.	Tipo de co	rruga		78
			3.2.1.1.8.	Área	efec	tiva,	
				diámetro	inicial	у	
				perímetro	de	las	
				muestras.			79
		3.2.1.2.	Propiedades	mecánicas	s obten	idas	
			en el ensavo	de tensión			80

				3.2.1.2.1.	Marcado de muestras
					para posteriormente
					obtener la elongación82
				3.2.1.2.2.	Valor de las cargas83
				3.2.1.2.3.	Valor de los esfuerzos84
				3.2.1.2.4.	Valor de la elongación87
				3.2.1.2.5.	Uso de la máquina
					universal digital JBA88
		3.2.2.	Ensayo de	doblado	91
			3.2.2.1.	Cálculo del e	ensayo de doblado93
4.	RESUL	TADOS			95
	4.1.	Resultad	os obtenidos	s en el laborato	orio95
		4.1.1.			s95
			4.1.1.1.	Característic	as físicas obtenidas
				previas al en	sayo de tensión95
			4.1.1.2.	Gráficas de d	dispersión, masa unitaria
				(kg/m) versu	s área efectiva (cm²)98
			4.1.1.3.	Propiedades	mecánicas obtenidas
				en el ensayo	de tensión103
		4.1.2.	Gráficas	esfuerzo-de	eformación (máquina
			universal J	JBA)	118
		4.1.3.			certificadas y barras no
			certificada	s en función	de la carga máxima
			soportada	a tensión	126
	4.2.	Estudio d	de mercado o	con enfoque a	precios131
			4.2.1.1.	Comparación	n de precios entre
				fabricantes	133

		4.2.1.2.	Precios	unitarios e	n función	de la	
			masa ur	nitaria (kg/m)			137
	4.3.	Tipo y forma de la fall	la obtenid	la en la pruel	ba mecáni	ca	140
5.	ANÁLISI	S DE RESULTADOS.					141
CON	CLUSION	ES					151
RECO	OMENDA	CIONES					155
BIBLI	OGRAFÍA	١					157
APÉN	IDICES						161
ANEX	(OS						195

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Sectorización inicial de las zonas de la ciudad de Guatemala	9
2.	Numeración en sentido sinistrógiro de la ciudad de Guatemala	. 10
3.	Mapa actual de las zonas de la ciudad de Guatemala	. 12
4.	Límites de la ciudad de Guatemala	. 12
5.	Fabricación del acero	. 25
6.	Gráfica esfuerzo-deformación	. 42
7.	Barras de acero para refuerzo y tipo de corrugado	. 44
8.	Identificación de barras certificadas	. 46
9.	Identificación de barras no certificadas	. 47
10.	Corruga única	. 54
11.	Corruga doble	. 55
12.	Fallas o fracturas típicas por tensión de los metales	60
13.	Toma de muestras en el área de estudio	. 71
14.	Clasificación de muestras en el laboratorio	. 72
15.	Masa de las muestras	. 74
16.	Ancho de ribete de las muestras	. 77
17.	Altura de ribete de las muestras	. 78
18.	Tipo de corruga de las muestras	. 79
19.	Máquina Universal Baldwin Lima Hamilton I	. 81
20.	Máquina Universal Baldwin Lima Hamilton II	. 81
21.	Marcado de muestras a cada 5 cm (2")	. 82
22.	Muestra colocada en la máquina universal	. 83
23.	Ruptura de las muestras	. 86

24.	Piezas separadas después del ensayo	86
25.	Medición de porcentaje de elongación en 20,00 cm (8")	87
26.	Ensayo de tensión con la Máquina Universal Digital JBA*	89
27.	Desarrollo digital de la gráfica esfuerzo-deformación	90
28.	Presentación de la ruptura en la muestra	91
29.	Colocación de la muestra en el mandril	92
30.	Doblado de la muestra a 180°	92
31.	Clasificación de muestras sometidas al ensayo de doblado	93
32.	Verificación visual de las muestras para detectar fisuras	94
33.	Barra certificada–fabricante "X"	99
34.	Barra no certificada (8,5 mm)-fabricante "X"	99
35.	Barra no certificada (8 mm)-fabricante "X"	100
36.	Barra no certificada (7,5 mm)-fabricante "X"	100
37.	Barra certificada–fabricante "Y"	101
38.	Barra no certificada (8,5 mm)-fabricante "Y"	101
39.	Barra no certificada (7,5 mm)-fabricante "Y"	102
40.	Gráfica esfuerzo-deformación: barra certificada - fabricante "X"	119
41.	Gráfica esfuerzo-deformación: barra no certificada (8,5 mm) -	
	fabricante "X"	120
42.	Gráfica esfuerzo-deformación: barra no certificada (8 mm)-	
	fabricante "X"	121
43.	Gráfica esfuerzo-deformación: barra no certificada (7,5 mm) -	
	fabricante "X"	122
44.	Gráfica esfuerzo-deformación:barra certificada – fabricante "Y"	123
45.	Gráfica esfuerzo-deformación: barra no certificada (8,5 mm) -	
	fabricante "Y"	124
46.	Gráfica esfuerzo-deformación: barra no certificada (7,5 mm) –	
	fabricante "Y"	125

47.	Gráfica barra certificada y barra no certificada (8,5 mm) – fabricante "X"	
48.	Gráfica barra certificada y barra no certificada (8mm) – fabricante "X"	127
49.	Gráfica barra certificada y barra no certificada (7,5 mm) – fabricante "X"	
50.	Gráfica barra certificada y barra no certificada (8,5 mm) – fabricante "Y"	
51.	Gráfica barra certificada y barra no certificada (7,5 mm) – fabricante "Y"	
52.	Comparación de precios unitarios entre la barra certificada del fabricante "X" y las barras no certificadas de los fabricantes "X" y "Y"	130
53.	Comparación de precios unitarios entre la barra certificada del fabricante "Y" y las barras no certificadas de los fabricantes "X" y "Y"	
54.	Falla irregular fibrosa	140
	TABLAS	
l.	Información general de Guatemala	4
II.	Número de habitantes de cada una de las zonas de la ciudad de	
	Guatemala	13
III.	Efectos de cantidades de otros elementos en los aceros	36
IV.	Diámetros de barras en sistema internacional e inglés	45
V.	Tipos de barras de acero para refuerzo de 3/8" (10 mm), que	
	distribuye el fabricante "X" en las ferreterías y ventas de materiales	
	de construcción de la ciudad de Guatemala	67

VI.	Tipos de barras de acero para refuerzo de 3/8"(10 mm), que
	distribuye el fabricante "Y" en las ferreterías y ventas de materiales
	de construcción de la ciudad de Guatemala68
VII.	Principales zonas de la ciudad de Guatemala que mostraron mayor
	movimiento de construcción durante 201469
VIII.	Principales zonas de la ciudad de Guatemala que mostraron menor
	movimiento de construcción durante 201469
IX.	Distribución de número de muestras según la empresa fabricante y
	el tipo de barra70
X.	Toma de muestras en cada zona con mayor y menor movimiento
	de construcción durante el 201470
XI.	Características físicas de cada una de las muestras96
XII.	Resumen de las características físicas de cada tipo de barra para
	refuerzo (valores promedios)98
XIII.	Esfuerzo cedente, esfuerzo máximo (con base en la carga efectiva
	y el área efectiva) y elongación103
XIV.	Esfuerzo cedente, esfuerzo máximo (con base en la carga efectiva
	y el área nominal) y elongación106
XV.	Esfuerzo cedente, esfuerzo máximo y elongación de cada tipo de
	barra para refuerzo (valores promedio)110
XVI.	Grado estructural obtenido y comparación de esfuerzos con la
	Norma Coguanor NTG 36 011112
XVII.	Resultados del ensayo de doblado113
(VIII.	Comparación de las características físicas y propiedades
	mecánicas de las muestras con la Norma Coguanor NTG 36 011 115
XIX.	Propiedades mecánicas: barra certificada-fabricante "X"119
XX.	Propiedades mecánicas: barra no certificada (8.5 mm)-fabricante
	"X"120
XXI	Propiedades mecánicas: barra no certificada (8 mm)–fabricante "X" 121

XXII.	Propiedades mecánicas: barra no certificada (7,5 mm)–fabricante	
	"X"	122
XXIII.	Propiedades mecánicas: barra certificada-fabricante "Y"	123
XXIV.	Propiedades mecánicas: barra no certificada (8,5 mm) – fabricante "Y"	124
XXV.	Propiedades mecánicas: barra no certificada (7,5 mm) - fabricante	
	"Y"	125
XXVI.	Precios de fábrica – fabricante "X"	131
XXVII.	Precios en ferreterías y ventas de materiales de construcción de	
	barras – fabricante "X"	131
XXVIII.	Precios de fábrica–fabricante "Y"	132
XXIX.	Precios en ferreterías y ventas de materiales de construcción de	
	barras–fabricante "Y"	132
XXX.	Comparación entre precios de venta de fábrica por quintal	133
XXXI.	Comparación entre precios de venta de fábrica por unidad de barra.	134
XXXII.	Comparación entre precios de venta en ferreterías y ventas de	
	materiales de construcción por quintal	135
XXXIII.	Comparación entre precios de venta en ferreterías y ventas de	
	materiales de construcción por unidad de barra	136
XXXIV.	Precio por metro lineal y precio por kilogramo, según precios de	
	venta de fábrica de las barras para refuerzo	137
XXXV.	Precios de venta de ferretería y venta de materiales de	
	construcción	138

LISTA DE SÍMBOLOS

Símbolo	Significado
A_e	Área efectiva (metro cuadrado)
A_n	Área nominal (metro cuadrado)
Υ	Densidad (masa sobre volumen)
S	Desviación estándar muestral
σ	Esfuerzo (mega pascales)
0	Grados
°C	Grados centígrados
°F	Grados Celsius
Ø	Diámetro
Kg	Kilogramo
Km	Kilómetro
m.u.	Masa unitaria (kilogramo sobre metro)
\overline{X}	Media muestral
Мра	Mega pascales
m	Metro
m ²	Metro cuadrado
m^3	Metro cúbico
mm	Milímetro
P	Perímetro
П	Pi (3,1416)
%	Porcentaje
Q	Quetzales
S ²	Varianza muestral

GLOSARIO

ACI Instituto Americano del Concreto (American Concrete

Institute).

AISC Instituto Americano de Acero para Construcción

(American Institute of Steel Construction).

Área efectiva Área que está en función de la masa unitaria y la

densidad del acero, perteneciente a una barra de

acero para refuerzo.

Área nominal Área teórica y convencional perteneciente a una

barra de acero para refuerzo.

ASTM Sociedad Estadounidense para Pruebas y Materiales

(American Society For Testing and Materials).

Centro de Investigaciones de Ingeniería.

Coguanor Comisión Guatemalteca de Normas.

Ductilidad Es la habilidad de un material para deformarse

plásticamente ante la fractura bajo un esfuerzo de

tracción.

Elongación Cambio de longitud entre la longitud inicial y la final.

Erigir Construir o levantar una edificación importante.

Esfuerzo cedente Es el punto donde el acero desarrolla un marcado

incremento de la deformación sin aumentar el

esfuerzo, es también llamado esfuerzo de fluencia.

Esfuerzo de ruptura Es el esfuerzo del acero basado en el área original

en el instante en que se rompe. Es la última

ordenada del diagrama esfuerzo - deformación.

Esfuerzo máximo Es el mayor esfuerzo basado en el área original que

puede desarrollar el acero, así que es la máxima

ordenada de un diagrama esfuerzo - deformación.

Estribo Refuerzo empleado para resistir esfuerzos de

cortante y de torsión en un elemento estructural.

Estribo Refuerzo empleado para resistir esfuerzos de

cortante y de torsión en un elemento estructural.

FHA Instituto de Fomento de Hipotecas Aseguradas.

Horno de arco Horno que se calienta por medio de un arco eléctrico.

Laminación Calentamiento de palanquillas de acero al carbono

de sección cuadrada, que se obtienen por medio del

proceso de colada continua.

Masa Medida de la cantidad de materia que posee un

cuerpo.

NTG Normas Técnicas Guatemaltecas.

Palanquilla de acero Acero recién hecho, que todavía está en la forma de

rectángulo.

Peso Fuerza con que la tierra atrae a un cuerpo, por

acción de la gravedad.

Peso específico Peso de un cuerpo por unidad de volumen.

Rango elástico Zona donde es válida la Ley de Hooke, en cualquier

punto de esta zona el material se deforma bajo la acción del esfuerzo y al retirar el esfuerzo el material

recupera sus dimensiones originales sin que quede

ninguna deformación.

Rango plástico Es la zona donde los esfuerzos no son

proporcionales a las deformaciones, un material cargado que se encuentra en esta zona al retirar el

esfuerzo queda con una deformación permanente.

Revenido Tratamiento térmico a un material con el fin de variar

su dureza y cambiar su resistencia mecánica.

Sentido Sinistrógiro Movimiento que describe la forma de una espiral.

Templado Consistente en el rápido enfriamiento de la pieza de

acero para obtener determinadas propiedades del

material.

Tracción

Esfuerzo interno al que está sometido un cuerpo por la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a estirarlo.

Trefilar

Operación de conformación en frío consistente en la reducción de sección de una barra, haciéndola pasar a través de un orificio cónico practicado en una herramienta llamada hilera o dado.

Varilla comercial

Es un concepto para referir a las barras de acero para refuerzo no certificadas en términos de comercialización, utilizado en las ferreterías y ventas guatemaltecas. Son denominadas coloquialmente como varillas de hierro comerciales o milimétricas.

Varilla legitima

Es un concepto para referir a las barras de acero para refuerzo certificadas en términos de comercialización, utilizado en las ferreterías y ventas guatemaltecas. Son denominadas coloquialmente como varillas de hierro legítimas.

RESUMEN

El objetivo principal es obtener las características físicas y mecánicas de las barras para refuerzo, no certificadas. Son equivalentes al diámetro de 10 mm (3/8"), en algunos sectores de la ciudad de Guatemala.

El capítulo uno describe una breve historia de la fundación de la ciudad de Guatemala. La caracterización de la ciudad con base en información proporcionada por la Municipalidad de Guatemala, generalidades de la construcción en Guatemala y los fabricantes de barras de acero para refuerzo en el país.

El capítulo dos describe la teoría necesaria con respecto al acero como material y sus generalidades, para fundamentar el desarrollo experimental y los resultados. Además proporciona qué norma es la que se usa en Guatemala para las barras de acero como refuerzo, incluyendo la descripción y finalidad de los ensayos de tensión y doblado.

El capítulo tres describe el desarrollo experimental, desde la toma de las muestras hasta la realización paso a paso del ensayo de tensión y ensayo de doblado realizados en el CII, dejando evidencias fotográficas de cada uno de los procesos. Además se hace referencia al uso de la máquina universal digital JBA, la cual es de adquisición reciente en el CII.

El capítulo cuatro proporciona los resultados obtenidos durante los ensayos correspondientes, presentando estos mediante gráficas y tablas de las características físicas y las propiedades mecánicas, dependiendo del caso.

Además se proporciona un pequeño estudio de mercado de los precios de las barras para refuerzo certificadas y no certificas. De esta manera se tiene un mayor criterio del uso de estas barras como material en la construcción. Incluyendo también la falla que se obtuvo posterior a la realización del ensayo de tensión.

El capítulo cinco proporciona la discusión de todos los resultados obtenidos en los ensayos de laboratorio, en los casos que fue posible, se presentan en porcentajes. Se hacen comparaciones con la norma y se dan las pautas necesarias para que se puedan realizar las conclusiones y recomendaciones de este trabajo de graduación.

OBJETIVOS

General

Determinar las características físicas y propiedades mecánicas de las barras para refuerzo, no certificadas, equivalentes al diámetro de 10 mm (3/8")", en algunos sectores de la ciudad de Guatemala.

Específicos

- 1. Determinar las características físicas de las barras para refuerzo, no certificadas, equivalentes al diámetro de 10 mm (3/8").
- 2. Determinar las propiedades mecánicas de las barras para refuerzo, no certificadas, equivalentes al diámetro de 10 mm (3/8").
- Comparar las características físicas y las propiedades mecánicas de las barras para refuerzo no certificadas, equivalentes al diámetro de 10 mm (3/8") con las especiaciones de la Norma Coguanor NTG 36 011 (ASTM A615/A615M-12), tercera revisión, del 2013.
- 4. Obtener el grado estructural aproximado de las barras para refuerzo, no certificadas, equivalentes al diámetro de 10 mm (3/8").
- 5. Comparar precios de las barras de acero certificadas, grado 40 con diámetro de 10 mm (3/8"), con los precios de las barras no certificadas, equivalentes al diámetro de 10 mm (3/8").

INTRODUCCIÓN

El presente trabajo de graduación tiene como finalidad obtener las características físicas y mecánicas de las barras para refuerzo, no certificadas, equivalentes al diámetro de 10 mm (3/8"). En algunos sectores de la ciudad de Guatemala, por medio de los ensayos de tracción y doblado establecidos por la Norma Coguanor NTG 36 011 (ASTM A615/A615-M12), tercera revisión, año 2013.

Será necesaria la realización de los ensayos de tensión y de doblado para cumplir con los objetivos planteados y posteriormente consultar las especificaciones de la norma mencionada anteriormente.

Los resultados obtenidos serán analizados por métodos comparativos, cualitativos y cuantitativos. Esto de acuerdo a los gráficos y tablas realizadas, para posteriormente plantear las conclusiones y recomendaciones correspondientes.

Se realizará el trabajo de graduación para ayudar al área de construcción guatemalteca en cuanto al uso de barras de acero para refuerzo, ya que en la realidad es frecuente el uso de barras no certificadas o también denominadas comerciales. Convirtiéndose esto en un tema con bastante controversia, debido al poco conocimiento de sus características físicas y propiedades mecánicas y a que no existe literatura que haga referencia a este tema en específico. Esto para adquirir un criterio fundamentado de este en el tipo de barras en el campo de la construcción y dar así la aprobación o no de su uso como material de construcción.

1. LA CIUDAD DE GUATEMALA Y LA CONSTRUCCIÓN

1.1. Breve historia y fundación de la Ciudad de Guatemala

A Pedro de Alvarado se le encomendó buscar un lugar que serviría de centro de gobierno de los territorios y pueblos conquistados. El lugar escogido fue el asiento de Iximché, donde estaba erigida la fortaleza de los cakchiqueles. Esta primera fundación, en que se usó el título de Villa, se hizo el 25 de julio de 1524. La primera capital de Guatemala, a pesar de aprovechar las viviendas que allí existían, solo fue un campamento militar.

La primera acta que recoge el Libro Viejo está fechada el mismo día de la fundación. Pedro de Alvarado, investido de los poderes que le había otorgado Hernán Cortes, hizo los primeros nombramientos para integrar el Cabildo, dictó ordenanzas de gobierno y trató de institucionalizar la vida de aquel pequeño núcleo de españoles.

Las primeras autoridades de la ciudad fueron: Diego de Porras y Baltazar de Mendoza como Alcaldes Ordinarios; Don Pedro de Portocarrero, Hernán Carrillo, Juan Pérez Dardón y Domingo Zubarreta como Regidores.

Actualmente esta primera ciudad de Guatemala es Tecpán Guatemala, que queda en el departamento de Chimaltenango.¹

1.1.1. Primer traslado

Los españoles se retiraron de Iximché a causa de los levantamientos indígenas primero a Xepau (Olintepeque) y posteriormente a Chixot (Comalapa). Esta situación de inestabilidad se recogió en varias actas del Cabildo, por lo que se decidió buscar un sitio definitivo para la ciudad.

El 22 de noviembre de 1527 Jorge de Alvarado, hermano de Pedro de Alvarado, decidió fundar formalmente una verdadera ciudad de españoles, escogió el sitio de Bulbuxy palabra que significa en cakchiquel "donde brota el agua" y que los auxiliares tlaxcaltecas tradujeron al nahuatl como Almolonga. Su diseño fue rectilíneo según evidencias históricas y arqueológicas.

La ciudad permaneció en Almolonga pocos años ya que el 11 de septiembre de 1541 fue destruida por un deslizamiento de aguas y tierra desde el Volcán de Agua. Debe haber tenido sus calles y plaza sin empedrar, así como arquitectura de materiales poco consistentes. En la inundación murieron muchas personas entre ellas Doña Beatriz de la Cueva y una de las hijas de don Pedro de Alvarado.

¹ GENESIS mega programas. *Historia y Cultura de Guatemala*. Consulta: junio de 2015.

El asiento de Santiago de Bulbuxy o Almolonga se hallaba en el área que actualmente corresponde al poblado o caserío de San Miguel Escobar y no en la cabecera municipal de Ciudad Vieja, ya que aquí se encontraba el barrio de auxiliares tlaxcaltecas, esto fue comprobado por estudios y excavaciones.²

1.1.2. Segundo traslado

Debido a la tragedia ocasionada por el volcán de Agua, se dispuso trasladar la ciudad de Guatemala a un lugar más seguro. Se escogió el valle de Panchoy o Pacám, llamado por los españoles el Valle del Tuerto, actualmente es Antigua Guatemala. La ciudad se fundó prácticamente el 22 de noviembre de 1542, conforme al plano del ingeniero Juan Bautista Antonelli, aunque se haya tomado como fecha oficial el 10 de marzo de 1543.

En el valle de Panchoy la ciudad de Guatemala llegó a su gran esplendor, erigiéndose como una de las más bellas y grandes del Nuevo Mundo.

Por más de dos siglos y medio creció y se embelleció y se hizo famosa por su arte y sabiduría. La Ciudad de Santiago de los Caballeros de Guatemala fue la capital del Reino de Guatemala. El rey Felipe II le concedió la merced de otorgarle el título de Muy Notable y Muy Leal Ciudad el 10 de marzo de 1566.

Fue la tercera ciudad en contar con imprenta en América, introducida en 1660 por el obispo Fray Payo Enríquez de Rivera. Fue la cuna del periodismo centroamericano. Aquí se fundó por Cédula Real en 1676 y comenzó a funcionar en 1681 la Real y Pontificia Universidad de San Carlos.

El hermoso valle de Panchoy comenzó a presentarse peligroso por los continuos temblores que amenazaban a la ciudad. Los temblores más serios fueron los de 1717 y 1751; pero los de 1773 conocidos como los terremotos de Santa Marta, fueron los que destruyeron la soberbia ciudad de Santiago de los Caballeros de Guatemala.

El 29 de julio de 1773 a las tres de la tarde se sintió un temblor que hizo salir de sus casas a los vecinos, que sirvió como advertencia, ya que a los pocos minutos sobrevino el gran terremoto, seguido por continuos temblores y fuertes lluvias que duraron toda la noche.

El proceso para el traslado no resultó fácil, ya que en la población se formaron dos grupos: los llamados terronistas (que no querían abandonar la ciudad) y los traslacionistas (partidarios de cambiar el lugar de la capital). Ambos bandos utilizaron abundantes argumentos para defender y promover sus posiciones. La mayoría de la población no permanecía al margen de la polémica, pero no se comprometió por lo menos abiertamente con los bandos en pugna. Luego de esta discusión que duró casi dos años salió ganando el grupo que quería el traslado.

Para el nuevo asentamiento de la capital del reino de Guatemala se hizo un amplio estudio de los valles que se consideraron más adecuados para tal fin. Entre ellos se tomó en cuenta los llanos de la Virgen, los de Jalapa, los de El

2

_

² GENESIS mega programas. *Historia y Cultura de Guatemala*. Consulta: junio de 2015.

Rodeo. Finalmente se eligió el valle de la Virgen, también llamado de la Ermita (del Carmen) y anteriormente llamado valle de Las Vacas, por el ganado vacuno que aquí se criaba para las necesidades de la Capitanía General.³

1.1.3. Último traslado

A continuación se presenta el último traslado.

1.1.3.1. La nueva Guatemala de la Asunción

Por Real Cédula expedida en San Ildefonso por el rey de España, el 21 de julio de 1775, se autoriza el traslado de la ciudad de Guatemala al valle de La Virgen o de la Ermita.

El 1 de enero de 1776, por órdenes terminantes del capitán general, Martín de Mayorga, el ayuntamiento se traslada al Establecimiento Provisional de La Ermita, como inicialmente se le llamó a la ciudad. Por orden real del 23 de mayo de 1776, la nueva capital recibió el nombre de Nueva Guatemala de la Asunción.

Se procede a la elección de autoridades del ayuntamiento, son elegidos como alcaldes ordinarios don José González Roves y don Manuel José Juarros. También son elegidos algunos regidores.

El principal problema a resolver en el nuevo sitio donde se estableció la capital del reino fue la falta de agua. Así que la introducción del preciado líquido fue encomendado al maestro de obra Don Bernando Ramírez, quien se encargó de construir el acueducto de Pinula, el cual comenzó a prestar sus servicios en 1777.

La Nueva Guatemala de la Asunción fue construida bajo el estilo neoclásico, muy de moda en esa época. Sin embargo, los templos de Santo Domingo, La Merced, Santa Rosa y Capuchinas, aunque son neoclásicos en su exterior, conservan el estilo barroco en sus interiores; en dichos templos los altares, retablos y pinturas son barrocos, pues fueron traídos de la anterior ciudad de Panchoy.

El diseño de la ciudad lo realizó el arquitecto Luis Díez Navarro, pero fue modificado por el arquitecto Francisco Sabatini. Nuestra capital fue destruida parcialmente por los terremotos de 1917-1918.

A partir de la Revolución de 1871, la ciudad se modernizó; especialmente durante los gobiernos de los generales José María Reina Barrios (1892-1898) y Jorge Ubico (1931-1944), quienes la embellecieron con hermosos edificios. Tales son el Palacio Nacional, el de la Policía Nacional y el de Correos, construidos durante el gobierno de Ubico. Después de la Revolución de 1944, que abrió un período de mayor crecimiento urbano en el país, no sólo en relación a la ciudad capital, sino en cuanto a otras ciudades del interior del país, la ciudad de Guatemala aumentó de tamaño e importancia de sus edificios.

3

³ GENESIS mega programas. *Historia y Cultura de Guatemala*. Consulta: junio de 2015.

Actualmente la ciudad cuenta con un Centro Cívico en el que se ubican los edificios de la Municipalidad capitalina, Corte Suprema de Justicia, Banco de Guatemala, Crédito Hipotecario Nacional, Ministerio de Finanzas, Instituto Guatemalteco de Seguridad Social y Teatro Nacional "Miguel Ángel Asturias", además de contar con todas las instalaciones y servicios que corresponden a una moderna ciudad. ⁴

1.2. Caracterización de la ciudad de Guatemala

A continuación se presenta la tabla de información general de Guatemala.

Tabla I. Información general de Guatemala

Información	Descripción
Ciudad Capital	Ciudad de Guatemala
Moneda	El quetzal
Idioma	Español
Población	16 141 870,00
Producto Interno Bruto (4T-2014)	61 763,30

Fuente: elaboración propia.

1.2.1. Infraestructura de la ciudad de Guatemala en relación con la infraestructura nacional

Guatemala es considerada como centro logístico y de servicio regional debido a su ubicación geográfica y condiciones naturales. Su infraestructura está conformada por recientes carreteras que conectan todo el país, puertos tanto en el océano Pacífico como en el Atlántico. Un aeropuerto en el corazón de la ciudad de Guatemala llamado Aeropuerto Internacional La Aurora, un segundo aeropuerto internacional llamado Mundo Maya, localizado en Santa Elena, en el departamento de Petén, cerca de la ciudad Maya de Tikal.

⁴ GENESIS mega programas. *Historia y Cultura de Guatemala*. Consulta: junio de 2015.

Además de otros 5 aeropuertos regionales ubicados en Puerto Barrios, Izabal (nororiente); Cobán, Alta Verapaz (centro-norte); Puerto de San José, Escuintla (sur), Retalhuleu (occidente) y Poptún, Petén (norte); también cuenta con infraestructura tecnológica moderna.

1.2.1.1. Infraestructura de edificación

A continuación se presenta la infraestructura de edificación.

1.2.1.1.1. Educación

En Guatemala la baja escolaridad es un grave problema para el desarrollo de los niños. Los lineamientos de política económica, social y de seguridad para Guatemala, mencionan que mientras más años de escolaridad tenga la madre, la desnutrición crónica en niños de 3 a 59 meses de edad tiende a ser menor.

La mala calidad educativa produce la desigualdad social, porque condena a la marginación a una buena parte de la población. La falta de oportunidades y desigualdades educativas en acceso, permanencia y calidad reproducen y amplifican la exclusión social y económica. Esto limita el desempeño económico, político, social y humano de los habitantes del país y la ciudad de Guatemala.

1.2.1.1.2. Economía

La Agencia Nacional para el Desarrollo de Infraestructura Económica (Anadie) es la agencia a cargo de preparar los planes estratégicos de proyectos que ayuden al crecimiento del país, proyectos como:

- Construcción de parques industriales.
- Zonas francas modernas y competitivas, de modo que compañías multinacionales puedan establecerse en ellas y hacer uso de las ventajas que las economías de esta la ofrecen en los procesos de producción y transporte, y mejorando de esta forma la competitividad de sus bienes y servicios.
- Construcción de autopistas con peaje.

La mayor parte de esta infraestructura es vital para el comercio internacional (importaciones + exportaciones) con importantes mercados alrededor del mundo.

1.2.1.1.3. Construcción

Esta actividad industrial es de suma importancia para el desarrollo económico de Guatemala. Esto no solo por el alto número de empresas constructoras que este involucra directamente, sino que también por la gran demanda de insumos.

Por su parte, el subsector de vivienda comprende proyectos habitacionales para todos los niveles socioeconómicos; así como edificios para comercio e industria. Este sector es de suma importancia para la economía de Guatemala en término de oferta de trabajo. De acuerdo a datos de la Cámara Guatemalteca de la Construcción, el sector genera alrededor de 232 000 puestos de trabajo.

Principales productos de construcción:

Insumos: cemento y acero

Vivienda: horizontal y vertical

Oficinas

Centros comerciales

Infraestructura: carreteras y puertos

1.2.1.1.4. Agua y saneamiento

En la ciudad de Guatemala existe un plan denominado Plan Guatemala 2020. Este busca atender eficientemente las demandas de la ciudad, dentro de una dinámica multisectorial que implique investigación, discusión y revisión multidisciplinaria, buscando darle continuidad al proceso en una visión de 15 años, a partir del 2005. Los grupos involucrados en este plan son la coordinadora de supervisión de obras Infom, bomberos voluntarios, representantes de gestión para la reducción del riesgo de la Conred, alcaldes auxiliares de la ciudad, el director de construcción urbana de la ciudad y el gerente de la Empresa Municipal de Agua Empagua.

1.2.1.1.5. Salud

Guatemala es el país centroamericano que menos recursos destina a la salud pública con 1,1 % del producto interno bruto (PIB). Esto es un indicador que evidencia el colapso y abandono de este sector en la ciudad de Guatemala.

El crecimiento demográfico y riqueza de los consumidores están aumentando la demanda de servicios de salud, pero la sociedad que envejece y las enfermedades crónicas están obligando a quienes pagan por la salud a tomar decisiones difíciles sobre los niveles de beneficios.

El principal problema es el tipo de salud que se posee, inequitativo, discriminador y excluyente, que afecta sobre todo las aéreas con población con bajos recursos, siendo puramente curativo y no preventivo.

1.2.1.2. Infraestructura vial

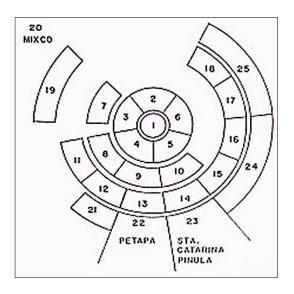
A continuación se presenta la infraestructura vial.

1.2.1.2.1. Infraestructura de transportes

Guatemala posee una red de infraestructura vial moderna y creciente, la red cuenta con carreteras asfaltadas, accesible para el transporte de carga y personas, conectando sus diferentes regiones, puertos y fronteras con México y Centroamérica. Asimismo, se tienen carreteras de terracería y caminos rurales. Existe un órgano de Coordinación Institucional que es el Consejo Nacional de Infraestructura Vial (Covial), ente que tiene a su cargo el mantenimiento de las rutas ya existentes.

La red vial es clasificada aproximadamente de la siguiente manera:

- Rutas centroamericanas 2 151,18 km
- Rutas nacionales 2 757, 90 km
- Rutas departamentales 7 096, 744 km
- Caminos rurales 4 287, 566 km


1.2.1.2.2. Infraestructura portuaria

El país de Guatemala cuenta en la actualidad con cinco puertos marítimos, de los cuales dos se localizan sobre el océano Atlántico. En donde la presencia de pequeños accidentes geográficos ha permitido la formación de puertos naturales destinados al atraque de las embarcaciones. Estos son el Puerto Santo Tomás de Castillla y Puerto Barrios, y los otros tres son Puerto Quetzal, San José y Champerico sobre el océano Pacífico. Estos cinco puertos están denominados como los más importantes y están comunicados entre sí por la red vial nacional.

1.2.2. Sectores o zonas de la ciudad de Guatemala

"La definición de las zonas de la ciudad se basa en un sistema de espiral que se desenvuelve en dirección opuesta a las agujas del reloj, fue creado por el ingeniero Raúl Aguilar Batres. Los criterios empleados por este eminente urbanista guatemalteco fueron la división que, de hecho, se establecía en la ciudad a través de las principales vías de acceso y la divisoria continental de las aguas que pasa por el centro del valle donde se asienta la capital. Las primeras quince zonas fueron aprobadas en el año 1952 (ver apéndice 1)".⁵

Figura 1. Sectorización inicial de las zonas de la ciudad de Guatemala

Fuente: MuniGuate. http://cultura.muniguate.com. Consulta: junio de 2015

9

_

⁵ MuniGuate. http://cultura.muniguate.com. Consulta: junio de 2015.

Figura 2. Numeración en sentido sinistrógiro de la ciudad de Guatemala

Fuente: Isabel Fernandez. *Numeración en sentido sinistrógiro de la ciudad de Guatemala*.http://www.skyscrapercity.com. Consulta: junio de 2015.

En 1964 por necesidad censal se incorporaron las zonas 16, 17, 18, 19, 21, 24 y 25; la zona 19 correspondía al municipio de Chinautla, la zona 20 al municipio de Mixco, la zona 22 al municipio de Santa Catarina Pinula. En 1972, se decreta y se pone en vigor el acuerdo municipal que delimita las 23 zonas en que se divide la ciudad, respetando el criterio censal en relación a las zonas 20, 22 y 23; la reciente incorporación de la colonia La Florida (1972) a la jurisdicción del municipio de Guatemala, convierte a esta en la zona 19, número trasladado del que pertenecía al municipio de Chinautla. En síntesis, existen actualmente 22 zonas.

 La zona 20 no existe, ya que en un momento fue parte de lo que actualmente es Mixco y por necesidades de censo fue incluida, pero administrativamente no forma parte de la capital. Un mito que existe alrededor de esta zona es que es el área del cementerio general, debido a que dentro del cementerio hay avenidas y calles, pero esto es falso.

- La zona 22 no existe, solo que esta región pertenecía a San Miguel Petapa.
- La zona 23 no existe, geográficamente pertenece a Santa Catarina Pinula.

Guatemala tiene una estructura cuadrada que se expande en todas las direcciones lo cual es una característica importante del urbanismo neoclásico de principios de siglo. La ciudad posee muchas avenidas y bulevares amplios y decorados; como la Avenida La Reforma, Vista Hermosa, Los Próceres, y avenida de Las Américas, entre otros.

Su trazado antiguo y su ubicación (un valle rodeado de barrancos profundos) hace que las vías de acceso principales sean pocas, esto causa una severa congestión de tráfico. Al igual que el desarrollo de otras áreas antes tomadas como marginales como la ruta al Atlántico Jacobo Árbenz Guzmán entre las zonas 17 y 18, área que ha demostrado un gran poder comercial.

Figura 3. Mapa actual de las zonas de la ciudad de Guatemala

Fuente: Habib Chamoun-Nicolas. *Mapa actual de las zonas de la ciudad Guatemala.* http://servicios.prensalibre.com. Consulta: junio de 2015.

Figura 4. Límites de la ciudad de Guatemala

Fuente: Julieta Sandoval. *Límites de la ciudad de guatemala*http. ://desastres.usac.edu.gt. Consulta: junio de 2015.

Tabla II. Número de habitantes de cada una de las zonas de la ciudad de Guatemala

Zona	Habitantes
1	48 498
2	22 175
3	45 395
4	2 139
5	63 439
6	76 580
7	138 227
8	11 536
9	1750
10	11 874
11	39 669
12	43 398
13	26 734
14	18 322
15	14 549
16	19 499
17	22 296
18	198 796
19	24 644
21	75 038
24	14 810
25	19 620
Total	822 920

Fuente: Prensa Libre. Una zona fuera de su municipio Consulta: 24 de junio de 2015.

Zona 1

Se ubica a partir de la intersección de la avenida Elena y la primera calle de la zona central actual (antigua 1ra. calle norte de la ciudad), hacia el oriente dejando el parque Isabel la Católica al norte, hasta la calle que rodea por el norte al Cerrito del Carmen (antiguo callejón del Olvido), el cual se sigue y su prolongación en la calle Candelaria siempre hacia el oriente, hasta su encuentro ideal con el río Las Vacas. De este punto se seguirá dicho río aguas arriba hasta alcanzar el relleno de la 12 avenida, a la altura del estadio nacional, luego por medio de la 12 avenida hacia el norte hasta la 22 calle, hacia el poniente, hasta la vía férrea recorriendo esta hacia el sur, hasta su encuentro ideal con la calle situada al sur del colegio salesiano Don Bosco.⁶

Zona 2

Se ubica a partir de la intersección de la 1ra. calle de la zona 1 ya descrita, y avenida Elena, hacia el norte, hasta encontrar el límite que divide las lotificaciones El Sauce y la Floresta, se seguirá dicho límite buscando hacia el poniente del río de invierno que divide las lotificaciones El Sauce y Bran, luego por medio de este

⁶ Municipalidad de Guatemala. Control Territorial.

último hacia el norte hasta su encuentro con el río La Barranca, el cual se seguirá aguas abajo, donde adquiere el nombre de río Zapote, hasta alcanzar la presa del mismo que constituye en dicho punto, el límite actual del municipio, luego se recorrerá dicho límite que es el lindero norte de la finca Caleras del Norte, hacia el oriente, hacia su intersección con el camino que conduce al municipio de Chinautla, el cual se seguirá en dirección a la ciudad, hasta su encuentro con el trazo del Boulevard Juan Chapín o Martinico, el que se seguirá hacia el sur, hasta la 1ra. calle de la zona 1 ya descrita, la que se recorrerá finalmente hacia el poniente, hasta alcanzar el punto de origen de la descripción.⁷

Zona 3

Se ubica a partir de la intersección de la 1ra. calle zona 1 ya descrita y avenida Elena, hacia el norte, hasta encontrar el límite que divide las lotificaciones El Sauce y La Floresta, limite que se seguirá hace el poniente hasta encontrar el río invierno que separa las lotificaciones El Sauce y Bran el cual seguirá hacia el norte hasta su encuentro con el río La Barranca, de este punto se recorrerá este último aguas arriba dejando al oriente el barrio El Gallito, los cantones Barrios y Barillas, buscando pasar al oriente del antiguo basurero llamado de la zona 7, hasta alcanzar la calle seguida al norte del parque de la Cruz Roja y campo de futbol llamado del Trébol, la cual se tomará hacia el oriente hasta alcanzar la avenida que conduce hacia la calzada Roosevelt, la cual se denomina 7ma. avenida de la zona 3, tal avenida se recorrerá hacia el sur hasta su intersección ideal con el eje central de la mencionada calzada.⁸

Zona 4

Se ubica a partir de la intersección de la 1ra. calle de la zona 9 (antigua calle de Tívoli) y la vía férrea, se recorrerá esta última hacia el norte hasta la 7ma. avenida de la zona 1, ya descrita, a la altura del puente de la penitenciaria, se tomará dicha 7ma. avenida hasta su encuentro con el viaducto llamado de la 24 calle, el cual seguirá hacia el oriente hasta encontrar su punto de intersección con la 10ma. avenida a la altura del puente Olímpico, se tomará dicha avenida hacia el sur hasta su intersección con la 1ra. calle zona 9 (antigua calle Tivoli) y por medio de esta última hacia el poniente hasta alcanzar el punto de origen de la descripción. 9

Zona 5

Se ubica a partir de la intersección de la 10ma. avenida y calle Mariscal, hacia el oriente por medio de esta última y su prolongación ideal, hasta su encuentro con el río Negro que divide las actuales zona 10 y 15, río que se seguirá aguas abajo hasta su encuentro con el río Las Vacas, el cual se recorrerá aguas arriba hasta alcanzar el relleno llamado de la 12 avenida a la altura del Estadio Nacional, luego por medio de esta avenida hacia el norte que llegará hasta la 22 calle, la que se

⁷ Municipalidad de Guatemala. Control Territorial.

⁸ lbíd.

⁹ Ibíd.

tomará hacia el poniente hasta la vía férrea, por medio de esta última seguir hasta su encuentro hacia el sur con la 7ma. avenida de la zona 1, ya descrita.¹⁰

Zona 6

Se ubica al poniente hasta su intersección con el camino que conduce al municipio de Chinautla, el cual se recorrerá en dirección de la ciudad hasta encontrar el trazo del Boulevard Martineco o Juan Chapín, trazo que se seguirá hacia el sur hasta la calle de la zona 1, para por medio de esa hacia el oriente alcanzar nuevamente el punto de origen de la descripción.¹¹

Zona 7

Se ubica a partir de la intersección de la 7ma. avenida de la zona 3 ya descrita, y la calzada Roosevelt hacia el poniente, hasta alcanzar el límite del municipio a la altura de las Villas del Pedregal, de este punto se seguirá dicho límite hacia el norte hasta el punto de confluencia de los ríos Naranjos y La Barranca, para seguir este último aguas arriba y pasando por el antiguo basurero llamado de la zona 7, en su lindero oriente hasta encontrar la calle norte del campo de futbol del Trébol, la cual se seguirá hacia el oriente hasta la 7ma. avenida de la zona 3, ya descrita, la que se recorrerá finalmente hacia el sur hasta alcanzar el punto de origen de la descripción. 12

Zona 8

Se ubica a partir de la intersección de la calzada Roosevelt y la avenida Simón Bolívar a la altura del puente del Trébol, hacia el norte por medio de esta última hasta la 26 calle "A" de la zona 1; ya descrita, la cual se seguirá hacia el oriente hasta alcanzar su intersección ideal con la vía férrea, la cual se recorrerá hacia el sur, hasta encontrar el trazo de la antigua avenida La Castellana (límite que separa las zonas 8 y 9), trazo que se seguirá hasta el Boulevard Tecún Umán frente al Centro I del IGSS, finalmente por medio de dicho boulevard hacia el poniente hasta alcanzar el punto de origen de la descripción. 13

Zona 9

Se ubica a partir de la intersección con la avenida La Reforma y el Boulevard Tecún Umán a la altura del Obelisco de los Próceres de la Independencia, hacia el poniente hasta encontrar la antigua avenida La Castellana, la cual se seguirá hacia el norte y luego la vía férrea hasta su intersección con la antigua 1ra. calle de Tívoli, la que se tomará hacia el oriente hasta alcanzar nuevamente la avenida

¹⁰ Municipalidad de Guatemala. Control Territorial

¹¹ Ibíd.

¹² lbíd.

¹³ lbíd.

La Reforma, la cual se recorrerá hacia el sur hasta encontrar el punto de origen de la descripción. 14

Zona 10

Se ubica a partir de la intersección de la avenida Las Américas y el antiguo acueducto de Pinula, hacia el oriente por medio de este último y al extinguirse su trazo por medio del antiguo camino a El Salvador, hasta encontrar el lindero de la Finca San Rafael, lindero que se seguirá en el sentido de las manecillas del reloj hasta su intersección con la actual carretera a El Salvador a la altura del kilómetro 8, de este punto se seguirá dicha carretera hacia la ciudad hasta su encuentro con la prolongación del río Negro, que separa las zonas 10 y 15, el cual se recorrerá aguas abajo pasando por debajo del relleno de Vista Hermosa, hasta la prolongación de la calle Mariscal Cruz, la que seguirá hacia el poniente hasta la avenida La Reforma. 15

Zona 11

Se ubica a partir de la intersección de la calzada Raúl Aguilar Batres y la calzada Roosevelt hacia el norponiente hasta llegar al límite del municipio constituido por el riachuelo que divide las lotificaciones Toledo y González, esta última en jurisdicción de Mixco, desde este punto se recorrerá dicho límite que lo constituye el riachuelo mencionado, luego el río Molino aguas abajo, ambos y finalmente la quebrada El Arenal aguas arriba hasta alcanzar el Boulevard Raúl Aguilar Batres frente a la lotificación El Carmen, luego se seguirá dicho boulevard hacia el norte hasta encontrar el punto de origen de la descripción. ¹⁶

Zona 12

Se ubica a partir de la intersección de la calzada Raúl Aguilar Batres y el lindero sur de la lotificación El Carmen que constituye el límite del municipio, luego por medio de este límite constituido por el riachuelo que pasa entre la ciudad universitaria y los colegios Monte María y Liceo Javier y siempre aguas abajo por medio de la quebrada El Frutal y luego por la vía férrea al norte de la lotificación Ciudad Real I, luego siguiendo hacia el norte dicha vía férrea hasta su encuentro con el camino que se seguirá hacia esa población procurando circunvalar está por medio de sus límites poniente y oriente, hasta hallar el río Guadrón, el cual se recorrerá aguas arriba, mientras conserve este nombre y también al adquirir el de Guadroncito más al norte, para tomar más adelante la avenida que pasa al poniente de la lotificación Lomas de Pamploma.¹⁷

Zona 13

¹⁴ Municipalidad de Guatemala. Control Territorial.

¹⁵ lbíd.

¹⁶ lbíd.

¹⁷ Ibíd.

Se ubica a partir de la intersección del Boulevard Tecún Umán y avenida Las Américas a la altura del Obelisco de Los Próceres de la Independencia, hacia el sur por medio de esta última avenida rodeando e incluyéndola en esta zona, a la lotificación El Mirador Elgin, por el sur hasta encontrar la avenida Hincapié, la que se seguirá hacia el sur hasta alcanzar el puente Shangrilá, sobre el río Pinula, el cual se recorrerá aguas abajo hasta su confluencia con el río Guadrón, el cual se seguirá aguas arriba, mientras conserve este nombre y también al adquirir el de Guadroncito más al norte, para tomar más adelante la avenida que pasa al poniente de la lotificación Lomas de Pamplona, siempre hacia el norte hasta su intersección con la 8va calle de la zona 12, ya descrita, y que adquirirá el nombre de 5ta calle de la zona 13, la cual se seguirá hacia el poniente hasta alcanzar la 18 avenida de la zona 12, luego por medio de esta hacia el norte hasta la vía férrea, la que se recorrerá siempre hacia el norte hasta encontrar el Boulevard Tecún Umán, por medio del cual se buscará el punto de origen de la descripción. 18

Zona 14

Se ubica a partir de la intersección del Boulevard Tecún Umán y avenida Las Américas a la altura del Obelisco de Los Próceres de la Independencia, hacia el sur por medio de esta última avenida rodeando y excluyendo a la lotificación El Mirador de Elgin, por el sur, hasta encontrar el puente Shangrilá sobre el río Pinula, el cual se seguirá aguas arriba, constituyendo límite del municipio, hasta encontrar el lindero de la finca San Rafael, lindero que se seguirá hasta cruzar el antiguo camino a El Salvador el que se recorrerá hacia el poniente y luego el antiguo acueducto de Pinula hasta alcanzar el punto de origen de la descripción. ¹⁹

Zona 15

Se ubica a partir de la intersección del lindero norte de la finca San Rafael y la carretera a El Salvador a la altura del kilómetro 8 hacia el poniente por medio de dicho lindero recorriéndolo en sentido contrario a las manecillas del reloj, incluyendo dicha finca dentro de la zona hasta volver a encontrar la carretera a El Salvador. De este punto se seguirá la carretera hacia la ciudad hasta encontrar el lindero oriente de la finca San Lázaro, siguiendo dicho lindero hacia el norte dejando esta última finca incluida en dicha zona hasta encontrar por medio de su prolongación hasta encontrar el camino que conduce a la población de Concepción Las Lomas, camino que se seguirá hacia el norte hasta alcanzar el puente situado sobre el río Negro, luego por medio de este último aguas arriba hasta llegar a su encuentro ideal con la carretera a El Salvador y por medio de esta hasta alcanzar el punto de origen de la descripción.

Zona 16

¹⁸ Municipalidad de Guatemala. Control Territorial

¹⁹ Ibíd.

²⁰ Ibíd.

Se ubica a partir de la intersección de la carretera a El Salvador y el anillo periférico, hacia el norte por medio de este último hasta encontrar la prolongación ideal del riachuelo de invierno que separa el regimiento Mariscal Zavala de la aldea Santa Rosita, luego por los ríos Las Vacas y Negro y por medio de este riachuelo hasta su confluencia con este último aguas arriba, hasta llegar al puente del camino que conduce a la población Concepción Las Lomas, luego por medio de este camino hacia el sur hasta hallar el lindero oriente de la finca San Lázaro, lindero que se seguirá hacia el norte hasta su encuentro con la carretera a El Salvador, pasa por medio de esta hasta alcanzar el punto de origen de la descripción.²¹

Zona 17

Se ubica a partir del punto donde la carretera que conduce a la aldea Santa Rosita pasa sobre el río Las Vacas hacia el norte aguas abajo hasta la altura del puente Belice, de este punto hacia el oriente por medio de la carretera al Atlántico hasta hallar el punto de origen del camino que conduce a la aldea Los Ocotes y luego por medio de dicho camino hacia el sur hasta el sitio donde atraviesa el río Canalitos, el que se recorrerá aguas arriba dejando al oriente la aldea del mismo nombre y a la altura de la finca Santa Clotilde se rodeará está incluyéndola en la zona, la cual se recorrerá hacia el norte hasta encontrar la prolongación ideal del riachuelo de invierno que separa el regimiento Mariscal Zavala y la aldea Santa Rosita, riachuelo que se seguirá aguas abajo hasta el punto de origen de esta descripción. 22

Zona 18

Se ubica a partir del punto donde el río Las Vacas pasa abajo del puente Belice, hacia el norte por medio de dicho rio aguas abajo hasta alcanzar el límite del municipio a la altura del leprocomio La Piedad, luego por medio de dicho límite hacia el oriente hasta su intersección con la carretera al Atlántico la cual se recorrerá en dirección a la ciudad hasta encontrar el punto de origen de esta descripción.²³

Zona 19

Se ubica a partir de la intersección del antiguo límite del municipio y la carretera a San Juan, hacia el poniente por medio de esta última hasta alcanzar la avenida que seguirá al entronque con el camino que conduce a Lo de Bran, el que se recorrerá en dirección a la ciudad hasta hallar el antiguo límite del municipio luego por medio de este hacia el sur, hasta alcanzar el punto de origen de la descripción.²⁴

²¹ Municipalidad de Guatemala. Control Territorial.

²² Ibíd.

²³.lbíd.

²⁴ Ibíd.

Zona 21

Se ubica a partir de la intersección de la vía férrea y la carretera a Petapa, límite del municipio hacia el sur por medio de dicho límite y siguiendo el sentido contrario al de las manecillas del reloj hasta su encuentro con el río Guadrón, río que se seguirá aguas arriba hasta alcanzar el lindero norte de la aldea Los Guajitos, límite que se seguirá hasta encontrar el lindero poniente de la mencionada aldea. De este punto se recorrerá dicho lindero hasta el antiguo camino que conduce a los Guajitos, camino que se seguirá hacia el poniente hasta la vía.²⁵

Zona 24

Se ubica a partir del punto de intersección del anillo periférico y el límite del municipio a la altura de la finca Vista Hermosa, hacia el oriente por medio de dicho límite que lo constituyen los linderos norte de las fincas Vista Hermosa ya mencionada y las aldeas El Manzano y Los López, hasta encontrar el río Canalitos, siguiendo este último aguas arriba dejando al oriente la aldea del mismo nombre, y a la altura de la finca Santa Clotilde, se rodeará está excluyéndola de la zona, hasta alcanzar el anillo periférico por medio del cual hacia el sur se encontrará el punto de origen de la descripción. ²⁶

Zona 25

Se ubica a partir de la intersección del río los Ocotes y el límite del municipio el cual se recorrerá en el sentido contrario a las agujas del reloj hasta encontrar su intersección con la carretera al Atlántico, la cual se seguirá en dirección a la ciudad, hasta el punto donde se inicia el camino que conduce a la aldea los Ocotes, luego por medio de este camino hacia el sur hasta encontrar el río de Los Ocotes, para por medio de este último aguas arriba hasta alcanzar el punto de origen de la descripción.²⁷

1.2.3. Número de construcciones autorizadas según la Unidad de Información de la Municipalidad de Guatemala

Se autorizaron 2 132 licencias de construcción en 2014 de manera total en toda la ciudad de Guatemala.

²⁵ Municipalidad de Guatemala. Control Territorial.

²⁶ Ibíd.

²⁷ Ibíd.

1.2.3.1. Sectores o zonas con mayor número de construcciones autorizadas

Las zonas de la ciudad de Guatemala que poseen mayor movimiento de construcción autorizada son las zonas 16, 14, 11, 9 y 17, esto de manera total.

1.2.3.2. Sectores o zonas con menor número de construcciones autorizadas

Las zonas de la ciudad de Guatemala que poseen menor movimiento de construcción autorizada son las zonas 5, 19, 6, 21 y 2, esto de manera total.

1.3. La construcción en la ciudad de Guatemala

El crecimiento que ha tenido la ciudad se ha dado desordenamente en todas direcciones, siendo predominantes el sur occidente y el sur oriente. Su crecimiento ha sido tan grande que ha tomado varias poblaciones que en sus inicios se encontraban en lejanías o pertenecían a otro municipio y que, por el actual sobrepaso de sus límites jurisdiccionales se le ha llamado Área Metropolitana de Guatemala.

1.3.1. Problemáticas en la construcción

Hablar de la problemática en la construcción, es hablar del aprovechamiento y transformación del área de Guatemala.

1.3.1.1. Causas

Un aspecto importante es considerar los riesgos que deja el contratar una persona que diseña y construye empíricamente una edificación. Sin un estudio previo que sustente lo construido, este representa un riesgo a quienes lo habitan. Las edificaciones construidas empíricamente nacen vulnerables a cualquier tipo de eventualidad, ya que carecen de estudios estructurales, ambientales y constructivos.

El empirismo con que se realizan muchas construcciones en las zonas rurales del país, principalmente viviendas, sigue siendo el punto débil ante los sismos. Un problema que puede presentarse es que la columna junto con la viga colapsan simplemente sin mostrar ningún signo de deformación y eso no se supone que debe ser así, eso lo que indica es que está mal estructurado. En la construcción generalmente deben participan varios profesionales bien calificados, desde la etapa de diseño hasta la construcción.

En la ciudad de Guatemala se extienden licencias de construcción que teóricamente verifican que las construcciones cumplan con determinadas especificaciones. A pesar de ello, prevalece el hecho de que no exista un ingeniero supervisor en la ejecución de las construcciones y esta situación ha ido acarreando durante muchísimo tiempo una serie de defectos y errores, que la gente no percibe como un problema a nivel estructural. Sobre todo en el área rural las inspecciones y trámites de permisos son muy débiles, por lo que prácticamente cualquier persona puede levantar una casa donde quiera y en las condiciones que considere apropiadas.

1.3.1.2. Efectos

A continuación se explicará los efectos de la construcción en la ciudad de Guatemala.

1.3.1.2.1. Seguridad

Por ejemplo el colapso puede producirse en la construcción y de esta manera podrían perecer las personas que hacen uso de esta, una vivienda podría derrumbarse al colocar sobre peso en la parte superior, obviamente por no realizar cálculos ni algún tipo de estudio previo para determinar la estructura. Algunas casas que colapsan porque su cimentación es muy superficial y sus paredes muestran grietas en gradas o en dirección diagonal, lo cual demuestra un deterioro muy acelerado del *block* y del mortero que lo une, y consecuentemente se puede deducir que es una mala calidad del material que se utilizó.

Otro problema que a menudo se presenta es la poca cantidad de acero en algunas paredes, vigas mal construidas y mala calidad de los materiales en general. Una construcción al presentar evidencias de colapso podría llegar a ser declara inhabitable para evitar los derrumbes en edificaciones mal construidas y salvaguardar la vida humana. En los últimos años la construcción tanto empírica como profesional, urbana o rural, ha carecido de una normativa sismo resistente que exija el empleo de técnicas constructivas, calidad de materiales, estructuras e incluso un terreno apto para edificar.

Es por ello que en Guatemala se promueve el uso del manual de construcción Agies NSE el cual establece requisitos prescriptivos para vivienda y edificaciones menores de uno a dos niveles. Entonces sumado a esto los

profesionales han aplicado no solo su criterio, sino su propia autorregulación ética.

Un factor que ha contribuido a las mejoras en la construcción es la técnica constructiva. El último registro que se posee correspondiente al 2012 indica que el 50,1 % de casas (1 291 498) estaban fabricadas con *block*, cemento y ladrillo, contra un 24,3 % de adobe.

Asimismo, la lámina metálica usada en los techos (67,3 %), seguido de la fundición en concreto (14,6 %).

En la actualidad y a falta de una estadística actualizada, se percibe que la tendencia de los guatemaltecos es privilegiar el uso del *block* sobre los materiales naturales o vernáculos. El adobe viene en retroceso, y el *block* es el material predominante. Pero hay tres aspectos importantes que actualmente afecta la seguridad de una construcción:

- El uso de materiales de baja calidad. Por ejemplo, emplear blocks de fábricas artesanales, que no tienen control de calidad.
- Se abusa del sistema y se construyen más pisos de los que la estructura es capaz de soportar.
- Mala configuración estructural, la cual se determina por la distribución de paredes interiores.

En el caso de una construcción de concreto reforzado debe ponerse atención al diámetro de las barras de refuerzo y a las proporciones del concreto. Por los ahorros pueden costar caro y muchas veces hasta se considera fuera de lugar contratar un profesional o usar materiales de calidad.

1.3.1.2.2. Salud

Al diseñar un edificio sin conocimiento se pasan por alto los parámetros ambientales que contienen los espacios. Es por ello que surgen síntomas que afectan principalmente la salud de sus habitantes, que de no ser tratados pueden llegar a ser fatales para el ser humano. Puede surgir un conjunto de enfermedades originadas o estimuladas por la contaminación del aire en estos espacios cerrados.

1.3.1.2.3. Desproporción

Los ambientes desproporcionados crean sensaciones de asfixia y desesperación en sus habitantes, prefiriendo estar más tiempo fuera del mismo. La ergonometría se ve afectada, ya que cada actividad humana requiere de un espacio mínimo para desarrollarse, y que hagan de los ambientes agradables a la permanecía de los individuos. De aquí pueden surgir muchas discusiones si en realidad un ambiente que se siente encerrado o asfixiante puede llegar a dañar, es por ello que pueden tomarse en consideración las dimensiones mínimas que sugiere FHA en Guatemala y evitar el empirismo.

1.3.1.2.4. Función

Ambientes que no tienen relación, o desubicados, al azar, que terminan siendo un problema al momento de vivir en él. Es demasiado evidente a veces encontrarse con elementos o ambientes que no están donde debieran y los hacen disfuncionales.

1.4. Fabricantes de barras de acero para refuerzo en Guatemala

En Guatemala existen dos grandes fabricantes y distribuidores de barras para refuerzo y perfiles de acero, a los cuales en este estudio se les denominan:

- Fabricante "X"
- Fabricante "Y"

Estos fabricantes producen las barras para refuerzo y perfiles de acero mediante el proceso de la chatarra obtenida en el país, para posteriormente ser clasificada de acuerdo a su densidad y obtener lingotes de acero sólido. Estos cuales son cortados y enderezados antes del proceso de laminación. Los lingotes son enviados a patios abiertos de enfriamiento para concluir con el traslado a las plantas de laminación. Cabe mencionar que estos fabricantes también importan lingotes para posteriormente obtener el producto terminado.

Figura 5. Fabricación del acero

Fuente: Paulina Medel. *Fabricacion del acero*.http://spanish.alibaba.com. Consulta: junio de 2015.

2. EL ACERO

2.1. El acero como material

A continuación se explicará el acero como material.

2.1.1. Generalidades del acero

Dentro de la gama de los materiales pueden encontrarse los materiales metálicos y pueden clasificarse en materiales ferrosos y no ferrosos.

Los materiales no ferrosos son lo que no tiene hierro dentro de su composición tales como: plata, cobre, magnesio, plomo, aluminio, oro, cromo, cobalto, titanio y otros.

Los materiales ferrosos son aquellos que tiene como principal componente al hierro. El acero es una aleación, una aleación es una mezcla de un metal con otro elemento, con otro metal, dos elementos o dos o más metales. En este caso la composición del acero está dada por hierro y carbono. La variación de porcentaje de carbono afectará en el comportamiento mecánico del material, ya que entre más carbono tenga se presentará más resistencia mecánica, menos tenacidad y menos trabajabilidad. En caso contrario, es decir de presentar menos porcentaje de carbono, entonces se presentará menos resistencia mecánica, más tenacidad y más trabajabilidad.

El acero de refuerzo es aquel que se coloca para absorber y resistir esfuerzos de tensión provocados por cargas y cambios volumétricos por

temperatura y para quedar ahogado dentro de la masa del concreto del elemento estructural que se desea reforzar.

El acero utilizado para la construcción, tal como se le conoce ahora, ha presentado gran evolución interesante a lo largo de la historia; es importante mencionar que su uso original no fue para construcción. Sus orígenes dieron la pauta para llegar a utilizarlo en la actualidad como barras de acero para refuerzo, o varillas de hierro, como ordinariamente se le denomina en el lenguaje del sector construcción en Guatemala. Aunque barras de acero para refuerzo es el nombre técnico utilizado correctamente en la actualidad.

2.1.2. Definición del acero

Es una aleación de hierro con una proporción de carbono, que brinda propiedades especiales tales como dureza y elasticidad. También se pueden fabricar aceros con otros componentes como manganeso, níquel o cromo. El hierro es un constituyente fundamental de algunas de las más importantes aleaciones de la ingeniería. Es uno de los metales más útiles debido a su gran abundancia en la corteza terrestre (constituyendo más del 5% de esta, aunque rara vez se encuentra en estado puro, lo más normal es hallarlo combinado con otros elementos en forma de óxidos, carbonatos o sulfuros). Se obtiene con gran facilidad y con una gran pureza comercial. Posee características físicas y propiedades mecánicas muy apreciadas y de la más amplia variedad.

El hierro técnicamente puro, es decir, con menos de 0,008 % de carbono, es un metal blanco azulado, dúctil y maleable, cuyo peso específico es de 7 840 kg/m³. Funde de 1 536,5 °C a 1 539 °C, reblandeciéndose antes de llegar a esta temperatura, lo que permite forjarlo y moldearlo con facilidad. El hierro es un buen conductor de la electricidad y se imanta fácilmente.

El acero es producto de la aleación del hierro (Fe), con contenidos de carbono (C) que pueden ir entre 0,2 % y 2,1 %, además de otros elementos tal y como lo establece la tabla III.

La composición química de cada fabricante de acero es casi secreta, ya que ellos solamente certifican a sus clientes la resistencia y dureza de los aceros que producen.

2.1.3. Tipos de acero

A continuación se explicara los tipos de acero.

2.1.3.1. Aceros estructurales modernos

Actualmente tanto arquitectos como ingenieros han requerido de aceros cada vez más resistentes, con propiedades de resistencia a la corrosión, aceros más soldables, entre otros. Investigaciones llevadas a cabo por la industria del acero han conducido a la obtención de varios grupos de nuevos aceros que cumplen muchos de los requerimientos. Por ello, existe una amplia variedad cubierta por las normas ASTM e incluida en las especificaciones AISC.

Este grupo de acero está clasificado de la siguiente manera:

- Aceros al carbón
- Aceros de baja aleación y alta resistencia
- Aceros aleados térmicamente tratados para la construcción
- Acero para refuerzo

Existen otros grupos de acero que no están cubiertos por las normas ASTM, por ende tampoco por las especificaciones AISC.

Estos grupos son:

- Aceros al carbón de alta resistencia tratados térmicamente (con límite de fluencia que varía de 70 000 a 80 000 psi, es decir 4 900 a 5 600 kg/cm².
- Aceros de súper alta resistencia (con límite de fluencia que varía de 160 000 a 300 000 psi, es decir 11 200 a 21 000 kg/cm².

2.1.3.1.1. Aceros al carbón

Este tipo de aceros poseen un perfecto control del carbono y el manganeso (ver tabla III), elementos de los cuales depende principalmente su resistencia. El acero americano más común de estos es el A36, cuyo límite de fluencia es de 36 000 psi (2 520 kg/cm²) y perfectamente adecuado para fabricar estructuras para edificios y puentes por procesos de remachado o soldadura.

Por lo general este tipo de aceros también son utilizados en los diseños estructurales: acero A500 y A501 (usados en tubería) y el acero A529 (usado en perfiles y placas delgadas), que también son considerados como aceros al carbón.

2.1.3.1.2. Aceros de baja aleación y alta resistencia

Además de contener carbono y manganeso, la resistencia es gracias a que usan como elemento de aleación al columbio, vanadio, cromo, silicio, cobre, níquel y otros. Los límites de fluencia son tan bajos 42 000 psi (2 490 kg/cm²) y tan altos 65 000 psi (4 550 kg/cm²). Estos aceros tienen mayor resistencia a la corrosión que los aceros simples al carbón. En este grupo de aceros se pueden mencionar: A529, A242, A440, A572 y A588, denominados de esta manera por las normas ASTM.

Aplicaciones básicas

- Estos acero se utilizan en la fabricación de elementos de máquinas, y en el caso de necesitar operaciones de soldeo, estos se suelen soldar en estado de recocido y posteriormente dichas piezas se someten a tratamientos térmicos de templado y revenido.
- Algunos de los elementos fabricados o construidos con estos aceros son estructuras, barcos, grúas, equipo pesado y tuberías para oleoductos.

2.1.3.1.3. Aceros aleados térmicamente tratados para la construcción

Estos aceros poseen elementos de aleación en mayor cantidad que los de baja aleación y alta resistencia y además se tratan térmicamente (mediante revenido y templado), con la finalidad de conseguir aceros más tenaces y resistentes. Son nombrados por las normas ASTM como A514 y poseen límites de fluencia de 90 000 a 100 000 psi (6 300 a 7 030 kg/cm²).

Existen más de 200 tipos de aceros en el mercado cuyo límite de fluencia está por encima de los 36 000 psi. La industria del acero experimenta con tipos cuyos esfuerzos de fluencia van de 200 000 a 300 000 psi. Es importante mencionar que el precio del acero se incrementa con el aumento del su límite de fluencia.

Aplicación

 En la denominada construcción híbrida, en donde se usan dos o más aceros de diferentes resistencias, los más débiles se colocan en donde los esfuerzos son bajos y los más resistentes en donde los esfuerzos son mayores.

Ventajas

- Superior resistencia a la corrosión.
- Posible ahorro en costo de flete, montaje y cimentación, por su menor peso.
- Uso de vigas con poco peralte, que permiten entrepisos menores.
- Posible ahorro en materiales de recubrimiento.

2.1.3.1.4. Acero para refuerzo

Puede presentarse en forma de barras o de malla soldada de alambre. Las barras pueden ser lisas o corrugadas. Las barras corrugadas que poseen protuberancias en la superficie, que van variando del fabricante, están con la finalidad de aumentar la adherencia entre el concreto y el acero, que además se utilizan en todos los casos.

El alambre corrugado es dentado y no posee protuberancias por ser laminado. Las barras lisas no son utilizadas frecuentemente, por lo general son utilizadas como estribos o como eslabones en la construcción y también herrería.

2.2. Propiedades generales del acero

Es posiblemente el más versátil de los materiales estructurales, ya que se considera su gran resistencia, poco peso y fabricación sencilla.

2.2.1. Alta resistencia

Esta del acero, por unidad de peso, hará que las cargas muertas sean menores. Esta característica beneficia sobre todo a puentes de grandes luces, edificios elevados y en estructuras cimentadas en áreas inestables.

2.2.2. Uniformidad

La que posee el acero hace que sus propiedades no cambien apreciablemente con el tiempo.

2.2.3. Durabilidad

La durabilidad hace que el acero con un correcto mantenimiento dure indefinidamente, y en algunos casos basta con simplemente aplicar pintura anticorrosiva como mantenimiento. La pintura anticorrosiva es una base o primera capa de imprimación de pintura que se ha de dar a una superficie, que se aplica directamente a los cuerpos de acero, y otros metales.

Tiene el propósito principal de inhibir la oxidación del material, y secundariamente el de proporcionar una superficie que ofrezca las condiciones propicias para ser pintada con otros acabados. La pintura anticorrosiva generalmente se presenta de color rojo ladrillo o naranja rojizo, aunque también se encuentran en color gris y en negro.

2.2.4. Ductilidad

La ductilidad de un acero sometido a tensión, es la capacidad para deformarse bajo carga sin romperse, una vez superado el límite elástico. La ductilidad le permite soportar deformaciones generales sin fallar, bajo esfuerzos de tensión elevados.

Cuando un miembro de acero se somete a la prueba de tensión, ocurrirá una reducción considerable de su área trasversal y un fuerte alargamiento, en el lugar de la falla, antes de que la fractura real ocurra. Un material que no tenga esta propiedad es probablemente duro y quebradizo, vítreo y posiblemente se rompa si recibe un choque súbito.

En los miembros estructurales bajo cargas normales se desarrollan concentraciones de esfuerzos elevadas en varios puntos. La naturaleza dúctil

de los aceros estructurales convencionales, les permite fluir localmente en dichos puntos, previniendo así fallas prematuras. Entonces el acero provee ductilidad a una estructura, haciendo próximo al colapso y advierta esta situación peligrosa experimentando grandes deformaciones y fisuras notables. De forma contraria si una estructura no es proveída de ductilidad mediante el acero, entonces se vuelve una estructura frágil el colapso se alcanza sin previo aviso, presentando pequeñas deformaciones y fisuras reducidas.

2.2.5. Tenacidad

Los aceros también son tenaces, ya que poseen resistencia y ductilidad. Un miembro de acero cargado hasta que se presentan grandes deformaciones será aun capaz de resistir grandes fuerzas. Se considera una propiedad importante porque implica que los miembros de acero pueden someterse a grandes deformaciones durante su fabricación y montaje, sin fracturarse, sin doblarse, martillarlos, cortarlos sin aparente daño. Entonces puede decirse que la propiedad que posee el acero para absorber energía en grandes cantidades oponiéndose a la deformación y a romperse es llamada tenacidad.

2.2.6. Composición química

El carbono es predominante, a medida que aumenta el carbono, mejora las propiedades relativas a resistencia mecánica, o sea el límite de fluencia, el límite de resistencia a la tracción y la dureza. Consecuentemente incrementa el índice de fragilidad y hace que disminuyan las propiedades relativas a ductilidad y tenacidad, es decir, al alargamiento, a la estricción y la resistencia al choque.

Cada elemento que es añadido a la composición básica del acero tiene algún efecto en las propiedades del acero y en cómo este acero reacciona a los

procesos de fabricación (ver tabla III). Estas adiciones y variaciones en la composición del acero son las responsables de una gran variedad de grados del acero y propiedades del acero. Por ejemplo, una composición de acero adecuada proporciona una resistencia mejorada y tenacidad y una oportunidad para usar métodos de tratamiento térmico rentables y sencillos.

Además de los elementos de aleación, una composición de acero casi siempre incluye pequeñas cantidades de impurezas que están presentes en la materia prima siderúrgica como la chatarra o el metal caliente. En general, el contenido de impurezas se mantiene tan bajo que su presencia no es perjudicial para las propiedades del acero.

Tabla III. Efectos de cantidades de otros elementos en los aceros

Elemento	Efecto								
Aluminio	Empleado en pequeñas cantidades, actúa como un desoxidante para el acero fundido y produce un acero de grano fino.								
Boro	Aumenta la templabilidad (la profundidad a la cual un acero puede ser endurecido), sin reducir la maquinabilidad.								
Cromo	Aumenta la profundidad del endurecimiento y mejora la resistencia al desgaste y corrosión.								
Cobre	Mejora significativamente la resistencia a la corrosión atmosférica.								
Manganeso	Elemento básico en todos los aceros comerciales. Actúa como un desoxidante y también neutraliza los efectos nocivos del azufre, facilitando la laminación, moldeo y otras operaciones de trabajo en caliente. Aumenta también la penetración de temple y contribuye a su resistencia y dureza.								
Molibdeno	Mediante el aumento de la penetración de temple, mejora las propiedades del tratamiento térmico. Aumenta también la dureza y resistencia a altas temperaturas. Aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad.								

Continuación de la tabla III.

Elemento	Efecto								
	Mejora las propiedades del tratamiento térmico reduciendo la temperatura								
	de endurecimiento y distorsión al ser templado. Al emplearse								
Níquel	conjuntamente con el cromo, aumenta la dureza y la resistencia al								
Niquei	desgaste, también aumenta la tenacidad y resistencia al impacto. El níquel								
	se utiliza mucho para producir acero inoxidable, porque aumenta la								
	resistencia a la corrosión.								
	Se emplea como desoxidante y actúa como endurecedor en el acero de								
Silicio	aleación. Aumenta moderadamente la templabilidad. Aumenta la								
	resistencia de los aceros bajos en carbono.								
	Normalmente es una impureza y se mantiene								
	a un bajo nivel. Sin embargo, alguna veces se agrega								
Azufre	intencionalmente en grandes cantidades (0,06 a 0,30 %) para aumentar la								
	maquinabilidad (habilidad para ser trabajado mediante cortes)								
	de los aceros de aleación y al carbono.								
Titanio	Se emplea como un desoxidante y para inhibir el crecimiento granular.								
Titariio	Aumenta también la resistencia a altas temperaturas.								
	Se emplea en muchos aceros de aleación para herramientas,								
Tungsteno	impartiéndoles una gran resistencia al desgaste y dureza a altas								
	temperaturas.								
Elemento	Efecto								
	Imparte dureza y ayuda en la formación de granos de tamaño fino.								
Vanadio	Aumenta la resistencia a los impactos (resistencia a las fracturas por								
	impacto) y también la resistencia a la fatiga.								
	Es endurecedor, disminuye la templabilidad, mejora la resistencia y la								
Cobalto dureza en caliente. Es un elemento poco habitual en los aceros									
	aumenta las propiedades magnéticas de los aceros.								
Nitrógeno	Se agrega a algunos aceros para facilitar la formación de austenita.								
Plomo	Es un buen lubricante de corte, añade a algunos aceros para mejorar								
	mucho la maquinabilidad.								

Fuente: José Antonio. *Efecto de cantidades de otros elementos en los aceros.* http://www.infoacero.cl/acero/efectos.htm. Consulta: junio de 2015.

En cuanto a la microestructura es inicialmente afectada por la composición química. Además depende de:

- Condición del acero desde el punto de vista de fabricación, sea fundido, trabajado en caliente (laminado, forjado, y otros) o trabajado en frío (encruado).
- Tamaño del grano austenítico.
- Velocidad de enfriamiento.
- Homogenización apreciable de la estructura, por la tendencia a eliminar o reorientar las inclusiones y segregaciones que ocurren durante la solidificación del metal en el interior de los moldes.
- Destrucción de la estructura dendrítica.
- Recristalización, con acentuada influencia sobre el tamaño del grano que, a su vez, depende de las temperaturas finales de deformación, generalmente el trabajado en caliente produce una reducción del tamaño del grano del acero.
- Aumento de la resistencia mecánica.
- Aumento de la dureza.
- Disminución de la ductilidad, representada por un decrecimiento del alargamiento y estricción.

2.2.7. Otros

Las estructuras de acero se adaptan muy bien a posibles ampliaciones. Se pueden adicionar nuevas crujías e incluso alas enteras a estructuras de acero ya existen y los puentes de acero con frecuencia pueden ampliarse.

El uso del acero en operaciones de consolidación y restauración estructural se aprovecha de las siguientes características particulares de este material:

- La prefabricación permite la ejecución de los elementos principales mediante soldadura en el taller, que se hacen a medida según las necesidades de transporte y de trabajo de la obra, donde se pueden conectar fácilmente mediante pernos.
- La reversibilidad es una propiedad básica de las estructuras de acero, puesto que las conexiones atornilladas se pueden utilizar para realizar construcciones permanentes y también para fabricar construcciones provisionales.
- La ligereza de los elementos estructurales, debida a su alta relación entre la resistencia y el peso, simplifica el transporte y montaje. Minimiza asimismo el peligro de aumentar la carga en las estructuras existentes.
- Las dimensiones reducidas de los elementos estructurales son una consecuencia natural de la alta efectividad estructural del acero y simplifican la sustitución y la integración de los elementos estructurales ya existentes con los nuevos elementos de refuerzo.
- La apariencia estética de las piezas de acero resulta esencial. El contraste creado mediante la asociación de los elementos antiguos de la estructura y con los elementos nuevos de acero permite incrementar el valor arquitectónico de los edificios.

- La rapidez de montaje es siempre una ventaja, en especial cuando la intervención de rehabilitación es muy urgente, para evitar una mayor degradación y garantizar una protección inmediata.
- La posibilidad de encontrar una amplia variedad de productos de acero en el mercado es importante para satisfacer todas las necesidades de diseño y montaje con un alto grado de flexibilidad. Para el acero, existe una gran variedad de productos disponible: desde secciones laminadas en caliente en forma de chapas, perfiles en H, U, angulares, hasta elementos prefabricados como vigas, encofrado, y otros.

Otras ventajas sobresalientes del acero:

- Gran facilidad para unir diversos miembros por medio de varios tipos de conectores como son la soldadura, los tornillos y los remaches.
- Posibilidad de prefabricar los miembros.
- Rapidez de montaje.
- Gran capacidad para laminarse en una gran cantidad de tamaños y formas.
- Resistencia a la fatiga.
- Reúso posible después de desmontar una estructura.
- Posibilidad de venderlo como chatarra, aunque no pueda utilizarse en su forma presente.

2.3. Relación del esfuerzo deformación

La relación entre el esfuerzo y la deformación comúnmente se representa por medio de un diagrama de esfuerzo deformación. Dicho diagrama es trazado con valores de esfuerzo como ordenadas y valores de deformación como abscisas. Los diagramas de esfuerzo deformación presentan una parte importante del comportamiento del acero en una situación dada. Por ejemplo para aplicar los métodos de diseño satisfactoriamente, en cuanto al acero, es necesario saber las relaciones esfuerzo deformación del mismo.

El diseño de elementos estructurales implica determinar la resistencia y rigidez del material estructural. Estas propiedades se pueden relacionar si se evalúa una barra sometida a una fuerza axial para la cual se registra simultáneamente la fuerza aplicada y el alargamiento producido. Estos valores permiten determinar el esfuerzo y la deformación que al graficar originan el denominado diagrama de esfuerzo y deformación.

Los diagramas son similares si se trata del mismo material y de manera general permite agrupar los materiales dentro de dos categorías con propiedades afines que se denominan materiales dúctiles y materiales frágiles. Los diagramas de materiales dúctiles se caracterizan por ser capaces de resistir grandes deformaciones antes de la rotura, mientras que los frágiles presentan un alargamiento bajo cuando llegan al punto de rotura.

2.3.1. Diagrama típico de esfuerzo deformación para el acero

El procedimiento consiste en tomar los datos de una serie de lecturas de carga contra datos correspondientes de las lecturas de un deformímetro. En algunos casos los diagramas de esfuerzo y deformación se obtienen directamente mediante maquinaria más moderna.

Por lo general cuando se aplican las cargas, estas se especifican en unidades de fuerza, tales como libras o kilogramos.

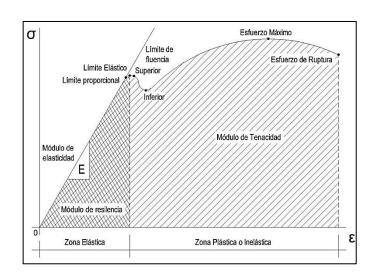


Figura 6. Gráfica esfuerzo-deformación

Fuente: elaboración propia, empleando AutoCAD.

2.4. Barras de acero para refuerzo

"Las varillas o barras estándar de refuerzo son laminadas con corrugas o deformaciones que sobresalen. Estas deformaciones pueden servir para aumentar la adherencia y eliminar el deslizamiento entre las varillas y el concreto"²⁸.

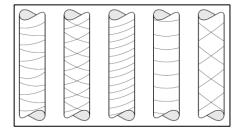
42

²⁸ WADDELL, Joseph J; DOBROWOLSI, Joseph A. *Manual de la Construcción con Concreto* (Tomo I). p. 3.2.

La inclusión del uso de las varillas corrugadas fue implementada en Estados Unidos, en la construcción se contaba ya con tipos diferentes de varillas. Pero aproximadamente en la década de 1930, se implementó la moderna varilla corrugada para refuerzo, tal y como es conocida en la actualidad. En la Norma ASTM Specification A305, se completó la estandarización de los tamaños y corrugaciones de las varillas modernas para refuerzo y se fijaron ciertos requisitos mínimos para el espaciamiento y altura de las corrugas y el ancho de ribete.

Cabe mencionar que en la actualidad, la especificación A305 es obsoleta. En las especificaciones más recientes de la ASTM para las varillas de refuerzo, A615, A616, A617 Y A706, se han incorporado requisitos respecto al diámetro y modificaciones referentes a la corrugación.

- ASTM A615, acero de lingote, grados 40 y 60.
- ASTM A615, acero de lingote, grado 75 para barras núm. 11, núm.14 y núm. 18.
- ASTM A616, acero de riel, grados 50 y 60.
- ASTM A617, acero de eje, grados 40 y 60.
- ASTM A706, acero de baja aleación, grado 60.


El diámetro de las barras esta designado por una numeración. El número se basa en el número de octavos de pulgada en el diámetro nominal de la propia varilla. El diámetro nominal de la varilla, si es corrugada, es el diámetro de una varilla redonda lisa que tenga el mismo peso por pie que la corrugada.

El diámetro máximo real siempre es mayor que el nominal. En los diseños estructurales generalmente se utiliza el diámetro nominal. La forma adecuada para denominar el diámetro de una barra corrugada estándar es por su número de barra. Por ejemplo en un dibujo, lista de materiales, factura, etiqueta de barra, y otros.

Comúnmente, las barras más grandes, numeros 14 y 18, no se encuentran comúnmente en el mercado, y deben ser solicitadas de forma especial al fabricante, estas pueden utilizarse en columnas y en proyectos en donde se usen grandes cantidades de estas barras.

Las barras lisas, que constituyeron la primera forma de refuerzo, se usan como estribos, eslabones, como espigas de expansión o también en la fabricación de parrillas de acero.

Figura 7. Barras de acero para refuerzo y tipo de corrugado

Fuente: elaboración propia, empleando AutoCAD.

Las barras de refuerzo en Guatemala se venden de acuerdo a su diámetro en sistema inglés (octavos de pulgadas), pero puede referirse a estas también en el sistema internacional (en milímetros), tal y como aparecen en el código ACI, que también es utilizado en Guatemala para el diseño de estructuras con concreto reforzado (ver tabla IV).

Tabla IV. Diámetros de barras en sistema internacional e inglés

	TABLA DE BARRAS DE ACERO											
ø de barra Sistema Inglés (pulg)		ø de barra Sistema Internacional (mm) Según ACI 318-2011		ø de varilla (cm)			Perímetro (pulg)	Área (mm²)	Área (cm²)	Área (pul²)		
Núm. 3	3/8	0,375	Núm. 10	10	9,53	0,953	29,92	2,99	1,18	71,26	0,71	0,11
Núm. 4	1/2	0,500	Núm. 13	13	12,70	1,270	39,90	3,99	1,57	126,68	1,27	0,20
Núm. 5	5/8	0,625	Núm. 16	16	15,88	1,588	49,87	4,99	1,96	197,93	1,98	0,31
Núm. 6	3/4	0,750	Núm. 19	19	19,05	1,905	59,85	59,85 5,98 2,36		285,02	2,85	0,44
Núm. 7	7/8	0,875	Núm. 22	22	22,23	2,223	69,82	6,98	2,75	387,95	3,88	0,60
Núm. 8	1	1,000	Núm. 25	25	25,40	2,540	79,80	7,98	3,14	506,71	5,07	0,79
Núm. 9	9/8	1,125	Núm. 29	29	28,58	2,858	89,77	8,98	3,53	641,30	6,41	0,99
Núm. 10	10/8	1,250	Núm. 32	32	31,75	3,175	99,75	9,97	3,93	791,73	7,92	1,23
Núm.11	11/8	1,375	Núm. 36	35	34,93	3,493	109,72	10,97	4,32	957,99	9,58	1,48
Núm. 14	14/8	1,750	Núm. 43	44	44,45	4,445	139,64	13,96	5,50	1551,79	15,52	2,41
Núm 18	18/8	2,250	Núm. 57	57	57,15	5,715	179,54	17,95	7,07	2565,21	25,65	3,98

Fuente: elaboración propia.

2.4.1. Clasificación de las barras de acero para refuerzo

En Guatemala se pueden clasificar las barras de acero para refuerzo en:

- Barras de acero certificadas
- Barras de acero no certificadas

2.4.1.1. Barras de acero certificadas

Son aquellas barras que cumplen con las especificaciones establecidas en la Norma Coguanor NTG 36 011 (ASTM A615/A615M-12), tercera revisión, año 2013. Las barras deben contener marcas de identificación impresas en relieve en la superficie de las mismas, realizadas por el fabricante. Estas deben de

estar por lo menos a cada metro de longitud, de forma clara, para que de esta manera comprobar su legitimidad (ver figura 8).

Las marcas de identificación son:

- Letras o símbolo del fabricante
- Número arábigo con la designación o diámetro nominal de la barra.
- La letra "S" indicando que se encuentra bajo la norma.
- Designación del límite de fluencia mínimo (grado estructural) de la varilla o marca que indique el mismo (para el grado 40 no hay ninguna designación de marca).

Las barras certificadas en Guatemala son llamadas también barras legítimas.

Figura 8. **Identificación de barras certificadas**

Fuente: Centro de Investigación Facultad de Ingeniería, Universidad San Carlos de Guatemala.

2.4.1.2. Barras de acero no certificadas

Son aquellas barras que no cumplen con las especificaciones establecidas en la Norma Coguanor NTG 36 011(ASTM A615/A615M-12), tercera revisión, año 2013 .Estas barras también contienen marcas de identificación impresas en relieve en la superficie de las mismas, realizadas por el fabricante, con la diferencia que no aparecen todas las marcas establecidas por la ya mencionada norma. Esto hace que las barras sean consideradas como no certificadas, por no cumplir con todos los parámetros (ver figura 9).

Las barras no certificadas en Guatemala son llamadas también barras comerciales. Estas barras existen en el mercado debido a que económicamente su valor es menor comparado al de una barra certificada. Se menciona, en el ámbito ingenieril de Guatemala, que no llevan un control de calidad estricto de parte del fabricante, sobre todo en el diámetro de la barra, lo cual no garantiza el área de acero requerida en una obra de construcción. Además estas barras no poseen evidencias del grado estructural. Lo cual es objeto de estudio en la actualidad.

Figura 9. **Identificación de barras no certificadas**

Fuente: Centro de Investigación, Facultad de Ingeniería, Universidad San Carlos de Guatemala.

2.4.2. Características físicas de las barras de acero

Son aquellas que logran cambiar el material exteriormente sin alterar su composición y sus propiedades mecánicas. Por ejemplo, si se dobla una barra de acero para refuerzo, sus átomos no se ven alterados de ninguna manera, pero exteriormente cambia su forma.

- Color
- Densidad
- Masa
- Longitud
- Masa por unidad de longitud
- Espaciamiento
- Ancho de ribete
- Altura de ribete
- Deformación
- Área efectiva

2.4.3. Propiedades mecánicas de las barras de acero

Pueden definirse específicamente como aquellas que tienen que ver con el comportamiento elástico o inelástico de un material bajo fuerzas aplicadas. Las propiedades mecánicas se expresan en términos de cantidades que son funciones del esfuerzo o de la deformación o ambas simultáneamente.

Los ensayos mecánicos son los encargados de la determinación de las medidas de las propiedades mecánicas. Las mediciones primarias involucradas son la determinación de la carga y el cambio de longitud.

Las propiedades mecánicas fundamentales son: la resistencia, la rigidez, la elasticidad, la plasticidad y la capacidad energética.

2.4.3.1. Resistencia

"La resistencia de un material se mide por el esfuerzo según el cual se desarrolla alguna condición limitativa específica. Las principales condiciones limitativas o criterios de falla son la determinación de la acción elástica y la ruptura".²⁹

La dureza, generalmente indicada por la resistencia a la penetración o a la abrasión en la superficie de un material, puede considerarse como una medida particular de resistencia.

2.4.3.2. Rigidez

"La rigidez es un valor que tiene que ver con la magnitud de la deformación que ocurre bajo la carga, dentro del rango del comportamiento elástico, la rigidez se le mide por la velocidad del esfuerzo con respecto a la deformación. Mientras mayor sea el esfuerzo requerido para producir una deformación dada, más rígido se considera el material". ³⁰

"Los valores que miden la rigidez son tres, correspondiendo a los tres tipos fundamentales de esfuerzos existentes, y estos son: el módulo de tensión, compresión y cortante. En tensión y compresión se le conoce como módulo de elasticidad o módulo de Young y en corte como módulo de rigidez".³¹

²⁹ ZECEÑA GIRON, Carlos E. *Laboratorio de Resistencia de Materiales* 1. p. 3.

³⁰ Ibíd.

³¹ Ibíd.

2.4.3.2.1. Módulo de elasticidad o módulo de Young (E)

Es un valor que se determina dentro del comportamiento proporcional del material o rango elástico y representa una relación entre el esfuerzo y deformación del diagrama esfuerzo-deformación. En términos del diagrama de esfuerzo y deformación, el módulo de elasticidad es la pendiente del diagrama esfuerzo y deformación en el rango de la proporcionalidad del esfuerzo y deformación (ver figura 6).

El módulo de elasticidad es llamado también módulo de Young.

2.4.3.2.2. Módulo de rigidez (G)

El concepto es similar al módulo de elasticidad, con la diferencia que se utiliza para representar el valor de la rigidez a corte de un material. Es llamado también módulo de elasticidad en corte.

2.4.3.3. Elasticidad

La elasticidad (más no el módulo de elasticidad), se refiere a la capacidad de un material para deformarse no permanentemente al retirar el esfuerzo.

También se dice que la elasticidad se presenta cuando las deformaciones causadas por el esfuerzo, se recuperan al removérsele dicho esfuerzo. Un material se podría considerar como perfectamente elástico cuando este recobra completamente su forma y dimensiones, pero este caso es muy poco probable.

 Criterios que definen la elasticidad de un material: son los que miden y definen la resistencia elástica de los materiales.

En los ensayos de materiales bajo carga monoaxial, varios criterios de la resistencia o la falla elástica han sido usados: límite elástico, límite de proporcionalidad y límite de fluencia o punto cedente (ver figura 6).

2.4.3.3.1. Limite elástico

Se define como el mayor esfuerzo que un material es capaz de desarrollar sin que suceda la deformación permanente al retirar el esfuerzo. Para determinar este límite se pueden aplicar y retirar sucesivas cargas más y más grandes hasta encontrar una carga a la cual se produzca la deformación permanente (ver figura 6).

Límite elástico aparente de Jonhson: es una medida de la resistencia elástica, ya no muy usada, la cual involucra la idea del aumento en la velocidad de deformación y requieren la construcción de un diagrama de esfuerzo y deformación. Este se toma como el esfuerzo al cual la velocidad de deformación es 50 % mayor que la velocidad de deformación al iniciar la carga. Este concepto es también la base del así llamado punto del límite útil, un factor que ha sido usado en conexión con ensayos de miembros estructurales. El límite elástico aparente es un poco mayor que el límite proporcional, pero puede ser menor que la resistencia a la deformación.

2.4.3.3.2. Límite de proporcionalidad

Es capaz de desarrollar sin desviarse de la proporcionalidad rectilínea entre el esfuerzo y la deformación (ver figura 6).

2.4.3.3.3. Límite de fluencia o punto cedente

Es el punto donde comienza el fenómeno conocido como fluencia, que consiste en un alargamiento muy rápido sin que varíe la tensión aplicada en un ensayo de tracción. Hasta el punto de fluencia el material se comporta elásticamente, siguiendo la ley de Hooke, y por tanto se puede definir el módulo de Young. No todos los materiales elásticos tienen un límite de fluencia claro, aunque en general está bien definido en la mayor parte de metales (ver figura 6).

Fluencia: es la deformación irrecuperable del material, a partir de la cual solo se recuperará la parte de su deformación correspondiente a la deformación elástica, quedando una deformación irreversible. Este fenómeno se sitúa justo encima del límite elástico, y se produce un alargamiento muy rápido sin que varíe la tensión aplicada. Mediante el ensayo de tracción se mide esta deformación característica que no todos los materiales experimentan.

El fenómeno de fluencia se da cuando las impurezas o los elementos de aleación bloquean las dislocaciones de la red cristalina impidiendo su deslizamiento, proceso mediante el cual el material se deforma plásticamente.

2.4.3.4. Plasticidad

"Es la propiedad que permite al material sobrellevar deformación permanente sin que sobrevenga la ruptura. Es decir, que la plasticidad es un término que se refiere para indicar la capacidad de todo material para deformarse en el rango plástico sin que ocurra la ruptura (ver figura 6)". 32

2.4.3.5. Capacidad energética

Es la capacidad de un material para absorber o almacenar energía elástica, que depende de la resistencia y la rigidez. Se conocen dos valores que definen la capacidad energética de un material, estos dos valores son el módulo de resilencia y el módulo de tenacidad.

2.4.3.5.1. Módulo de resilencia

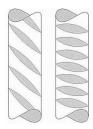
La resilencia indica la cantidad de energía absorbida al esforzar un material hasta el límite elástico, o la cantidad de energía que puede recuperarse cuando el esfuerzo es liberado del límite elástico. La energía almacenada por unidad de volumen en el límite elástico es denominada módulo de resilencia, que es una representación de la medida de la resistencia a la energía elástica del material. Este valor se define como el área bajo el diagrama esfuerzo deformación en la zona o rango elástico (ver figura 6).

2.4.3.5.2. Módulo de tenacidad

Es un valor que define la cantidad de energía, que un material necesita para romperse. Se puede medir por la cantidad de trabajo por volumen unitario requerida para que le material llegue a la falla bajo el efecto de la carga estática (ver figura 6).

³² ZECEÑA GIRON, Carlos E. *Laboratorio de Resistencia de Materiales* 1. p. 3.

Se le puede determinar como el área bajo el diagrama de esfuerzodeformación completo.

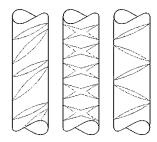

2.4.4. Configuraciones de corrugas

"Las corrugaciones son los salientes o nervaduras transversales en una barra corrugada para refuerzo". 33

"Las corrugas deben estar espaciadas a distancias sustancialmente uniformes. Las corrugaciones sobre lados opuestos de la barra deben ser similares en tamaño, forma y patrón". 34

Las corrugaciones deben estar posicionadas con respecto al eje longitudinal de la barra, tomando en cuenta los ángulos que establece la Norma Coguanor NTG 36011(ASTM A615/A615M-12), tercera revisión, año 2013. Además las corrugaciones deben revertirse en su dirección alternativamente sobre cada lado, o aquellas sobre un lado, deben revertirse en dirección de aquellas del lado opuesto. Las corrugaciones pueden ser únicas o dobles (ver figura 10 y figura 11).

Figura 10. Corruga única


Fuente: Coguanor, NTG 36011, tercera revisión.

³⁴ Ibĺd.

54

³³ Decreto No. 1523. Coguanor, NTG 36011, tercera revisión. p. 7.

Figura 11. Corruga doble

Fuente: Coguanor, NTG 36011, Tercera revisión.

2.5. Normas utilizadas por fabricantes de barras de acero para refuerzo

En Guatemala las barras de acero para refuerzo son fabricadas bajo las especificaciones de las normas de calidad internacional, ASTM A-615/A 615M – 12 y Coguanor NTG 36 011, tercera revisión, año 2013.

"Estas normas exigen características físicas especiales como: grado, peso, diámetro, área, espaciamiento de la corruga, ancho del ribete, altura de la corruga, entre otras. Se fabrica en longitudes de 6, 9 y 12 metros con corruga en forma de "X" o "V". 35

Cabe mencionar que la Norma Coguanor NTG 36 011, tercera revisión, año 2013, es una adaptación y derivación de las normas internacionales ASTM A-615/A 615M – 12, ya que se encuentran en idioma inglés.

2.5.1. Coguanor

De conformidad con lo que establece el artículo 1 del Decreto No. 1 523, la Comisión Guatemalteca de Normas COGUANOR es el Organismo Nacional de Normalización, adscrito al Ministerio de Economía, lo cual se ratifica en el Decreto

³⁵ Mauricio Estrada. http://www.acerosdeguatemala.com. Consulta junio de 2015.

No. 78-2005, Ley del Sistema Nacional de la Calidad. La principal función de Coguanor es desarrollar actividades de Normalización que contribuyan a mejorar la competitividad de las empresas nacionales y elevar la calidad de los productos y servicios que dichas empresas ofertan en el mercado nacional e internacional. Su ámbito de actuación abarca todos los sectores económicos. Las normas técnicas que Coguanor elabora, publica y difunda, son de observancia, uso y aplicación voluntarios.³⁶

2.5.1.1. Norma Coguanor NTG 36 011, tercera revisión, año 2013

"Esta especificación trata sobre las barras de acero al carbono lisas y corrugadas para refuerzo de concreto en tramos cortados y rollos, fabricados y/o comercializados en el país".³⁷

"Se permiten las barras de acero que contiene adiciones de aleaciones, tales como las series de aceros aleados del Instituto Americano del Hierro y del Acero (AISC) y de la Sociedad de Ingenieros de Automotor (SAE), si el producto resultante cumple con todos los otros reguisitos de esta especificación". 38

2.6. Ensayos de laboratorio a los materiales

Se denomina ensayo de laboratorio a toda prueba cuyo fin es determinar las características físicas y las propiedades mecánicas de un material. Los ensayos de materiales pueden ser de dos tipos; destructivos y no destructivos.

Ensayos no destructivos

Permiten realizar la inspección y realización del ensayo sin perjudicar el posterior empleo del material.

56

³⁶ Decreto No. 1523 Coguanor, NTG 3001, Tercera revisión. p. 4.

[&]quot; Ibid.

³⁸ Ibíd.

- Ensayo de durezas (en algunos casos no se considera como ensayo no destructivo, especialmente cuando puede comprometer la resistencia de la pieza a cargas estáticas o a fatiga).
- o Inspección visual, microscopía y análisis de acabado superficial.
- Ensayos por líquidos penetrantes.
- Inspección por partículas magnéticas.
- Ensayos radiológicos.
- Ensayo por ultrasonidos.
- Ensayos por corrientes inducidas.
- Ensayos de fugas: detección acústica, detectores específicos de gases, detección de flujo, espectrometría de masas, manómetros, ensayos de burbujas, y otros.
- Ensayos destructivos: son pruebas que se les hacen a algunos materiales como el acero por ejemplo. Se les llama destructivos porque deforman al material.
 - Ensayo de compresión
 - Ensayo de cizallamiento
 - Ensayo de flexión
 - Ensayo de torsión
 - Ensayo de resiliencia

- Ensayo de fatiga de materiales
- Ensayo de fluencia en caliente
- Ensayo de plegado libre

El propósito de un ensayo debe ser previsto, el cual se enfoca en el proceso de resolver dificultades. El operador debe poseer la habilidad para visualizar lo que acontece tras de las operaciones físicas de un ensayo.

También deben tomarse en cuenta las oportunidades de error en la ejecución. Se deben comprobar los resultados recurriendo al criterio y expresar si es razonable o no razonable. Un experimento permanece inconcluso hasta que se le resume, compruebe o interprete. Entonces uno de los recursos podrá ser un ensayo experimental.

2.6.1. Observaciones en un ensayo

Las observaciones hechas durante un ensayo se registran de alguna manera apropiada, separada, antes de iniciar el ensayo. La identificación de las marcas y la información similar pertinente se anotan. Las dimensiones originales y final, así como las cargas críticas, se registran al observarse. Si las dimensiones extensométricas se hacen manualmente, se lleva una bitácora de las cargas y las deformaciones correspondientes.

Se anotan también las condiciones del ensayo, particularmente del equipo utilizado y la rapidez del ensayo. Las deformaciones, esfuerzos, porcentajes de elongación y reducción del área se calculan sobre las base de las dimensiones originales. Se debe anotar también la falla o fractura y la presencia de defectos.

La reducción de área es la diferencia ente el área de la sección transversal más pequeña al ocurrir la falla y el áreas seccional original, expresada como un porcentaje del área seccional original.

2.6.1.1. Falla o fractura

Puede clasificarse en cuanto a forma, textura y color. Los tipos de falla o fractura, en los respectivo a la forma, son simétricos: cono y cráter, planos e irregulares. Varias descripciones de la textura son: sedosa, grano fino, grano grueso o granular, fibrosa o astillable, cristalina, vidriosa y mate.

Ciertos materiales se identifican efectivamente por sus fracturas. El acero suave en forma de una probeta cilíndrica normal usualmente presenta un tipo de fractura de cono y cráter de textura sedosa. El hierro forjado presenta una fractura dentada y fibrosa, mientas que la fractura típica del hierro fundido es gris, plana y granular.

Un examen de la fractura puede arrojar una pista posible de los valores bajos de resistencia o la ductilidad de la probeta. La carga no axial causará tipos asimétricos. La falta de simetría puede también ser causada por la heterogeneidad del material o un defecto o una falla de alguna clase, tal como la segregación, una burbuja o una inclusión de material extraña, tal como la escoria. Una descripción de la falla debe incluirse en cada informe de ensayo.

Figura 12. Fallas o fracturas típicas por tensión de los metales

Fuente: ZECEÑA GIRON, Carlos E. *Prácticas de Laboratorio de Resistencia de Materiales* 1. Compendio del Libro "Ensaye e inspección de los materiales ". p. 5.11.

2.6.2. Ensayo de tracción o tensión

El término ensayo de tensión usualmente se usa para referirse a ensayos en los cuales una probeta preparada es sometida a una carga monoaxial gradualmente creciente (es decir, estática) hasta que ocurra la falla. En un ensayo de tensión simple, la operación se realiza sujetando los extremos opuestos de la pieza de material y separándolos. La probeta se alarga en una dirección paralela a la carga aplicada. Estas probetas son cilíndricas o prismáticas en su forma y de sección transversal constante a lo largo del tramo dentro del cual las mediciones se toman.

Los ensayos de tensión apropiadamente conducidos en partes representativas pueden ser valiosos para indicar directamente el desempeño de tales partes bajo cargas en servicio. Es por ello que el ensayo de tensión es comúnmente empleado y resulta apropiado para uso general en el caso de la mayoría de los metales y aleaciones no ferrosas, fundidos, laminados, o forjados.

Este ensayo debe realizarse según las especificaciones de la Norma Coguanor NTG 36 011 (ASTM A615/A615M-12), tercera revisión, año 2013. Con el objetivo de obtener las características físicas y las propiedades mecánicas de las barras de acero.

Previo al ensayo de tensión debe medirse el ancho de ribete, el alto de ribete, el espaciamiento entre corrugas y el tipo de corruga para comparar los datos con la norma anteriormente descrita. Esta comparación se realiza con la finalidad de garantizar adherencia de las barras de acero con el concreto, ya que el ribete y la corruga están ligados estrechamente a la adherencia.

Posteriormente al ensayo de tensión debe medirse la elongación. El alargamiento total de un metal dúctil en el punto de ruptura se debe al alargamiento plástico. Este está más o menos uniformemente distribuido a lo largo del tramo de calibración, sobre el que se superpone un estiramiento de la sección restringida, ocurriendo justamente antes de la ruptura. Entonces se dice que la finalidad de medir la elongación es establecer la tendencia a la ductilidad o fragilidad en el material. Por ejemplo si la elongación es baja puede decirse que el material tiende a ser frágil, y en caso contrario, si la elongación es alta entonces el material tiende a ser dúctil.

2.6.3. Ensayo de doblado

El ensayo de doblado en frío es el más común, su finalidad es obtener un índice de ductilidad. Esencialmente el ensayo consiste en doblar bruscamente una barra a un ángulo. Esencialmente el ensayo consiste en doblar bruscamente una barra a un ángulo grande y notar si ocurre o no agrietamiento en la superficie exterior de la pieza doblada. Muchas veces se determina el ángulo de doblado al cual el agrietamiento se inicia. La severidad del ensayo generalmente se varia usando tamaños diferentes de pernos alrededor de los cuales se hace el doblado.

Ocasionalmente se realizan ensayos de doblado para constatar la ductilidad para tipos particulares de servicio o detectar la pérdida de ductilidad bajo ciertos tipos de tratamientos. Así, los ensayos de doblado en frío que como el nombre lo implica, se hacen doblando un metal a temperaturas ordinarias, pueden servir para detectar un contenido demasiado alto del carbono o fósforo o condiciones de rolado impropios en el acero.

Los ensayos de doblado en frío son requeridos en las especificaciones para muchos aceros, particularmente aquellos en forma de varilla y placa. Por ejemplo, barras para refuerzo para concreto (ASTM A15/ ASTM A16), acero para remaches (ASTM A 141), acero estructural (ASTM A7), placas de acero para recipientes de presión (ASTM A285), y otros. El ensayo de doblado se usa también frecuentemente para ensayar la ductilidad de las soldaduras.

En el caso de las barras para refuerzo estas deben doblarse en frío, tal y como se realiza en la obra de construcción. El ensayo de doblado se hará doblando la barra 180º alrededor de un mandril de acero, el diámetro del mandril se definirá en función del diámetro y del grado estructural de la probeta

de acero que se vaya a ensayar; la fuerza deberá aplicarse en forma uniforme y continua. La muestra será de sección completa, recta y sin haber sido doblada anteriormente para que dicho ensayo de los resultados óptimos.

Ocasionalmente se realiza un ensayo de doblado en caliente. Por ejemplo, sobre hierro forjado calentándolo hasta la temperatura para soldar (aproximadamente 1 800 °F) y doblando la pieza calentada sobre un yunque, el ensayo sirve para detectar un contenido de sulfuro demasiado alto.

2.7. Adherencia

La adherencia entre las barras de acero y el concreto es un término básico sobre el que descansa el funcionamiento del concreto como material estructural. Si no existiese adherencia, las barras serían incapaces de tomar el menor esfuerzo de tracción, ya que el acero deslizaría sin encontrar resistencia en toda su longitud y no acompañaría al concreto en sus deformaciones. Con lo que, al fisurarse, aparecería bruscamente la rotura.

La adherencia cumple fundamentalmente tres objetivos:

- Asegurar el anclaje de las barras.
- Transmitir las tensiones tangentes periféricas que aparecen en la armadura principal como consecuencias de las variaciones de su tensión longitudinal.
- Agrega capacidad de resistencia a tensión a elementos de concreto.

2.7.1. Causas de la adherencia

- Causas físicas o físico químicas: provocan la adhesión del acero con el concreto, a través de fuerzas capilares y moleculares desarrolladas en la interfaz; es como si el acero absorbiese pasta cementante, ayudado por el efecto de la retracción.
- Causas mecánicas: estas son más importantes, constituidas por la resistencia al deslizamiento debida a la penetración de pasta de cemento en las irregularidades de la superficie de las barras. Esta causa de origen mecánico, que puede denominarse rozamiento, es la que produce la mayor parte de la adherencia en las barras corrugadas. A este rozamiento se añade el efecto de acuñamiento del concreto entre los resaltos o corrugaciones, que son de primordial importancia.

3. DESARROLLO EXPERIMENTAL

3.1. Toma de muestras e identificación de las mismas

A continuación se explicará la toma de muestras e identificación de las mismas.

3.1.1. Valor cuantitativo de la muestra

Se obtuvo mediante el método estadístico denominado: muestreo simple aleatorio (M,S,A,), ya que las características principales de dicho método son:

- Cada uno de los elementos de la muestra se selecciona aleatoriamente uno por uno.
- Todos los elementos de la población tiene la misma probabilidad de ser incluidos en la muestra.

Ecuación del M.S.A:

$$n = \frac{N \times Z \frac{a^2}{2} \times p \times q}{N \times d^2 + Z \frac{a^2}{2} \times p \times q}$$

- Descripción
 - n = tamaño de la muestra

- N = tamaño de la población
- o $Z_{\frac{a^2}{2}}^2$ = variable estandarizada de distribución normal
- o a = nivel de significancia
- d = precisión del muestreo expresada en porcentaje
- o q = probabilidad del fracaso
- o p = probabilidad del éxito
- Consideraciones previas a aplicar la ecuación del M,S,A:
 - N = 2 132, dato proporcionado por la Dirección del Control Territorial de la Municipalidad de Guatemala, en cuanto al número de licencias de construcción autorizadas en 2014.
 - \circ d = 0,15 valor asumido
 - Varianza = se asumió la máxima, debido a que no existen estudios previos del tema a estudiar. Por lo tanto, cuando la varianza es máxima:

$$Z_{\frac{a^2}{2}} = 1,96$$

- Nivel de confianza = 95 %
- a = 5 %
- q = 0.5
- p = 0.5

$$n = \frac{2132 \times 1,96^2 \times 0,5 \times 0,5}{2132 \times 0,15^2 + 1,96^2 \times 0,50 \times 0,50}$$

$$n = 41,85$$

 $n = 42$ muestras

3.1.2. Identificación de las muestras

Para identificar los tipos de barras de acero para refuerzo, equivalentes al diámetro de 10 mm (3/8") que cada uno de los dos fabricantes de acero en Guatemala distribuye en las ferreterías y ventas de materiales de construcción de la ciudad de Guatemala, fue necesario obtener información que refleja el mercado actual en el año 2015 (ver tabla V y tabla VI).

Tabla V. Tipos de barras de acero para refuerzo de 3/8" (10 mm), que distribuye el fabricante "X" en las ferreterías y ventas de materiales de construcción de la ciudad de Guatemala

Núm.	Tipo	Longitud (m)	Grado
1	Certificada	6,00	40
2	No certificada (8,5 mm)	6,00	Sin evidencia
3	No certificada (8 mm)	6,00	Sin evidencia
4	No certificada (7,5 mm)	6,00	Sin evidencia

Fuente: elaboración propia.

Tabla VI. Tipos de barras de acero para refuerzo de 3/8"(10 mm), que distribuye el fabricante "Y" en las ferreterías y ventas de materiales de construcción de la ciudad de Guatemala

Núm.	Tipo	Longitud (m)	Grado
1	Certificada	6,00	40
2	No certificada (8,5 mm)	6,00	Sin evidencia
3	No certificada (7,5 mm)	6,00	Sin evidencia

Fuente: elaboración propia.

3.1.3. Toma de muestras

Las pruebas a realizar fueron el ensayo de tensión y el ensayo de doblado, y partiendo del valor de la muestra obtenido, se determinó que se debían probar 42 muestras para cada ensayo. Por lo tanto, el total de muestras ensayadas fue de 84.

Existen 7 tipos en total de barras de acero para refuerzo, equivalentes al diámetro de 10 mm (3/8"), fabricados por las 2 empresas guatemaltecas actualmente en 2015 (ver tabla V y tabla VI).

Entonces con los datos obtenidos, de 84 muestras y 7 tipos de barras, se procedió a definir en cuántos lugares de cada una de las zonas de la ciudad de Guatemala se tomarían dichas muestras. Para ello también fue necesario tomar en cuenta en qué zonas de las ciudad de Guatemala hubo mayor y menor movimiento de construcción, con base en la última fuente actualizada de información hasta el 2014 de la dirección de control territorial de la municipalidad de Guatemala (ver tabla VII y tabla VIII). Esto con la finalidad de

delimitar aún más el campo de estudio y escoger de forma aleatoria los lugares donde se tomaron las muestras.

Tabla VII. Principales zonas de la ciudad de Guatemala que mostraron mayor movimiento de construcción durante 2014

Zona	
9	
11	
14	
16	
17	

Fuente: Municipalidad de Guatemala. Dirección de Control Territorial, 2014.

Tabla VIII. Principales zonas de la ciudad de Guatemala que mostraron menor movimiento de construcción durante 2014

Zona
2
5
6
19
21

Fuente: Municipalidad de Guatemala. Dirección de Control Territorial, 2014.

Tabla IX. Distribución de número de muestras según la empresa fabricante y el tipo de barra

Fabricante	Tipo	Muestras para tensión	Muestras para doblado	Total			
	Certificada	6,00	6,00	12,00			
x	Núm. certificada (8,5 mm)	6,00	6,00	12,00			
^	Núm. certificada (8 mm)	6,00	6,00	12,00			
	Núm. certificada (7,5 mm)	6,00	6,00	12,00			
	Certificada	6,00	6,00	12,00			
Υ	Núm. certificada (8,5 mm)	6,00	6,00	12,00			
	Núm. certificada (7,5 mm)	6,00	6,00	12,00			
	Total	42,00	42,00	84,00			

Fuente: elaboración propia.

Tabla X. Toma de muestras en cada zona con mayor y menor movimiento de construcción durante el 2014

Movimiento de construcción durante 2014	Zona	Núm. De muestras fabricante "X"				Núm. De muestras fabricante "Y"			Total de muestras
		A *	В*	C*	D*	F*	G*	H*	
	17	6	2	0	0	0	0	0	8
	16	6	0	2	0	0	0	0	8
Mayor	14	0	0	0	0	8	0	0	8
	11	0	0	0	2	0	0	6	8
	9	0	0	0	10	0	0	0	10
	21	0	0	0	0	0	8	0	8
	19	0	8	2	0	0	0	0	10
Menor	6	0	2	0	0	4	2	0	8
	5	0	0	8	0	0	0	0	8
	2	0	0	0	0	0	2	6	8
Total de n	Total de muestras				12	12	12	12	84

Fuente: elaboración propia.

• Donde

- A* = Barra certificada fabricante "X"
- o B* = Barra no certificada (8,5 mm) fabricante "X"

- o C* = Barra no certificada (8 mm) fabricante "X"
- o D* = Barra no certificada (7,5 mm) fabricante "X"
- E* = Barra certificada fabricante "Y"
- F* = Barra no certificada (8,5 mm) fabricante "Y"
- G* = Barra no certificada (7,5 mm) fabricante "Y"

La longitud de las muestras se consideró de 1,00 m, tal y como lo específica la Norma Coguanor NTG 36 011 (ASTM A615/A615M-12), 2013.

Figura 13. Toma de muestras en el área de estudio

Fuente: zona 19 La Florida.

3.2. Ensayos de laboratorio

A continuación se presenta los ensayos del laboratorio.

3.2.1. Ensayo de tensión

Se realizó según las especificaciones de la Norma NTG 36 011 (ASTM A615/A615M-12), año 2013 (ver inciso 2.6.2).

Luego de tomadas las muestras de las barras de acero en campo, fueron transportadas a la Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

Ya en el lugar de trabajo dichas muestras fueron clasificadas e identificadas según la empresa y tipo de barra de acero.

Figura 14. Clasificación de muestras en el laboratorio

3.2.1.1. Características físicas obtenidas, previas a realizar el ensayo de tensión

A continuación se presentan las características físicas obtenidas, previas a realizar el ensayo de tensión.

3.2.1.1.1. Masa de las muestras

Se llevaron las muestras al área de pesaje para obtener la masa por unidad de longitud de cada una de las muestras de barras de acero. Esto para luego anotar los resultados obtenidos en las tablas de anotación del laboratorio (ver tabla XI y tabla XII).

Materiales

- Balanza digital marca METTLER modelo ID1, precisión 0,001 kg
- Tablas para anotación de resultados

Característica física a obtener

Masa

Se colocó cada una de las barras en la balanza digital, para luego anotar la masa en kilogramos.

Figura 15. Masa de las muestras

Fuente: Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

3.2.1.1.2. Longitud de las muestras

Se midió la longitud de cada una de las muestras y se anotaron los resultados (ver tabla XI y tabla XII).

Materiales

- o Cinta métrica, precisión 0,001 m
- Hoja de anotación de resultados

Característica física a obtener

 Longitud: la medición de la longitud se realizó dos veces por cada una de las barras. Esto para luego realizar un promedio y de esta manera obtener un valor más preciso de la longitud de las muestras.

3.2.1.1.3. Masa unitaria

Con los datos obtenidos de masa en kilogramos y de longitud en metros. Se calculó la masa por unidad de longitud de cada una de las muestras y se anotaron los resultados (ver tabla XI y tabla XII).

- Materiales
 - Calculadora
 - Hoja de anotación de resultados
- Característica física a medir
 - Masa unitaria

$$m.u. = \frac{m}{l}$$

- Donde
 - o m.u. = masa unitaria en kg/m
 - o m = masa de la muestra en kilogramos
 - o I = longitud de la muestra en metros

3.2.1.1.4. Espaciamiento entre corrugas de las muestras

Este inciso hace referencia al espacio que existe entre corruga y corruga. Diseñada por cada uno de los fabricantes de las diferentes muestras obtenidas en el campo (ver tabla XI y tabla XII).

Materiales

- o Cinta métrica, precisión 0,001 m
- Marcador
- Hoja de anotación de resultados

Característica física a obtener

Espaciamiento entre corrugas: para medir el espaciamiento entre corrugas de una forma más sencilla, se tomaron 10 corrugas y se anotó la longitud en centímetros existente entre ellas. Esto para luego dividir este resultado entre 10 y obtener el espaciamiento en milímetros, tal y como lo establece la Norma Coguanor NTG 36 011 (ASTM A615/A615M-12), tercera revisión, año 2013.

3.2.1.1.5. Ancho de ribete de las muestras

Se midió la altura de ribete de cada una de las muestras y se anotaron los resultados (ver tabla XI y tabla XII).

Materiales

- Vernier digital marca Mitutoyo, precisión 0,01 mm
- Hoja de anotación de resultados

Característica física a obtener

Ancho de ribete

Para obtener el valor del ancho de ribete se realizaron dos mediciones en la muestra, de forma aleatoria. Esto para luego realizar un promedio de estos valores en milímetros.

Figura 16. Ancho de ribete de las muestras

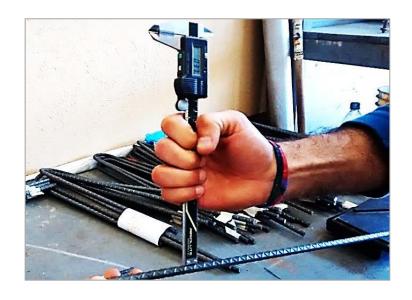
Fuente:

Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

3.2.1.1.6. Altura de ribete de las muestras

Se midió la altura de ribete de cada una de las muestras y se anotaron los resultados (ver tabla XI y tabla XII).

Materiales


- Vernier digital marca Mitutoyo, precisión 0,001 mm
- Hoja de anotación de datos

Característica física a medir

Altura de ribete

Para obtener el valor de altura de ribete se realizaron dos mediciones en la muestra. Una al inicio y otra al final de las barras, para luego realizar un promedio de estos valores en milímetros.

Figura 17. Altura de ribete de las muestras

Fuente:

Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

3.2.1.1.7. Tipo de corruga

El tipo de corruga se obtuvo mediante la observación de las muestras, tanto de cada fabricante como de cada tipo (ver tabla XI y tabla XII).

Figura 18. Tipo de corruga de las muestras

Fuente:

Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

3.2.1.1.8. Área efectiva, diámetro inicial y perímetro de las muestras

Para obtener estos valores no se utilizaron mediciones físicas. Inicialmente se obtuvo el área efectiva; se dividió el dato de la masa unitaria entre el valor de la densidad del acero y se convirtió el resultado a centímetros cuadrados. Esto para que posteriormente se utilizará para obtener el valor del diámetro inicial y el valor del perímetro (ver tabla XI y tabla XII).

$$Ae = \frac{m. u.}{\gamma \text{ acero}} * 10 000$$

Donde

- Ae = área efectiva en cm²
- o m.u.= masa unitaria en kilogramos
- \circ γ acero = densidad del acero en kg/m³

$$\emptyset i = \sqrt[2]{\frac{4 * Ae}{\pi}} * 10$$

- Donde
 - o Øi = diámetro inicial en mm
 - Ae = área efectiva en cm²
 - \circ π = constante

$$P = \emptyset i * \pi$$

- Donde
 - o P = perímetro en mm
 - o Øi = diámetro inicial en mm
 - \circ π = constante

3.2.1.2. Propiedades mecánicas obtenidas en el ensayo de tensión

Previo al ensayo de tensión fue necesaria la calibración de la máquina universal de marca Baldwin Lima Hamilton, con precisión de 10 kg. Esto para colocar las muestras y posteriormente obtener el grado estructural de las muestras (ver tabla XVI).

Figura 19. Máquina Universal Baldwin Lima Hamilton I

Fuente:

Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

Figura 20. Máquina Universal Baldwin Lima Hamilton II

Fuente:

3.2.1.2.1. Marcado de muestras para posteriormente obtener la elongación

Para obtener el valor de la elongación fue necesario previo al ensayo de tensión, marcar las muestras para tener una referencia de la longitud inicial, para luego ser comparada con la longitud final, posterior al ensayo de tensión.

Fue necesario marcar toda la varilla, ya que no se podía predecir en que parte de la muestra se presentaría la falla (ver figura 21).

Materiales

- o Cinta métrica, precisión 0,001 m
- Punzometro con bases aproximadamente a cada 5 cm (2")
- Martillo
- Base de madera para colocar muestra

Figura 21. Marcado de muestras a cada 5 cm (2")

3.2.1.2.2. Valor de las cargas

Se colocó la muestra en la máquina universal, previamente calibrada. Posteriormente se ajustaron las mordazas y se puso en marcha la máquina para de esta manera leer la aguja que indicó cada una de las cargas en kilogramos, hasta esperar la ruptura y anotar los resultados (ver tabla XIII, tabla XIV y tabla XV). La escala de lectura de las cargas de la máquina universal Baldwin Lima Hamilton se encontraba en 600 kg.

Durante el proceso se tomaron valores de las dos siguientes cargas:

- Carga cedente en kg
- Carga máxima en kg

Figura 22. Muestra colocada en la máquina universal

3.2.1.2.3. Valor de los esfuerzos

Para encontrar el valor de los esfuerzos se dividió el valor de carga cedente y carga máxima. Están ambas en kilogramos, entre el área de las muestras en cm², para luego dar estos resultados en mega pascales (ver tabla XIII, tabla XIV y tabla XV).

Esfuerzo cedente con base en el área efectiva

$$\sigma \text{ cedente} = \left(\frac{P \text{ cedente}}{Ae}\right) * 0,0980665$$

Donde

- \circ σ cedente = esfuerzo cedente en Mpa
- P cedente = carga cedente en Kilogramos
- Ae = área efectiva en cm²
- Esfuerzo máximo con base en el área efectiva

$$\sigma \text{ máximo} = \left(\frac{P \text{ máximo}}{Ae}\right) * 0,0980665$$

Donde

- o σ cedente = esfuerzo máximo en Mpa
- o P cedente = carga cedente en kilogramos
- Ae = área efectiva en cm²

Esfuerzo cedente con base en el área nominal

$$\sigma cedente = \left(\frac{P cedente}{An}\right) * 0.0980665$$

Donde

- \circ σ cedente = esfuerzo cedente en Mpa
- P cedente = carga cedente en kilogramos
- An = área nominal en cm², dato obtenido de la Norma Coguanor
 36 011 (ASTM A615/A615M-12), tercera revisión, 2013.
- Esfuerzo máximo con base en el área nominal.

$$\sigma \text{ máximo} = \left(\frac{P \text{ máximo}}{An}\right) * 0,0980665$$

Donde

- o σ cedente = esfuerzo máximo en Mpa
- P cedente = carga cedente en kilogramos
- An = área nominal en cm², dato obtenido de la Norma Coguanor
 36 011 (ASTM A615/A615M-12), tercera revisión, 2013.

Se obtuvieron valores para el esfuerzo cedente y esfuerzo máximo con base en el área efectiva y el área nominal. Esto para realizar comparaciones entre el comportamiento de los resultados obtenidos (ver discusión de resultados).

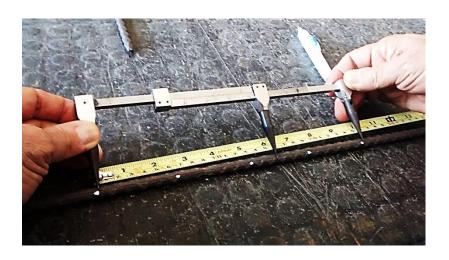
Figura 23. Ruptura de las muestras

Fuente:

Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

Figura 24. Piezas separadas después del ensayo

Fuente:


3.2.1.2.4. Valor de la elongación

Luego de presentada la ruptura se unieron las dos piezas que se presentaron a la hora del ensayo. Estas se colocaron sobre una mesa y ayudado de un extensómetro y tomando cuatro espacios marcados en la muestra, es decir 20 cm (8"), se tomó el porcentaje de elongación en esa longitud, tomando en cuenta el espacio donde se presentó la ruptura.

Materiales

- Extensómetro, precisión 1 %
- o Cinta métrica, precisión 0,001m
- Hoja de anotación de resultados

Figura 25. Medición de porcentaje de elongación en 20,00 cm (8")

3.2.1.2.5. Uso de la máquina universal digital JBA

Con los datos proporcionados por la máquina universal Baldwin Lima Hamilton no fue posible obtener un diagrama de esfuerzo – deformación. Esto debido a que actualmente ya no se cuenta con el extensómetro que se adaptaba a la máquina y proporcionaba las deformaciones correspondientes durante el ensayo de tensión. Esto entonces fue necesario el uso de la máquina universal digital marca JBA, la cual es de adquisición reciente en el -CII- y no se encontraba en las instalaciones al inicio de la realización del ensayo de tensión con la máquina universal Baldwin Lima Hamilton.

Procedimiento

- Se encendió el monitor y configuró el programa.
- Se colocó la muestra de 1,00 m de longitud en las mordazas de la máquina.
- Se encendió la máquina.
- Inició el ensayo de tensión.
- Se observó el comportamiento de la gráfica.
- Se esperó a que apareciera la ruptura en la muestra.
- Se retiraron las dos piezas separadas por el ensayo.
- Se trasladaron los datos a una memoria USB para ser analizados en el programa Excel.
- Se imprimieron las gráficas esfuerzo deformación de las muestras.

Figura 26. Ensayo de tensión con la Máquina Universal Digital JBA*

Fuente: Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala

Ensayo de tensión con la Máquina Universal Digital JBA* = cabe mencionar que debido a que la orden de trabajo únicamente estaba autorizada para realizar 42 ensayos de tensión con la máquina universal Baldwin Lima Hamilton en el -CII-. Entonces, posteriormente solo fue posible ensayar una muestra por cada tipo de barra y fabricante, para hacer un total de 7 muestras adicionales a las 42 establecidas previamente, para de esta manera obtener una gráfica representativa del diagrama esfuerzo – deformación del total de muestras ensayadas.

Figura 27. Desarrollo digital de la gráfica esfuerzo-deformación

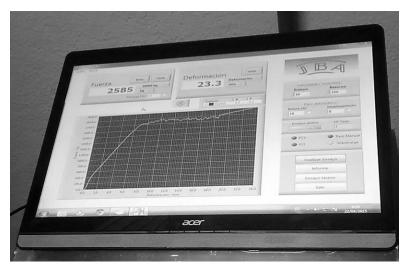


Figura 28. Presentación de la ruptura en la muestra

Fuente:

Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

3.2.2. Ensayo de doblado

Se realizó según lo que establece la Norma NTG 36 011 (ASTM A615/A615M-12), tercera revisión, año 2013.

La prueba de doblado se realizó a 180° en muestras de 1,00 m de longitud, para asegurar el doblado libre, y con un mandril que proporcionó la aplicación de una fuerza continua y uniforme a lo largo de la operación. Debió hacerse un movimiento sin restricción alguna, de la muestra en los puntos de contacto con el aparato y doblez alrededor del mandril con rotación libre (ver inciso 2.6.3).

Figura 29. Colocación de la muestra en el mandril

Fuente:

Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

Figura 30. Doblado de la muestra a 180°

Fuente:

3.2.2.1. Cálculo del ensayo de doblado

El ensayo de doblado no presenta ningún cálculo numérico, únicamente se realizó un chequeo visual y se verificó que no existiera ninguna fisura en la parte exterior de la muestra sometida a la prueba. Si las muestras presentaban alguna fisura, entonces se consideraría que la muestra no pasaba la prueba de doblado, pero si en caso contrario la muestra no presentaba alguna fisura, entonces se consideraría que la muestra si pasaba la prueba de doblado (ver tabla XVII).

Figura 31. Clasificación de muestras sometidas al ensayo de doblado

Figura 32. Verificación visual de las muestras para detectar fisuras

4. RESULTADOS

4.1. Resultados obtenidos en el laboratorio

Los resultados obtenidos en el laboratorio fueron considerados según las especificaciones de la Norma Coguanor NTG 36011 tercera revisión, (ASTM A615/A615M-12), tercera revisión, año 2013. Estos fueron tabulados en la Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, para posteriormente realizar cálculos que fueran necesarios, apoyados de la información considerada en el marco teórico.

Estos resultados fueron utilizados para obtener las características físicas y las propiedades mecánicas de las barras para refuerzo, equivalentes al diámetro de 10 mm (3/8"). En algunos sectores de la ciudad de Guatemala, fueron comparados con los cuadros de especificaciones de la Norma Coguanor NTG 36 011 tercera revisión, (ASTM A615/A615M-12), tercera revisión, año 2013.

4.1.1. Tabulación de resultados

A continuación se presentan las tabulaciones de resultados.

4.1.1.1. Características físicas obtenidas previas al ensayo de tensión

En la tabla número XI se presentan las características físicas de cada una de las muestras.

Tabla XI. Características físicas de cada una de las muestras

	Barra certificada – fabricante "X"												
Núm.	Masa (kg)	Longitud (m)	Masa Unitaria (kg/m)	Espacia- miento (mm)	Ancho de ribete (mm)	Altura (mm)	Área Efectiva* (cm²)	Diámetro* (mm)	Perímetro* (mm)	Tipo de corruga			
71-2	0,535	1,000	0,535	9,00	2,88	0,600	0,682	9,32	29,28	Χ			
72-2	0,535	1,003	0,533	9,10	2,36	0,650	0,680	9,31	29,24	Х			
73-2	0,534	1,000	0,534	9,10	2,46	0,615	0,681	9,31	29,25	Х			
74-2	0,541	1,013	0,534	9,00	2,26	0,590	0,681	9,31	29,26	Χ			
75-2	0,534	0,980	0,545	9,20	2,49	0,600	0,695	9,41	29,55	Х			
76-2	0,535	1,001	0,534	9,00	2,52	0,600	0,682	9,32	29,27	Χ			
				Medidas	s de dispers	ión estadí:	stica						
X	0,536	1,000	0,536	9,067	2,492	0,609	0,684	9,329	29,307				
S	0,003	0,011	0,004	0,082	0,210	0,022	0,006	0,038	0,120				
S ²	7,1E-06	1,2E-04	1,9E-05	6,7E-03	4,4E-02	4,6E-04	3,2E-05	1,5E-03	1,4E-02				
			Bar	ra no certif	icada (8,5 ı	mm) – fab	ricante "X'	,					
Núm.	Masa (kg)	Longitud (m)	Masa Unitaria (kg/m)	Espacia- miento (mm)	Ancho de ribete (mm)	Altura (mm)	Área Efectiva* (cm²)	Diámetro* (mm)	Perímetro* (mm)	Tipo de corruga			
89-2	0,426	1,000	0,426	11,20	3,15	0,565	0,543	8,32	26,13	Χ			
90-2	0,426	0,980	0,435	11,20	3,14	0,570	0,554	8,40	26,39	Χ			
91-2	0.404												
	0,431	1,010	0,427	11,20	3,17	0,590	0,544	8,32	26,15	Х			
92-2	0,431	1,010 1,001	0,427 0,427	11,20 11,20	3,17 3,06		0,544 0,544	8,32 8,32	26,15 26,15	X			
		_				0,590				X			
92-2	0,427	1,001	0,427	11,20	3,06	0,590 0,535	0,544	8,32	26,15	Χ			
92-2 93-2	0,427 0,425	1,001 1,000	0,427 0,425	11,20 11,30 11,30	3,06 3,11	0,590 0,535 0,580 0,590	0,544 0,542 0,543	8,32 8,31	26,15 26,10	X			
92-2 93-2	0,427 0,425	1,001 1,000	0,427 0,425	11,20 11,30 11,30	3,06 3,11 3,14	0,590 0,535 0,580 0,590	0,544 0,542 0,543	8,32 8,31	26,15 26,10	X			
92-2 93-2 94-2	0,427 0,425 0,428	1,001 1,000 1,005	0,427 0,425 0,426	11,20 11,30 11,30 Medida:	3,06 3,11 3,14 s de dispers	0,590 0,535 0,580 0,590 ión estadís	0,544 0,542 0,543 stica	8,32 8,31 8,32	26,15 26,10 26,12	X			

^{*}Datos calculados sobre la masa por unidad de longitud

 $[\]bar{X}$ = media, S = desviación estándar, S² = varianza

			Ва	rra no cert	ificada (8 n	nm) - fabri	icante "X"			
Núm.	Masa (kg)	Longitud (m)	Masa Unitaria (kg/m)	Espacia- miento (mm)	Ancho de ribete (mm)	Altura (mm)	Área Efectiva* (cm²)	Diámetro* (mm)	Perímetro* (mm)	Tipo de corruga
77-2	0,379	1,000	0,379	10,90	2,68	0,440	0,483	7,84	24,65	X
78-2	0,381	1,006	0,379	10,80	2,79	0,512	0,483	7,84	24,64	Χ
79-2	0,381	1,005	0,379	10,70	2,64	0,675	0,483	7,85	24,65	Χ
80-2	0,379	1,001	0,379	10,70	2,82	0,505	0,483	7,84	24,63	Χ
81-2	0,379	1,000	0,379	10,60	2,69	0,465	0,483	7,84	24,65	Х
82-2	0,379	0,990	0,383	10,60	2,65	0,495	0,488	7,88	24,77	Χ
				Medida	s de dispers	ión estadí	stica			
X	0,380	1,000	0,380	10,717	2,708	0,515	0,484	7,850	24,663	
S	0,001	0,006	0,002	0,117	0,076	0,083	0,002	0,017	0,052	
S ²	1,1E-06	3,2E-05	2,6E-06	1,4E-02	5,8E-03	6,8E-03	4,3E-06	2,8E-04	2,8E-03	
			Barı	ra no certi	ficada (7,5 ı	nm) – fab	ricante "X'	,		
Núm.	Masa (kg)	Longitud (m)	Masa Unitaria (kg/m)	Espacia- miento (mm)	Ancho de ribete (mm)	Altura (mm)	Área Efectiva* (cm²)	Diámetro* (mm)	Perímetro* (mm)	Tipo de corruga
59-2	0,381	1,001	0,381	8,20	2,75	0,485	0,485	7,86	24,70	Х
60-2	0,378	1,000	0,378	8,20	2,67	0,480	0,482	7,83	24,61	Х
61-2	0,380	1,002	0,379	8,10	2,67	0,465	0,484	7,85	24,65	Χ
62-2	0,381	1,002	0,380	8,20	2,67	0,465	0,485	7,86	24,69	Χ
63-2	0,382	1,002	0,381	8,10	2,72	0,452	0,486	7,87	24,72	Χ
64-2	0,379	1,000	0,379	8,10	2,74	0,450	0,483	7,84	24,65	Χ
				Medida	s de dispers	ión estadí	stica			
X	0,380	1,001	0,380	8,150	2,701	0,466	0,484	7,852	24,669	
S	0,001	0,001	0,001	0,055	0,039	0,014	0,002	0,012	0,039	
S ²	2.2E-06	9.7E-07	1.4E-06	3.0E-03	1,5E-03	2.0E-04	2.3E-06	1.5E-04	1,5E-03	

^{*}Datos calculados sobre la masa por unidad de longitud

 $[\]bar{X}$ = media, S = desviación estándar, S² = varianza

Continuación de la tabla XI.

	Barra certificada – fabricante "Y"													
Núm.	Masa (kg)	Longitud (m)	Masa Unitaria (kg/m)	Espacia- miento (mm)	Ancho de ribete (mm)	Altura (mm)	Área Efectiva* (cm²)	Diámetro* (mm)	Perímetro* (mm)	Tipo de corruga				
65-2	0,536	1,002	0,535	11,45	2,03	0,600	0,682	9,32	29,28	Χ				
66-2	0,535	1,002	0,534	11,50	2,00	0,660	0,681	9,31	29,25	Χ				
67-2	0,538	1,000	0,538	11,40	2,03	0,645	0,686	9,35	29,36	Χ				
68-2	0,537	1,003	0,535	11,60	2,00	0,540	0,683	9,32	29,29	Χ				
69-2	0,534	1,001	0,533	11,40	2,06	0,645	0,680	9,31	29,24	Χ				
70-2	0,536	1,001	0,535	11,50	1,98	0,635	0,683	9,32	29,29	Χ				
				Medidas	s de dispers	ión estadís	stica							
X	0,536	1,002	0,535	11,475	2,014	0,621	0,683	9,322	29,287					
S	0,001	0,001	0,002	0,076	0,028	0,044	0,002	0,014	0,043					
S ²	2,0E-06	1,1E-06	2,5E-06	5,7E-03	7,9E-04	2,0E-03	4,1E-06	1,9E-04	1,9E-03					
			Bar	ra no certif	ficada (8,5 ı	nm) – fab	ricante "Y"	,						
Núm.	Masa	Masa	Peso	Espacia- miento	Ancho de ribete	Altura	Área Efectiva*	Diámetro*	Perímetro*	Tipo de				
	(kg)	Unitaria (m)	(kg/m)	(mm)	(mm)	(mm)	(cm²)	(mm)	(mm)	corruga				
83-2	(kg) 0,407		(kg/m) 0,406	(mm) 12,00	(mm) 2,01	(mm) 0,760		(mm) 8,12	(mm) 25,51	corruga				
83-2 84-2		(m)		\ /		, ,	(cm²)	, ,	` '	X				
	0,407	(m) 1,002	0,406	12,00	2,01	0,760	(cm²) 0,518	8,12	25,51	X X X				
84-2	0,407 0,409	(m) 1,002 1,002	0,406 0,408	12,00 11,98	2,01 1,99	0,760 0,875	(cm²) 0,518 0,521	8,12 8,14	25,51 25,58	X X X				
84-2 85-2	0,407 0,409 0,408	(m) 1,002 1,002 1,003	0,406 0,408 0,407	12,00 11,98 12,20	2,01 1,99 1,94	0,760 0,875 0,740	(cm²) 0,518 0,521 0,519	8,12 8,14 8,13	25,51 25,58 25,53	X X X X				
84-2 85-2 86-2	0,407 0,409 0,408 0,411	(m) 1,002 1,002 1,003 1,008	0,406 0,408 0,407 0,408	12,00 11,98 12,20 12,10	2,01 1,99 1,94 2,12	0,760 0,875 0,740 0,900	(cm²) 0,518 0,521 0,519 0,520	8,12 8,14 8,13 8,14	25,51 25,58 25,53 25,56	X X X				
84-2 85-2 86-2 87-2	0,407 0,409 0,408 0,411 0,410	(m) 1,002 1,002 1,003 1,008 1,003	0,406 0,408 0,407 0,408 0,409	12,00 11,98 12,20 12,10 12,20 12,00	2,01 1,99 1,94 2,12 1,98	0,760 0,875 0,740 0,900 0,835 0,805	(cm²) 0,518 0,521 0,519 0,520 0,521 0,517	8,12 8,14 8,13 8,14 8,15	25,51 25,58 25,53 25,56 25,59	X X X X				
84-2 85-2 86-2 87-2	0,407 0,409 0,408 0,411 0,410	(m) 1,002 1,002 1,003 1,008 1,003	0,406 0,408 0,407 0,408 0,409	12,00 11,98 12,20 12,10 12,20 12,00	2,01 1,99 1,94 2,12 1,98 2,13	0,760 0,875 0,740 0,900 0,835 0,805	(cm²) 0,518 0,521 0,519 0,520 0,521 0,517	8,12 8,14 8,13 8,14 8,15	25,51 25,58 25,53 25,56 25,59	X X X X				
84-2 85-2 86-2 87-2 88-2	0,407 0,409 0,408 0,411 0,410 0,399	(m) 1,002 1,002 1,003 1,008 1,003 0,985	0,406 0,408 0,407 0,408 0,409 0,409	12,00 11,98 12,20 12,10 12,20 12,00 Medidas	2,01 1,99 1,94 2,12 1,98 2,13 s de dispers	0,760 0,875 0,740 0,900 0,835 0,805 ión estadís	(cm²) 0,518 0,521 0,519 0,520 0,520 0,521 0,517 stica	8,12 8,14 8,13 8,14 8,15 8,11	25,51 25,58 25,53 25,56 25,59 25,48	X X X X				

^{*}Datos calculados sobre el peso por unidad de longitud

 $[\]bar{X}$ = media, S = desviación estándar, S² = varianza

			Bar	ra no certi	ficada (7,5	mm) – fab	ricante "Y	"		
No	Masa (kg)	Longitud (m)	Masa Unitaria (kg/m)	Espacia- miento (mm)	Ancho de ribete (mm)	Altura (mm)	Área Efectiva* (cm²)	Diámetro* (mm)	Perímetro* (mm)	Tipo de corruga
53-2	0,374	1,001	0,374	10,00	1,32	0,395	0,476	7,79	24,47	Χ
54-2	0,368	0,982	0,375	9,90	1,37	0,320	0,478	7,80	24,51	Х
55-2	0,375	1,001	0,375	10,00	1,37	0,345	0,478	7,80	24,50	Χ
56-2	0,376	1,002	0,375	9,95	1,47	0,380	0,479	7,81	24,52	Х
57-2	0,376	1,004	0,375	9,90	1,72	0,195	0,478	7,80	24,50	Χ
58-2	0,376	1,001	0,376	9,95	1,42	0,295	0,479	7,81	24,54	Χ
				Medida	s de dispers	sión estadí	stica			
X	0,374	0,999	0,375	9,950	1,443	0,322	0,478	7,800	24,506	
S	0,003	0,008	0,001	0,045	0,143	0,072	0,001	0,007	0,022	
S ²	9,8E-06	6,7E-05	4,7E-07	2,0E-03	2,0E-02	5,2E-03	7,6E-07	5,1E-05	5,0E-04	,

^{*}Datos calculados sobre el peso por unidad de longitud

Tabla XII. Resumen de las características físicas de cada tipo de barra para refuerzo (valores promedios)

Tipo	Masa (kg)	Longitud (m)	Masa Unitaria (kg/m)	Espacia- miento (mm)	Ancho de ribete (mm)	Altura (mm)	Área Efectiva* (cm²)	Diámetro* (mm)	Perímetro* (mm)
A*	0,536	1,000	0,536	9,07	2,49	0,609	0,684	9,33	29,31
B*	0,427	0,999	0,427	11,23	3,13	0,572	0,545	8,33	26,17
C*	0,380	1,000	0,380	10,72	2,71	0,515	0,484	7,85	24,66
D*	0,380	1,001	0,380	8,15	2,70	0,466	0,484	7,85	24,67
E*	0,536	1,002	0,535	11,48	2,01	0,621	0,683	9,32	29,29
F*	0,407	1,001	0,407	12,08	2,03	0,819	0,519	8,13	25,54
G*	0,374	0,999	0,375	9,95	1,44	0,322	0,478	7,80	24,51
				Med	didas de disper	rsión estadística			
×	0,417	1,000	0,417	10,60	2,34	0,552	0,532	8,21	25,81
S	0,062	0,001	0,061	1,40	0,62	0,166	0,078	0,58	1,82
S²	3,8E-03	1,3E-06	3,8E-03	1,96	0,38	2,8E-02	6,1E-03	3,4E-01	3,32

^{*}Datos calculados sobre el peso por unidad de longitud

Donde

- A* = Barra certificada–fabricante "X"
- o B* = Barra no certificada (8,5 mm)-fabricante "X"
- o C* = Barra no certificada (8 mm)-fabricante "X"
- D* = Barra no certificada (7,5 mm)-fabricante "X"
- E* = Barra certificada-fabricante "Y"
- o F* = Barra no certificada (8,5 mm)–fabricante "Y"
- G* = Barra no certificada (7,5 mm)-fabricante "Y"

 \bar{X} = media, S = desviación estándar, S² = varianza

4.1.1.2. Gráficas de dispersión, masa unitaria (kg/m) *versus* área efectiva (cm²)

A continuación se presentan las gráficas de dispersión, masa unitaria (kg/m) versus área efectiva (cm²).

Figura 33. Barra certificada–fabricante "X"

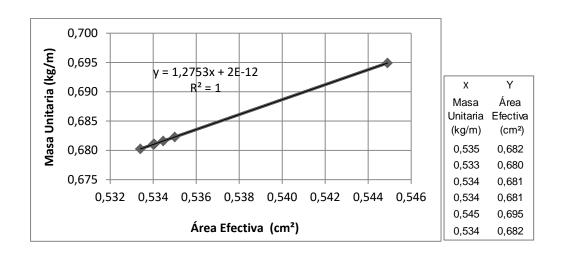


Figura 34. Barra no certificada (8,5 mm)-fabricante "X"

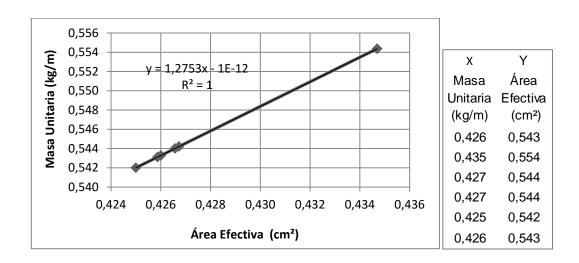


Figura 35. Barra no certificada (8 mm)-fabricante "X"

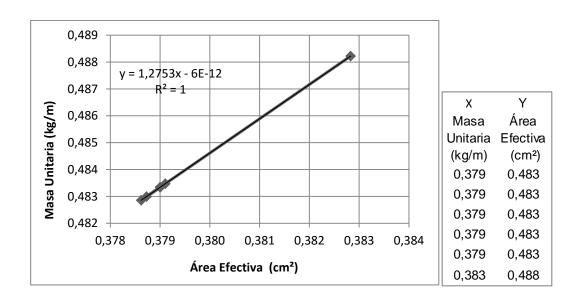


Figura 36. Barra no certificada (7,5 mm)-fabricante "X"

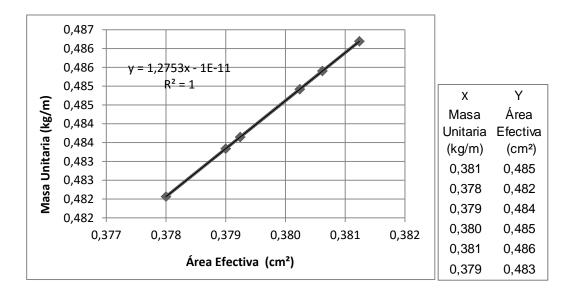


Figura 37. Barra certificada–fabricante "Y"

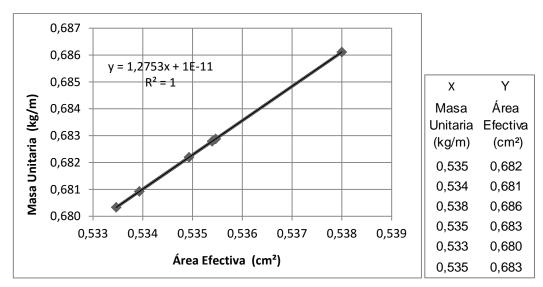
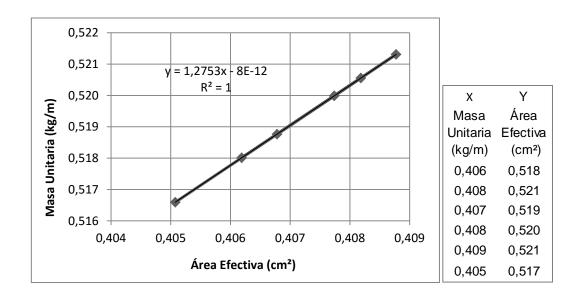



Figura 38. Barra no certificada (8,5 mm)-fabricante "Y"

0,480 0,479 y = 1,2753x0,479 $R^2 = 1$ Υ Χ Masa Unitaria (kg/m) 0,478 Masa Área Unitaria Efectiva 0,478 (cm²) (kg/m) 0,477 0,374 0,476 0,375 0,478 0,477 0,478 0,375 0,476 0,375 0,479 0,374 0,374 0,375 0,375 0,376 0,376 0,375 0,478 Área Efectiva(cm²) 0,376 0,479

Figura 39. Barra no certificada (7,5 mm)-fabricante "Y"

Nota: ver discusión de resultados para interpretación de las gráficas (ver figuras de la 33 a la 39).

4.1.1.3. Propiedades mecánicas obtenidas en el ensayo de tensión

A continuación se presenta la tabla número XIII que presenta el esfuerzo cedente, esfuerzo máximo (con base en la carga efectiva y el área efectiva) y elongación.

Tabla XIII. Esfuerzo cedente, esfuerzo máximo (con base en la carga efectiva y el área efectiva) y elongación

	Barra certificada – fabricante "X"											
	Área	Carga I	Efectiva		Esfuerzo	Efectivo		%				
Núm.	Efectiva	Cedente	Máxima	Fluencia	Máximo	Fluencia	Máximo	elongañción				
	(cm²)	(kg)	(kg)	kg/cm^2	kg/cm^2	(MPA)	(MPA)	en 20 cm				
71-2	0,682286	2 400	3 360	3 517,59	4 924,62	344,96	482,94	22				
72-2	0,680245	2 450	3 350	3 601,64	4 924,70	353,20	482,95	23				
73-2	0,681010	2 350	3 400	3 450,76	4 992,58	338,40	489,61	21				
74-2	0,681083	2 360	3 340	3 465,07	4 903,95	339,81	480,91	20				
75-2	0,694908	2 500	3 410	3 597,60	4 907,12	352,80	481,22	28				
76-2	0,681604	2 380	3 330	3 491,76	4 885,54	342,43	479,11	22				
			Medidas	de dispers	ión estadís	stica						
X	0,683523	2 406,67	3 365,00	3 520,74	4 923,09	345,27	482,79	23				
S	0,005619	57,85	32,71	65,27	37,06	6,40	3,63	3				
S ²	3,2E-05	3 346,67	1 070,00	4 259,83	1 373,16	40,97	13,21	8				
		Barra	no certific	cada (8,5 r	nm) – fabi	ricante "X	""					
	Área	Carga I	Efectiva		Esfuerzo	Efectivo		%				
Núm.	Efectiva	Cedente	Máxima	Fluencia	Máximo	Fluencia	Máximo	elongación				
	(cm²)	(kg)	(kg)	kg/cm^2	kg/cm^2	(MPA)	(MPA)	en 20 cm				
89-2	0,543278	1 940	2 740	3 570,92	5 043,46	350,19	494,59	28				
90-2	0,554365	1 900	2 660	3 427,34	4 798,28	336,11	470,55	25				
91-2	0,544212	1 900	2 700	3 491,29	4 961,30	342,38	486,54	18				
92-2	0,544009	1 840	2 640	3 382,30	4 852,86	331,69	475,90	24				
93-2	0,542003	1 850	2 640	3 413,27	4 870,83	334,73	477,66	22				
94-2	0,543113	1 900	2 660	3 498,35	4 897,69	343,07	480,30	28				
			Medidas	de dispers	ión estadís	stica						
X	0,545163	1 888,33	2 673,33	3 463,91	4 904,07	339,69	480,93	24				
S	0,004575	37,10	39,33	69,21	86,79	6,79		4				
S ²	2,1E-05	1 376,67	1 546,67	4 789,72	7 532,87	46,06	72,44	15				

 \bar{X} = media, S = desviación estándar, S² = varianza

Continuación de la tabla XIII.

	Barra no certificada (8 mm) – fabricante "X"												
	Área		Efectiva		Esfuerzo E			%					
Núm.	Efectiva (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm					
77-2	0,483339	1 700	2 400	3 517,20	4 965,46	344,92	486,95	24					
78-2	0,482991	1 750	2 420	3 623,25	5 010,44	355,32	491,36	25					
79-2	0,483472	1 710	2 400	3 536,92	4 964,09	346,85	486,81	23					
80-2	0,482856	1 720	2 410	3 562,14	4 991,14	349,33	489,46	26					
81-2	0,483339	1 780	2 480	3 682,72	5 130,98	361,15	503,18	19					
82-2	0,488221	1 690	2 410	3 461,55	4 936,29	339,46	484,08	24					
			Medidas	de dispersi	ón estadísti	ca							
Ż	0,484036	1 725,00	2 420,00	3 563,96	4 999,73	349,51	490,31	24					
S	0,002063	33,91	30,33	78,78	69,11	7,73	6,78	2					
S ²	4,3E-06	1 150,00	920,00	6205,66	4 776,67	59,68	45,94	6					
		Barra r	o certific	ada (7,5 n	nm) – fabr	icante "X	("						
	Área	Carga E	Efectiva		Esfuerzo E	fectivo		%					
Núm.	Área Efectiva (cm²)	Carga E Cedente (kg)	fectiva Máxima (kg)	Fluencia kg/cm^2	Esfuerzo E Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	% elongación en 20 cm					
Núm.	Efectiva	Cedente	Máxima		Máximo	Fluencia	Máximo	elongación					
	Efectiva (cm²)	Cedente (kg)	Máxima (kg)	kg/cm^2	Máximo kg/cm^2	Fluencia (MPA) 353,55	Máximo (MPA)	elongación en 20 cm					
59-2	Efectiva (cm²) 0,485404	Cedente (kg) 1 750	Máxima (kg) 2 480	kg/cm^2 3 605,25	Máximo kg/cm^2 5 109,15	Fluencia (MPA)	Máximo (MPA) 501,04	elongación en 20 cm 26					
59-2 60-2	Efectiva (cm²) 0,485404 0,482063	Cedente (kg) 1 750 1 750	Máxima (kg) 2 480 2 450	kg/cm^2 3 605,25 3 630,23	Máximo kg/cm^2 5 109,15 5 082,32	Fluencia (MPA) 353,55 356,00	Máximo (MPA) 501,04 498,41	elongación en 20 cm 26 25					
59-2 60-2 61-2	Efectiva (cm²) 0,485404 0,482063 0,483647	Cedente (kg) 1 750 1 750 1 790	Máxima (kg) 2 480 2 450 2 490	kg/cm^2 3 605,25 3 630,23 3 701,05	Máximo kg/cm^2 5 109,15 5 082,32 5 148,39	Fluencia (MPA) 353,55 356,00 362,95	Máximo (MPA) 501,04 498,41 504,88	elongación en 20 cm 26 25 25					
59-2 60-2 61-2 62-2	Efectiva (cm²) 0,485404 0,482063 0,483647 0,484919	Cedente (kg) 1 750 1 750 1 790 1 710	Máxima (kg) 2 480 2 450 2 490 2 500	kg/cm^2 3 605,25 3 630,23 3 701,05 3 526,36	Máximo kg/cm^2 5 109,15 5 082,32 5 148,39 5 155,50	Fluencia (MPA) 353,55 356,00 362,95 345,82	Máximo (MPA) 501,04 498,41 504,88 505,58	elongación en 20 cm 26 25 25 25 26					
59-2 60-2 61-2 62-2 63-2	Efectiva (cm²) 0,485404 0,482063 0,483647 0,484919 0,486192	Cedente (kg) 1 750 1 750 1 790 1 710 1 800	Máxima (kg) 2 480 2 450 2 490 2 500 2 480 2 350	kg/cm^2 3 605,25 3 630,23 3 701,05 3 526,36 3 702,24 3 310,31	Máximo kg/cm^2 5 109,15 5 082,32 5 148,39 5 155,50 5 100,86	Fluencia (MPA) 353,55 356,00 362,95 345,82 363,07 324,63	Máximo (MPA) 501,04 498,41 504,88 505,58 500,22	elongación en 20 cm 26 25 25 26 26					
59-2 60-2 61-2 62-2 63-2 64-2 X	Efectiva (cm²) 0,485404 0,482063 0,483647 0,484919 0,486192	Cedente (kg) 1 750 1 750 1 790 1 710 1 800	Máxima (kg) 2 480 2 450 2 490 2 500 2 480 2 350 Medidas	kg/cm^2 3 605,25 3 630,23 3 701,05 3 526,36 3 702,24 3 310,31	Máximo kg/cm^2 5 109,15 5 082,32 5 148,39 5 155,50 5 100,86 4 862,01	Fluencia (MPA) 353,55 356,00 362,95 345,82 363,07 324,63	Máximo (MPA) 501,04 498,41 504,88 505,58 500,22	elongación en 20 cm 26 25 25 26 26					
59-2 60-2 61-2 62-2 63-2 64-2	Efectiva (cm²) 0,485404 0,482063 0,483647 0,484919 0,486192 0,483339	Cedente (kg) 1 750 1 750 1 790 1 710 1 800 1 600	Máxima (kg) 2 480 2 450 2 490 2 500 2 480 2 350 Medidas	kg/cm^2 3 605,25 3 630,23 3 701,05 3 526,36 3 702,24 3 310,31 de dispersi	Máximo kg/cm^2 5 109,15 5 082,32 5 148,39 5 155,50 5 100,86 4 862,01 ón estadístic	Fluencia (MPA) 353,55 356,00 362,95 345,82 363,07 324,63	Máximo (MPA) 501,04 498,41 504,88 505,58 500,22 476,80	elongación en 20 cm 26 25 25 26 26 27					

 \bar{X} = media, S = desviación estándar, S² = varianza

Continuación de la tabla XIII.

		Barra certificada – fabricante "Y"												
	Área	Carga E			Esfuerzo			%						
Núm.	Efectiva (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm						
65-2	0,682196	2 280	3 410	3 342,15	4 998,56	327,75	490,19	20						
66-2	0,680924	2 180	3 400	3 201,53	4 993,22	313,96	489,67	28						
67-2	0,686111	2 250	3 410	3 279,35	4 970,04	321,59	487,39	25						
68-2	0,682788	2 200	3 410	3 222,08	4 994,23	315,98	489,77	19						
69-2	0,680330	2 150	3 350	3 160,23	4 924,08	309,91	482,89	28						
70-2	0,682878	2 550	3 400	3 734,20	4 978,93	366,20	488,27	26						
			Medidas d	de dispersió	n estadíst	ica								
X	0,682538	2 268,33	3 396,67	3 323,26	4 976,51	325,90	488,03	24						
S	0,002027	145,80	23,38	211,09	27,84	20,70	2,73	4						
S ²	4,1E-06	21256,67	546,67	44557,01	775,17	428,51	7,45	15						
		Barra no	certifica	ada (8,5 m	ım) – fabi	ricante "	Y"							
	Área	Carga E			Esfuerzo			%						
Núm.	Efectiva (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm						
83-2	0,518011	1 800	2 900	3 474,83	5 598,34	340,76	549,01	19						
84-2	0,520557	1 900	3 000	3 649,94	5 763,06	357,94	565,16	20						
85-2	0,518766	1 900	3 000	3 662,54	5 782,95	359,17	567,11	12						
86-2	0,519988	1 800	2 950	3 461,62	5 673,20	339,47	556,35	21						
87-2	0,521309	1 850	2 980	3 548,76	5 716,38	348,01	560,59	12						
88-2	0,516594	1 820	2 990	3 523,08	5 787,92	345,50	567,60	17						
			Medidas d	de dispersió	n estadíst	ica								
X	0,519204	1 845,00	2 970,00	3 553,46	5 720,31	348,48	560,97	17						
S	0,001750	46,37	38,99	85,75	74,07	8,41	7,26	4						
S ²	3,1E-06	2 150,00	1 520,00	7 353,87	5 486,91	70,72	52,77	16						

 \bar{X} = media, S = desviación estándar, S² = varianza

Continuación de la tabla XIII.

		Barra r	o certific	ada (7,5 n	nm) – fabr	icante "Y	, , ,		
	Área	Carga E	Efectiva		Esfuerzo Efectivo				
Núm.	Efectiva (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm	
53-2	0,476486	1 990	2 780	4 176,41	5 834,38	409,57	572,16	17	
54-2	0,477913	1 910	2 710	3 996,54	5 670,49	391,93	556,09	16	
55-2	0,477760	1 850	2 650	3 872,24	5 546,72	379,74	543,95	21	
56-2	0,478556	1 850	2 680	3 865,80	5 600,18	379,11	549,19	26	
57-2	0,477602	1 810	2 680	3 789,76	5 611,36	371,65	550,29	20	
58-2	0,479034	1 910	2 750	3 987,19	5 740,72	391,01	562,97	19	
			Medidas	de dispersi	ón estadísti	ca			
X	0,477892	1 886,67	2 708,33	3 947,99	5 667,31	387,17	555,77	20	
S	0,000874	63,77	48,75	136,82	105,35	13,42	10,33	4	
S ²	7,6E-07	4 066,67	2 376,67	1 8719,94	11 098,11	180,03	106,73	13	

Fuente: elaboración propia.

Tabla XIV. Esfuerzo cedente, esfuerzo máximo (con base en la carga efectiva y el área nominal) y elongación

		В	arra cert	ificada –	fabricant	te "X"		
	Área	Carga E	Efectiva		%			
Núm.	Nominal (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm
71-2	0,710	2 400	3 360	3 380,28	4 732,39	331,49	464,09	22
72-2	0,710	2 450	3 350	3 450,70	4 718,31	338,40	462,71	23
73-2	0,710	2 350	3 400	3 309,86	4 788,73	324,59	469,61	21
74-2	0,710	2 360	3 340	3 323,94	4 704,23	325,97	461,33	20
75-2	0,710	2 500	3 410	3 521,13	4 802,82	345,30	471,00	28
76-2	0,710	2 380	3 330	3 352,11	4 690,14	328,73	459,95	22
			Medidas	de dispers	ión estadís	stica		
X	0,710	2 406,67	3 365,00	3 389,67	4 739,44	332,41	464,78	23
S	0,000	57,85	32,71	81,48	46,07	7,99	4,52	3
S ²	0,000	3 346,67	1 070,00	6 638,89	2 122,59	63,85	20,41	8

 \bar{X} = media, S = desviación estándar, S² = varianza

Continuación de la tabla XIV.

	Barra no certificada (8,5 mm) – fabricante "X"									
	Área		Efectiva	uuu (0,5 l	Esfuerzo			%		
Núm.	Nominal (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm		
89-2	0,500	1 940	2 740	3 880,00	5 480,00	380,50	537,40	28		
90-2	0,500	1 900	2 660	3 800,00	5 320,00	372,65	521,71	25		
91-2	0,500	1 900	2 700	3 800,00	5 400,00	372,65	529,56	18		
92-2	0,500	1 840	2 640	3 680,00	5 280,00	360,88	517,79	24		
93-2	0,500	1 850	2 640	3 700,00	5 280,00	362,85	517,79	22		
94-2	0,500	1 900	2 660	3 800,00	5 320,00	372,65	521,71	28		
	Medidas de dispersión estadística									
X	0,500	1 888,33	2 673,33	3 776,67	5 346,67	370,36	524,33	24		
S	0,000	37,10	39,33	74,21	78,66	7,28	7,71	4		
S ²	0,000	1 376,67	1 546,67	5 506,67	6186,67	52,96	59,50	15		
		Barra ı	no certific	cada (8 m	nm) – fab	ricante "	X"			
	Área		Efectiva	•	Esfuerzo			%		
Núm.	Nominal (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm		
77-2	0,500	1 700	2 400	3 400,00	4 800,00	333,43	470,72	24		
78-2	0,500	1 750	2 420	3 500,00	4 840,00	343,23	474,64	25		
79-2	0,500	1 710	2 400	3 420,00	4 800,00	335,39	470,72	23		
80-2	0,500	1 720	2 410	3 440,00	4 820,00	337,35	472,68	26		
81-2	0,500	1 780	2 480	3 560,00	4 960,00	349,12	486,41	19		
82-2	0,500	1 690	2 410	3 380,00	4 820,00	331,46	472,68	24		
			Medidas	de dispers	ión estadís	stica				
X	0,500	1 725,00	2 420,00	3 450,00	4 840,00	338,33	474,64	24		
S	0,000	33,91	30,33	67,82	60,66	6,65	5,95	2		
S ²	0,000	1 150,00	920,00	4600,00	3 680,00	44,24	35,39	6		

 \bar{X} = media, S = desviación estándar, S² = varianza

Continuación de la tabla XIV.

	Barra no certificada (7,5 mm) – fabricante "X"									
	Área	Carga E		, a da (7,0 11	Esfuerzo N		<u> </u>	%		
Núm.	Nominal (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm		
59-2	0,500	1 750	2 480	3 500,00	4 960,00	343,23	486,41	26		
60-2	0,500	1 750	2 450	3 500,00	4 900,00	343,23	480,53	25		
61-2	0,500	1 790	2 490	3 580,00	4 980,00	351,08	488,37	25		
62-2	0,500	1 710	2 500	3 420,00	5 000,00	335,39	490,33	26		
63-2	0,500	1 800	2 480	3 600,00	4 960,00	353,04	486,41	26		
64-2	0,500	1 600	2 350	3 200,00	4 700,00	313,81	460,91	27		
Medidas de dispersión estadística										
Ż	0,500	1 733,33	2 458,33	3 466,67	4 916,67	339,96	482,16	26		
S	0,000	72,85	55,65	145,69	111,30	14,29	10,91	1		
S ²	0,000	5 306,67	3 096,67	2 1226,67	12 386,67	204,14	119,12	1		
		E	Barra cer	tificada – f	abricante	"Y"				
	Área	Carga E			Esfuerzo N			%		
Núm.	Nominal (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm		
65-2	0,500	2 280	3 410	3 342,15	4 998,56	327,75	490,19	20		
66-2	0,500	2 180	3 400	3 201,53	4 993,22	313,96	489,67	28		
67-2	0,500	2 250	3 410	3 279,35	4 970,04	321,59	487,39	25		
68-2	0,500	2 200	3 410	3 222,08	4 994,23	315,98	489,77	19		
69-2	0,500	2 150	3 350	3 160,23	4 924,08	309,91	482,89	28		
70-2	0,500	2 550	3 400	3 734,20	4 978,93	366,20	488,27	26		
			Medidas	de dispersi	ón estadísti	ca				
X	0,500	2 268,33	3 396,67	3 323,26	4 976,51	325,90	488,03	24		
S	0,000	145,80	23,38	211,09	27,84	20,70	2,73	4		
S ²	0,000	21 256,67	546,67	44557,01	775,17	428,51	7,45	15		

 \bar{X} = media, S = desviación estándar, S² = varianza

Continuación de la tabla XIV.

Barra no certificada (8,5 mm) – fabricante "Y"										
	Área		Efectiva		Esfuerzo I			%		
Núm.	Nominal (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm		
83-2	0,500	1 800	2 900	3 600,00	5 800,00	353,04	568,79	19		
84-2	0,500	1 900	3 000	3 800,00	6 000,00	372,65	588,40	20		
85-2	0,500	1 900	3 000	3 800,00	6 000,00	372,65	588,40	12		
86-2	0,500	1 800	2 950	3 600,00	5 900,00	353,04	578,59	21		
87-2	0,500	1 850	2 980	3 700,00	5 960,00	362,85	584,48	12		
88-2	0,500	1 820	2 990	3 640,00	5 980,00	356,96	586,44	17		
	Medidas de dispersión estadística									
×	0,500	1 845,00	2 970,00	3 690,00	5 940,00	361,87	582,52	17		
S	0,000	46,37	38,99	92,74	77,97	9,09	7,65	4		
S ²	0,000	2 150,00	1 520,00	8 600,00	6 080,00	82,71	58,47	16		
Barra no certificada (7,5 mm) – fabricante "Y"										
		Barra n	o certific	ada (7,5 n	nm) – fab	ricante "	Y"			
	Área		o certific Efectiva	ada (7,5 n	n m) – fab Esfuerzo l		Υ"	%		
Núm.	Área Nominal (cm²)			Fluencia kg/cm^2			T	% elongación en 20 cm		
Núm. 53-2	Nominal	Carga E	Efectiva Máxima	Fluencia	Esfuerzo I Máximo	Nominal Fluencia	Máximo	elongación		
	Nominal (cm²)	Carga E Cedente (kg)	fectiva Máxima (kg)	Fluencia kg/cm^2	Esfuerzo I Máximo kg/cm^2	Nominal Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm		
53-2	Nominal (cm²) 0,500	Carga E Cedente (kg) 1 990	fectiva Máxima (kg) 2 780	Fluencia kg/cm^2 3 980,00	Esfuerzo Máximo kg/cm^2 5 560,00	Fluencia (MPA) 390,30	Máximo (MPA) 545,25	elongación en 20 cm 17		
53-2 54-2	Nominal (cm²) 0,500 0,500	Carga E Cedente (kg) 1 990 1 910	Efectiva Máxima (kg) 2 780 2 710	Fluencia kg/cm^2 3 980,00 3 820,00	Esfuerzo Máximo kg/cm^2 5 560,00 5 420,00	Fluencia (MPA) 390,30 374,61	Máximo (MPA) 545,25 531,52	elongación en 20 cm 17 16		
53-2 54-2 55-2	Nominal (cm²) 0,500 0,500 0,500	Carga E Cedente (kg) 1 990 1 910 1 850	Efectiva Máxima (kg) 2 780 2 710 2 650	Fluencia kg/cm^2 3 980,00 3 820,00 3 700,00	Esfuerzo I Máximo kg/cm^2 5 560,00 5 420,00 5 300,00	Fluencia (MPA) 390,30 374,61 362,85	Máximo (MPA) 545,25 531,52 519,75	elongación en 20 cm 17 16 21		
53-2 54-2 55-2 56-2	Nominal (cm²) 0,500 0,500 0,500 0,500	Carga E Cedente (kg) 1 990 1 910 1 850 1 850	Máxima (kg) 2 780 2 710 2 650 2 680	Fluencia kg/cm^2 3 980,00 3 820,00 3 700,00 3 700,00	Esfuerzo I Máximo kg/cm^2 5 560,00 5 420,00 5 300,00 5 360,00	Fluencia (MPA) 390,30 374,61 362,85 362,85	Máximo (MPA) 545,25 531,52 519,75 525,64	elongación en 20 cm 17 16 21 26		
53-2 54-2 55-2 56-2 57-2	Nominal (cm²) 0,500 0,500 0,500 0,500 0,500	Carga E Cedente (kg) 1 990 1 910 1 850 1 850 1 810	Efectiva Máxima (kg) 2 780 2 710 2 650 2 680 2 680 2 750	Fluencia kg/cm^2 3 980,00 3 820,00 3 700,00 3 700,00 3 620,00	Esfuerzo I Máximo kg/cm^2 5 560,00 5 420,00 5 300,00 5 360,00 5 360,00 5 500,00	Fluencia (MPA) 390,30 374,61 362,85 362,85 355,00 374,61	Máximo (MPA) 545,25 531,52 519,75 525,64 525,64	elongación en 20 cm 17 16 21 26 20		
53-2 54-2 55-2 56-2 57-2	Nominal (cm²) 0,500 0,500 0,500 0,500 0,500	Carga E Cedente (kg) 1 990 1 910 1 850 1 850 1 810	Efectiva Máxima (kg) 2 780 2 710 2 650 2 680 2 680 2 750	Fluencia kg/cm^2 3 980,00 3 820,00 3 700,00 3 700,00 3 620,00 3 820,00	Esfuerzo I Máximo kg/cm^2 5 560,00 5 420,00 5 300,00 5 360,00 5 360,00 5 500,00 ón estadís	Fluencia (MPA) 390,30 374,61 362,85 362,85 355,00 374,61	Máximo (MPA) 545,25 531,52 519,75 525,64 525,64	elongación en 20 cm 17 16 21 26 20		
53-2 54-2 55-2 56-2 57-2 58-2	Nominal (cm²) 0,500 0,500 0,500 0,500 0,500 0,500	Carga E Cedente (kg) 1 990 1 910 1 850 1 810 1 910	Efectiva Máxima (kg) 2 780 2 710 2 650 2 680 2 680 2 750 Medidas	Fluencia kg/cm^2 3 980,00 3 820,00 3 700,00 3 620,00 3 820,00 de dispersi	Esfuerzo I Máximo kg/cm^2 5 560,00 5 420,00 5 300,00 5 360,00 5 360,00 5 500,00 ón estadís	Fluencia (MPA) 390,30 374,61 362,85 362,85 355,00 374,61	Máximo (MPA) 545,25 531,52 519,75 525,64 525,64 539,37	elongación en 20 cm 17 16 21 26 20 19		

Fuente: elaboración propia.

 \bar{X} = media, S = desviación estándar, S² = varianza

Tabla XV. Esfuerzo cedente, esfuerzo máximo y elongación de cada tipo de barra para refuerzo (valores promedio)

_ Es	fuerzos	Esfuerzos (con base en la carga efectiva y el área efectiva) y elongación												
	Área	Carga	Efectiva		Esfuerzo E	fectivo		%						
Tipo	Efectiva (cm²)	Cedente (kg)	Máxima (kg)	Fluencia kg/cm^2	Máximo kg/cm^2	Fluencia (MPA)	Máximo (MPA)	elongación en 20 cm						
A*	0,683523	2 406,67	3 365,00	3 520,74	4 923,09	345,27	482,79	23						
В*	0,545163	1 888,33	2 673,33	3 463,91	4 904,07	339,69	480,93	24						
C*	0,484036	1 725,00	2 420,00	3 563,96	4 999,73	349,51	490,31	24						
D*	0,484261	1 733,33	2 458,33	3 579,24	5 076,37	351,00	497,82	26						
E*	0,682538	2 268,33	3 396,67	3 323,26	4 976,51	325,90	488,03	24						
F*	0,519204	1 845,00	2 970,00	3 553,46	5 720,31	348,48	560,97	17						
G*	0,477892	1 886,67	2 708,33	3 947,99	5 667,31	387,17	555,77	20						
	Medidas de dispersión estadística													
X	0,532182	1 891,11	2 771,11	3571,97	5224,05	350,29	512,30	22						
S	0,078110	198,46	364,83	207,55	368,39	20,35	36,13	3						
S ²	0,006101	39 387,41	133 097,41	43 077,34	135 708,41	414,28	1305,11	11						
Es	fuerzos	(con base	en la car	ga efectiv	a y el área	Esfuerzos (con base en la carga efectiva y el área nominal) y elon								
		Carga Efectiva Esfuerzo Nominal				.9								
	Área	Ì	Efectiva		Esfuerzo N		, ,							
Tipo	Área Nominal (cm²)	Ì	Efectiva Máxima (kg)	Fluencia kg/cm^2	Esfuerzo N Máximo kg/cm^2		Máximo (MPA)	% elongación en 20 cm						
Tipo A*	Nominal	Carga Cedente	Máxima		Máximo	ominal Fluencia	Máximo	% elongación						
	Nominal (cm²)	Carga Cedente (kg)	Máxima (kg)	kg/cm^2	Máximo kg/cm^2	ominal Fluencia (MPA)	Máximo (MPA)	% elongación en 20 cm						
A*	Nominal (cm²)	Carga Cedente (kg) 2 406,67	Máxima (kg) 3365,00	kg/cm^2 3 389,67	Máximo kg/cm^2 4 739,44	Fluencia (MPA) 332,41	Máximo (MPA) 464,78	% elongación en 20 cm						
A* B*	Nominal (cm²) 0,710 0,500	Carga Cedente (kg) 2 406,67 1 888,33	Máxima (kg) 3365,00 2673,33	kg/cm^2 3 389,67 3 776,67	Máximo kg/cm^2 4 739,44 5 346,67	Fluencia (MPA) 332,41 370,36	Máximo (MPA) 464,78 524,33	% elongación en 20 cm 23 24						
A* B* C*	Nominal (cm²) 0,710 0,500 0,500	Carga Cedente (kg) 2 406,67 1 888,33 1 725,00	Máxima (kg) 3365,00 2673,33 2420,00	kg/cm^2 3 389,67 3 776,67 3 450,00	Máximo kg/cm^2 4 739,44 5 346,67 4 840,00	ominal Fluencia (MPA) 332,41 370,36 338,33	Máximo (MPA) 464,78 524,33 474,64	% elongación en 20 cm 23 24 24						
A* B* C* D*	Nominal (cm²) 0,710 0,500 0,500 0,500	Carga Cedente (kg) 2 406,67 1 888,33 1 725,00 1 733,33	Máxima (kg) 3365,00 2673,33 2420,00 2458,33	kg/cm^2 3 389,67 3 776,67 3 450,00 3 466,67	Máximo kg/cm^2 4 739,44 5 346,67 4 840,00 4 916,67	ominal Fluencia (MPA) 332,41 370,36 338,33 339,96	Máximo (MPA) 464,78 524,33 474,64 482,16	% elongación en 20 cm 23 24 24 26						
A* B* C* D* E*	Nominal (cm²) 0,710 0,500 0,500 0,500 0,500	Carga Cedente (kg) 2 406,67 1 888,33 1 725,00 1 733,33 2 268,33	Máxima (kg) 3365,00 2673,33 2420,00 2458,33 3396,67	kg/cm^2 3 389,67 3 776,67 3 450,00 3 466,67 3 323,26	Máximo kg/cm^2 4 739,44 5 346,67 4 840,00 4 916,67 4 976,51	ominal Fluencia (MPA) 332,41 370,36 338,33 339,96 325,90	Máximo (MPA) 464,78 524,33 474,64 482,16 488,03	% elongación en 20 cm 23 24 24 26 24						
A* B* C* D* E* F*	Nominal (cm²) 0,710 0,500 0,500 0,500 0,500 0,500	Carga Cedente (kg) 2 406,67 1 888,33 1 725,00 1 733,33 2 268,33 1 845,00	Máxima (kg) 3365,00 2673,33 2420,00 2458,33 3396,67 2970,00 2708,33	kg/cm^2 3 389,67 3 776,67 3 450,00 3 466,67 3 323,26 3 690,00 3 773,33	Máximo kg/cm^2 4 739,44 5 346,67 4 840,00 4 916,67 4 976,51 5 940,00	ominal Fluencia (MPA) 332,41 370,36 338,33 339,96 325,90 361,87 370,04	Máximo (MPA) 464,78 524,33 474,64 482,16 488,03 582,52	% elongación en 20 cm 23 24 24 26 24 17						
A* B* C* D* E* F*	Nominal (cm²) 0,710 0,500 0,500 0,500 0,500 0,500	Carga Cedente (kg) 2 406,67 1 888,33 1 725,00 1 733,33 2 268,33 1 845,00	Máxima (kg) 3365,00 2673,33 2420,00 2458,33 3396,67 2970,00 2708,33	kg/cm^2 3 389,67 3 776,67 3 450,00 3 466,67 3 323,26 3 690,00 3 773,33	Máximo kg/cm^2 4 739,44 5 346,67 4 840,00 4 916,67 4 976,51 5 940,00 5 416,67	ominal Fluencia (MPA) 332,41 370,36 338,33 339,96 325,90 361,87 370,04	Máximo (MPA) 464,78 524,33 474,64 482,16 488,03 582,52	% elongación en 20 cm 23 24 24 26 24 17						
A* B* C* D* E* F* G*	Nominal (cm²) 0,710 0,500 0,500 0,500 0,500 0,500 0,500	Carga Cedente (kg) 2 406,67 1 888,33 1 725,00 1 733,33 2 268,33 1 845,00 1 886,67	Máxima (kg) 3365,00 2673,33 2420,00 2458,33 3396,67 2970,00 2708,33 Medidas	kg/cm^2 3 389,67 3 776,67 3 450,00 3 466,67 3 323,26 3 690,00 3 773,33 de dispersio	Máximo kg/cm^2 4 739,44 5 346,67 4 840,00 4 916,67 4 976,51 5 940,00 5 416,67 on estadística	ominal Fluencia (MPA) 332,41 370,36 338,33 339,96 325,90 361,87 370,04	Máximo (MPA) 464,78 524,33 474,64 482,16 488,03 582,52 531,19	% elongación en 20 cm 23 24 24 26 24 17 20						

 \bar{X} = media, S = desviación estándar, S² = varianza

- A* = Barra certificada–fabricante "X"
- o B* = Barra no certificada (8,5 mm)-fabricante "X"
- o C* = Barra no certificada (8 mm)–fabricante "X"
- o D* = Barra no certificada (7,5 mm)-fabricante "X"
- o E* = Barra certificada-fabricante "Y"
- F* = Barra no certificada (8,5 mm)–fabricante "Y"
- o G* = Barra no certificada (7,5 mm)–fabricante "Y"

Tabla XVI. Grado estructural obtenido y comparación de esfuerzos con la Norma Coguanor NTG 36 011

	Esfuerzo Efectivo										
Tipo	Esfuerzo Según la		Esfuerzo Efectivo		Grado	Esfu cede		Esfuerzo máximo			
Про	Cedente (MPA)	Máximo (MPA)	Cedente (MPA)	Máximo (MPA)	estructural	Diferencia Absoluta	Diferencia Relativa	Diferencia Absoluta	Diferencia Relativa		
A*	280	420	345,27	482,79	40	-65,27	-23,31%	-62,79	-14,95%		
В*	280	420	339,69	480,93	40	-59,69	-21,32%	-60,93	-14,51%		
C*	280	420	349,51	490,31	40	-69,51	-24,82%	-70,31	-16,74%		
D*	280	420	351,00	497,82	40	-71,00	-25,36%	-77,82	-18,53%		
E*	280	420	325,90	488,03	40	-45,90	-16,39%	-68,03	-16,20%		
F*	280	420	348,48	560,97	40	-68,48	-24,46%	-140,97	-33,56%		
G*	280	420	387,17	555,77	40	-107,17	-38,27%	-135,77	-32,33%		
		Esfuerzo Nominal									
	Esfuerzo Esfuerzo			10120 110	IIIIIai						
Tipo				erzo	Grado	Esfu cede			ierzo kimo		
Tipo				erzo		Esfu					
Tipo	Según la Cedente	Norma Máximo	Nom Cedente	erzo ninal Máximo	Grado	Esfu cede Diferencia	ente Diferencia	máx Diferencia	dimo Diferencia		
	Según la Cedente (MPA)	Máximo (MPA)	Nom Cedente (MPA)	erzo ninal Máximo (MPA)	Grado estructural	Esfu cede Diferencia Absoluta	ente Diferencia Relativa	máx Diferencia Absoluta	dimo Diferencia Relativa		
A*	Según la Cedente (MPA) 280	Máximo (MPA) 420	Nom Cedente (MPA) 332,41	erzo ninal Máximo (MPA) 464,78	Grado estructural	Esfu cede Diferencia Absoluta -52,41	Diferencia Relativa -18,72%	máx Diferencia Absoluta -44,78	Diferencia Relativa -10,66%		
A* B* C* D*	Según la Cedente (MPA) 280 280	Máximo (MPA) 420 420	Nom Cedente (MPA) 332,41 370,36	Máximo (MPA) 464,78 524,33 474,64 482,16	Grado estructural	Esfu cede Diferencia Absoluta -52,41 -90,36	Diferencia Relativa -18,72% -32,27%	máx Diferencia Absoluta -44,78 -104,33 -54,64 -62,16	Diferencia Relativa -10,66% -24,84%		
A* B* C* D* E*	Según la Cedente (MPA) 280 280 280	Máximo (MPA) 420 420 420	Nom Cedente (MPA) 332,41 370,36 338,33	Máximo (MPA) 464,78 524,33 474,64 482,16 488,03	Grado estructural 40 40 40	Esfu cede Diferencia Absoluta -52,41 -90,36 -58,33	Diferencia Relativa -18,72% -32,27% -20,83%	máx Diferencia Absoluta -44,78 -104,33 -54,64	Diferencia Relativa -10,66% -24,84% -13,01%		
A* B* C* D*	Según la Cedente (MPA) 280 280 280 280	Máximo (MPA) 420 420 420 420	Nom Cedente (MPA) 332,41 370,36 338,33 339,96	Máximo (MPA) 464,78 524,33 474,64 482,16	Grado estructural 40 40 40 40	Esfu cede Diferencia Absoluta -52,41 -90,36 -58,33 -59,96	Diferencia Relativa -18,72% -32,27% -20,83% -21,42%	máx Diferencia Absoluta -44,78 -104,33 -54,64 -62,16	Diferencia Relativa -10,66% -24,84% -13,01% -14,80%		

- A* = Barra certificada–fabricante "X"
- o B* = Barra no certificada (8,5 mm)–fabricante "X"
- o C* = Barra no certificada (8 mm)–fabricante "X"
- D* = Barra no certificada (7,5 mm)-fabricante "X"
- E* = Barra certificada-fabricante "Y"
- F* = Barra no certificada (8,5 mm)-fabricante "Y"
- o G* = Barra no certificada (7,5 mm)-fabricante "Y"

- Diferencia absoluta = Esf. norma Esf. efectivo ó Esf. relativo
- Diferencia relativa = $\frac{\text{diferencia absoluta}}{\text{esfuerzo según la norma}} * 100$

Tabla XVII. Resultados del ensayo de doblado

No. Resultado 025-2 Pasó la prueba 026-2 Pasó la prueba 027-2 Pasó la prueba 028-2 Pasó la prueba 029-2 Pasó la prueba 030-2 Pasó la prueba Barra no certificada (8,5 mm) – fabricante "X" No. Resultado 019-2 Pasó la prueba 020-2 Pasó la prueba 021-2 Pasó la prueba 022-2 Pasó la prueba 023-2 Pasó la prueba 024-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 033-2 Pasó la prueba 033-2 Pasó la prueba 033-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba	Barı	ra certificada – fabricante "X"
O26-2 Pasó la prueba O27-2 Pasó la prueba O28-2 Pasó la prueba O29-2 Pasó la prueba O30-2 Pasó la prueba Barra no certificada (8,5 mm) – fabricante "X" No. Resultado O19-2 Pasó la prueba O20-2 Pasó la prueba O20-2 Pasó la prueba O21-2 Pasó la prueba O22-2 Pasó la prueba O23-2 Pasó la prueba O24-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado O31-2 Pasó la prueba O32-2 Pasó la prueba O32-2 Pasó la prueba O32-2 Pasó la prueba O33-2 Pasó la prueba O33-2 Pasó la prueba O34-2 Pasó la prueba O35-2 Pasó la prueba O36-2 Pasó la prueba Pasó la prueba O36-2 Pasó la prueba O36-2 Pasó la prueba	No.	Resultado
027-2 Pasó la prueba 028-2 Pasó la prueba 029-2 Pasó la prueba 030-2 Pasó la prueba Barra no certificada (8,5 mm) – fabricante "X" No. Resultado 019-2 Pasó la prueba 020-2 Pasó la prueba 021-2 Pasó la prueba 022-2 Pasó la prueba 022-2 Pasó la prueba 023-2 Pasó la prueba 024-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba	025-2	Pasó la prueba
Pasó la prueba O29-2 Pasó la prueba O30-2 Pasó la prueba Barra no certificada (8,5 mm) – fabricante "X" No. Resultado O19-2 Pasó la prueba O20-2 Pasó la prueba O21-2 Pasó la prueba O22-2 Pasó la prueba O22-2 Pasó la prueba O23-2 Pasó la prueba O24-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado O31-2 Pasó la prueba O32-2 Pasó la prueba O32-2 Pasó la prueba O33-2 Pasó la prueba O33-2 Pasó la prueba O34-2 Pasó la prueba O35-2 Pasó la prueba O36-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado O43-2 Pasó la prueba Pasó la prueba	026-2	Pasó la prueba
O29-2 Pasó la prueba O30-2 Pasó la prueba Barra no certificada (8,5 mm) – fabricante "X" No. Resultado O19-2 Pasó la prueba O20-2 Pasó la prueba O21-2 Pasó la prueba O22-2 Pasó la prueba O23-2 Pasó la prueba O24-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado O31-2 Pasó la prueba O32-2 Pasó la prueba O33-2 Pasó la prueba O33-2 Pasó la prueba O34-2 Pasó la prueba O35-2 Pasó la prueba O36-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado O43-2 Pasó la prueba	027-2	Pasó la prueba
Barra no certificada (8,5 mm) – fabricante "X" No. Resultado 019-2 Pasó la prueba 020-2 Pasó la prueba 021-2 Pasó la prueba 022-2 Pasó la prueba 023-2 Pasó la prueba 024-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado Dasó la prueba	028-2	Pasó la prueba
No. Resultado 019-2 Pasó la prueba 020-2 Pasó la prueba 021-2 Pasó la prueba 022-2 Pasó la prueba 023-2 Pasó la prueba 024-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 031-2 Pasó la prueba 032-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba Pasó la prueba	029-2	Pasó la prueba
No. Resultado 019-2 Pasó la prueba 020-2 Pasó la prueba 021-2 Pasó la prueba 022-2 Pasó la prueba 023-2 Pasó la prueba 024-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba	030-2	Pasó la prueba
019-2 Pasó la prueba 020-2 Pasó la prueba 021-2 Pasó la prueba 022-2 Pasó la prueba 023-2 Pasó la prueba 024-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba	Barra no c	ertificada (8,5 mm) – fabricante "X"
O20-2 Pasó la prueba O21-2 Pasó la prueba O22-2 Pasó la prueba O23-2 Pasó la prueba O24-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado O31-2 Pasó la prueba O32-2 Pasó la prueba O33-2 Pasó la prueba O34-2 Pasó la prueba O35-2 Pasó la prueba O36-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado O43-2 Pasó la prueba	No.	Resultado
O21-2 Pasó la prueba O22-2 Pasó la prueba O23-2 Pasó la prueba O24-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado O31-2 Pasó la prueba O32-2 Pasó la prueba O33-2 Pasó la prueba O34-2 Pasó la prueba O35-2 Pasó la prueba O36-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado O43-2 Pasó la prueba O44-2 Pasó la prueba	019-2	Pasó la prueba
022-2 Pasó la prueba 023-2 Pasó la prueba 024-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	020-2	Pasó la prueba
O23-2 Pasó la prueba O24-2 Pasó la prueba Barra no certificada (8 mm) – fabricante "X" No. Resultado O31-2 Pasó la prueba O32-2 Pasó la prueba O33-2 Pasó la prueba O34-2 Pasó la prueba O35-2 Pasó la prueba O36-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado O43-2 Pasó la prueba O44-2 Pasó la prueba	021-2	Pasó la prueba
Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	022-2	Pasó la prueba
Barra no certificada (8 mm) – fabricante "X" No. Resultado 031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	023-2	Pasó la prueba
No.Resultado031-2Pasó la prueba032-2Pasó la prueba033-2Pasó la prueba034-2Pasó la prueba035-2Pasó la prueba036-2Pasó la pruebaBarra no certificada (7,5 mm) – fabricante "X"No.Resultado043-2Pasó la prueba044-2Pasó la prueba	024-2	Pasó la prueba
031-2 Pasó la prueba 032-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	Barra no	certificada (8 mm) – fabricante "X"
032-2 Pasó la prueba 033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba		
033-2 Pasó la prueba 034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba		•
034-2 Pasó la prueba 035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	032-2	Pasó la prueba
035-2 Pasó la prueba 036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	033-2	Pasó la prueba
036-2 Pasó la prueba Barra no certificada (7,5 mm) – fabricante "X" No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	034-2	Pasó la prueba
No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	035-2	Pasó la prueba
No. Resultado 043-2 Pasó la prueba 044-2 Pasó la prueba	036-2	Pasó la prueba
043-2 Pasó la prueba 044-2 Pasó la prueba	Barra no c	ertificada (7,5 mm) – fabricante "X"
044-2 Pasó la prueba		Resultado
		·
	044-2	·
	045-2	Pasó la prueba
046-2 Pasó la prueba	046-2	·
047-2 Pasó la prueba	047-2	Pasó la prueba
048-2 Pasó la prueba	048-2	Pasó la prueba

Continuación de la tabla XVII.

Barr	Barra certificada – fabricante "Y"							
No.	Resultado							
013-2	Pasó la prueba							
014-2	Pasó la prueba							
015-2	Pasó la prueba							
016-2	Pasó la prueba							
017-2	Pasó la prueba							
018-2	Pasó la prueba							
Barra no c	ertificada (8,5 mm) – fabricante "Y"							
No.	Resultado							
037-2	Pasó la prueba							
038-2	Pasó la prueba							
039-2	Pasó la prueba							
040-2	Pasó la prueba							
041-2	Pasó la prueba							
042-2	Pasó la prueba							
Barra no c	ertificada (7,5 mm) – fabricante "Y"							
No.	Resultado							
007-2	Pasó la prueba							
008-2	Pasó la prueba							
009-2	Pasó la prueba							
010-2	Pasó la prueba							
011-2	Pasó la prueba							
012-2	Pasó la prueba							

Tabla XVIII. Comparación de las características físicas y propiedades mecánicas de las muestras con la Norma Coguanor NTG 36 011

	Ва	rra certific	ada – fabri	icante "X"		
Núm	Característica física o propiedad mecánica	Valor mínimo según la norma	Barra certificada	Barra no certificada	Diferencia absoluta	Diferencia relativa
1	Peso (kg)	0,560	0,536		0,024	4,35 %
2	Longitud (m)	1,00	1,000		0,001	0,05 %
3	Peso (kg/m)	0,560	0,536		0,024	4,29 %
4	Espaciamiento (mm)	6,70	9,07		-2,37	-35,32 %
5	Ancho de ribete (mm)	3,60	2,49		1,11	30,79 %
6	Altura (mm)	0,38	0,609		-0,229	-60,31 %
7	Área (cm²)	0,71	0,684		0,026	3,73 %
8	Diámetro (mm)	9,50	9,33		0,17	1,80 %
9	Perímetro (mm)	29,90	29,31		0,59	1,98 %
10	Grado estructural	40	40		0	0,00 %
11	Tipo de corruga			Х		
12	Doblado a 180°		Р	asó la prue	ba	
	Barra no	certificad	a (8,5mm)	– fabrican	te "X"	
1	Peso (kg)	0,395		0,427	-0,032	-8,14 %
2	Longitud (m)	1,00		0,999	0,001	0,07 %
3	Peso (kg/m)	0,395		0,427	-0,032	-8,22 %
4	Espaciamiento (mm)	5,60		11,23	-5,63	-100,60 %
5	Ancho de ribete (mm)	3,10		3,13	-0,02	-0,81 %
6	Altura (mm)	0,38		0,572	-0,192	-50,44 %
7	Área (cm²)	0,50		0,545	-0,045	-9,03 %
8	Diámetro (mm)	8,00		8,33	-0,33	-4,14 %
9	Perímetro (mm)	25,10		26,17	-1,07	-4,28 %
10	Grado estructural	40		40	0	0,00 %
11	Tipo de corruga			X		
12	Doblado a 180°		P	asó la prue	ba	

Esfuerzo cedente y esfuerzo máximo (ver tabla XVI).

Continuación de la tabla XVIII.

	Barra no certificada (8 mm) – fabricante "X"								
Núm	Característica física o propiedad mecánica	Valor mínimo según la norma	Barra certificada	Barra no certificada	Diferencia absoluta	Diferencia relativa			
1	Peso (kg)	0,395		0V380	0,015	3,88 %			
2	Longitud (m)	1,00		1,000	0,000	-0,03 %			
3	Peso (kg/m)	0,395		0,380	0,015	3,91 %			
4	Espaciamiento (mm)	5,60		10,72	-5,12	-91,37 %			
5	Ancho de ribete (mm)	3,10		2,71	0,39	12,63 %			
6	Altura (mm)	0,38		0,515	-0,135	-35,61 %			
7	Área (cm²)	0,50		0,484	0,016	3,19 %			
8	Diámetro (mm)	8,00		7,85	0,15	1,87 %			
9	Perímetro (mm)	25,10		26,17	-1,07	-4,28 %			
10	Grado estructural	40		40	0	0,00 %			
11	Tipo de corruga		X						
12	Doblado a 180°		Pa	asó la pruel	oa				
	Barra no	certificad	da (7,5 mm) – fabrica	nte "X"				
1	Peso (kg)	0,395		0,380	0,015	3,76 %			
2	Longitud (m)	1,00		1,001	-0,001	-0,12 %			
3	Peso (kg/m)	0,395		0,380	0,015	3,87 %			
4	Espaciamiento (mm)	5,60		8,15	-2,55	-45,54 %			
5	Ancho de ribete (mm)	3,10		2,70	0,40	12,88 %			
6	Altura (mm)	0,38		0,466	-0,086	-22,68 %			
7	Área (cm²)	0,50		0,484	0,016	3,15 %			
8	Diámetro (mm)	8,00		7,85	0,15	1,85 %			
9	Perímetro (mm)	25,10		24,67	0,43	1,72 %			
10	Grado estructural	40		40	0	0,00%			
11	Tipo de corruga			Χ					
12	Doblado a 180°		Pasó la prueba						

Esfuerzo cedente y esfuerzo máximo (ver tabla XVI).

Continuación de la tabla XVIII.

Barra certificada – fabricante "Y"								
Núm	Característica física o propiedad mecánica	Valor mínimo según la norma	Barra certificada	Barra no certificada	Diferencia absoluta	Diferencia relativa		
1	Peso (kg)	0,560	0,536		0,024	4,29 %		
2	Longitud (m)	1,000	1,002		-0,001	-0,15 %		
3	Peso (kg/m)	0,560	0,535		0,025	4,43 %		
4	Espaciamiento (mm)	6,70	11,48		-4,78	-71,27 %		
5	Ancho de ribete (mm)	3,60	2,01		1,59	44,05 %		
6	Altura (mm)	0,38	0,621		-0,241	-63,38 %		
7	Área (cm²)	0,71	0,683		0,027	3,87 %		
8	Diámetro (mm)	9,50	9,32		0,18	1,87 %		
9	Perímetro (mm)	29,90	29,29		0,61	2,05 %		
11	Grado estructural	40	40		0	0,00 %		
10	Tipo de corruga			Х				
12	Doblado a 180°		F	Pasó la prue	ba			
	Barra n	o certifica	da (8,5 mn	n) – fabrica	ante "Y"			
1	Peso (kg)	0,395		0,407	-0,012	-3,12 %		
2	Longitud (m)	1,00		1,001	0,000	-0,05 %		
3	Peso (kg/m)	0,395		0,407	-0,012	-3,07 %		
4	Espaciamiento (mm)	5,60		12,08	-6,48	-115,71 %		
5	Ancho de ribete (mm)	3,10		2,03	1,08	34,68 %		
6	Altura (mm)	0,38		0,819	-0,439	-115,57 %		
7	Área (cm²)	0,50		0,519	-0,019	-3,84 %		
8	Diámetro (mm)	8,00		8,13	-0,13	-1,63 %		
9	Perímetro (mm)	25,10		25,54	-0,44	-1,77 %		
11	Grado estructural	40		40	0	0,00 %		
10	Tipo de corruga			X				
12	Doblado a 180°	Pasó la prueba						

Esfuerzo cedente y esfuerzo máximo (ver tabla XVI).

Continuación de la tabla XVIII.

	Barra no certificada (7,5 mm) – fabricante "Y"								
Núm	Característica física o propiedad mecánica	Valor mínimo según la norma	Barra certificada	Barra no certificada	Diferencia absoluta	Diferencia relativa			
1	Peso (kg)	0,395		0,374	0,021	5,27 %			
2	Longitud (m)	1,00		0,999	0,002	0,15 %			
3	Peso (kg/m)	0,395		0,375	0,020	5,13 %			
4	Espaciamiento (mm)	5,60		9,95	-4,35	-77,68 %			
5	Ancho de ribete (mm)	3,10		1,44	1,66	53,44 %			
6	Altura (mm)	0,38		0,322	0,058	15,35 %			
7	Área (cm²)	0,50		0,478	0,022	4,42 %			
8	Diámetro (mm)	8,00		7,80	0,20	2,49 %			
9	Perímetro (mm)	25,10		24,51	0,59	2,37 %			
11	Grado estructural	40		40	0	0,00 %			
10	Tipo de corruga	X							
12	Doblado a 180°		Pasó la prueba						

Fuente: elaboración propia.

Esfuerzo cedente y esfuerzo máximo (ver tabla XVI).

4.1.2. Gráficas esfuerzo-deformación (máquina universal JBA)

A continuación se presenta la gráfica de esfuerzo-deformación (máquina universal JBA).

Figura 40. **Gráfica esfuerzo-deformación: barra certificada - fabricante** "X"

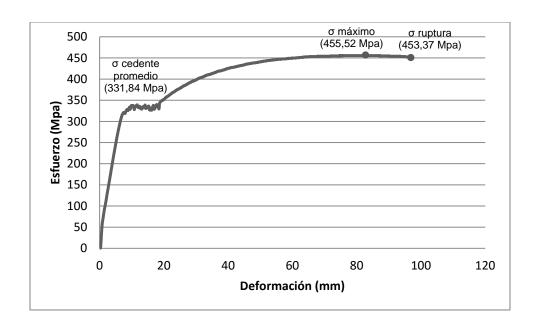


Tabla XIX. Propiedades mecánicas: barra certificada–fabricante "X"

(Cargas		Esfuerzos			
Cedente promedio (Kg)	Máximo (Kg)	Ruptura (Kg)	Cedente promedio (Mpa)	Máximo (Mpa)	Ruptura (Mpa)	
2 313,00	3 175,00	3 160,00	331,84	455,52	453,37	
Grado estructural			40			
% elongación 1,00m			9,41 %			

Figura 41. **Gráfica esfuerzo-deformación: barra no certificada**(8,5 mm) – fabricante "X"

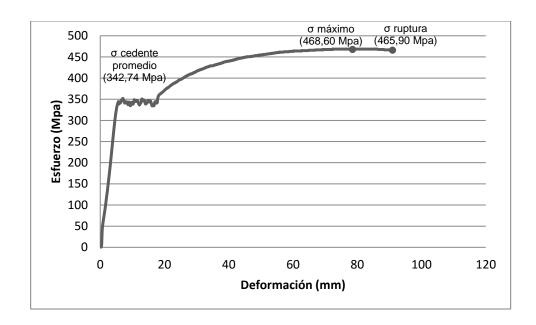


Tabla XX. Propiedades mecánicas: barra no certificada (8.5 mm)-fabricante "X"

Cargas			Esfuerzos		
Cedente promedio (Kg)	Máximo (Kg)	Ruptura (Kg)	Cedente promedio (Mpa)	Máximo (Mpa)	Ruptura (Mpa)
1 905,00	2 605,00	2 590,00	342,74	468,60	465,90
Grado estructural	40				
% elongación 1,00m			9,09 %		

Figura 42. **Gráfica esfuerzo-deformación: barra no certificada** (8 mm)–fabricante "X"

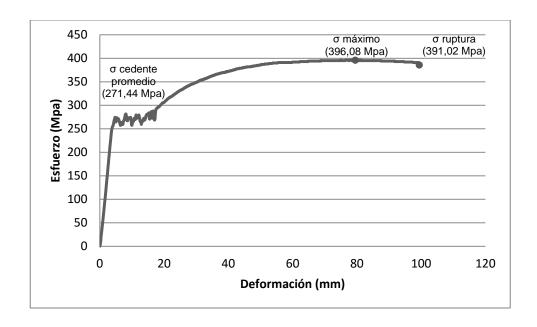


Tabla XXI. Propiedades mecánicas: barra no certificada (8 mm)–fabricante "X"

Cargas			Esfuerzos		
Cedente promedio (Kg)	Máximo (Kg)	Ruptura (Kg)	Cedente promedio (Mpa)	Máximo (Mpa)	Ruptura (Mpa)
1 340,00	1 955,00	1 930,00	271,44	396,08	391,02
Grado estructural	40				
% elongación 1,00m	9,93 %				

Figura 43. **Gráfica esfuerzo-deformación: barra no certificada** (7,5 mm) – fabricante "X"

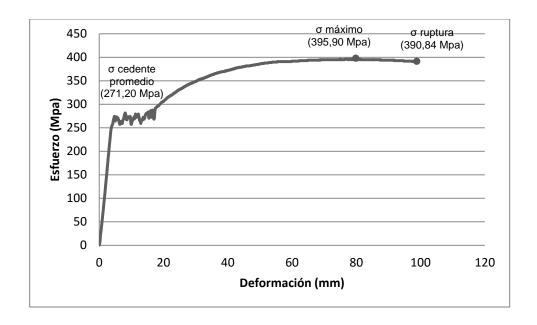


Tabla XXII. Propiedades mecánicas: barra no certificada (7,5 mm)–fabricante "X"

Cargas			Esfuerzos		
Cedente promedio (Kg)	Máximo (Kg)	Ruptura (Kg)	Cedente promedio (Mpa)	Máximo (Mpa)	Ruptura (Mpa)
1 339,00	1 955,00	1 930,00	271,20	395,90	390,84
Grado estructural	40				
% elongación 1,00m			9,91 %		

Figura 44. **Gráfica esfuerzo-deformación:barra certificada – fabricante "Y"**

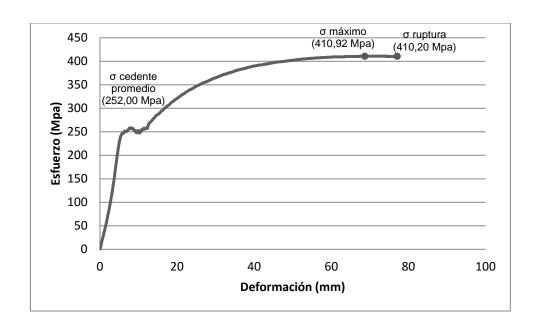


Tabla XXIII. Propiedades mecánicas: barra certificada-fabricante "Y"

Cargas			Esfuerzos		
Cedente promedio (Kg)	Máximo (Kg)	Ruptura (Kg)	Fluencia promedio (Mpa)	Máximo (Mpa)	Ruptura (Mpa)
1 754,00	2 860,00	2 855,00	252,00	410,92	410,20
Grado estructural	40				
% elongación 1,00m			7,70 %		

Figura 45. **Gráfica esfuerzo-deformación: barra no certificada** (8,5 mm) – fabricante "Y"

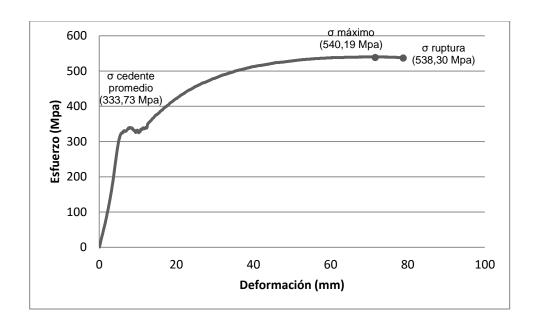
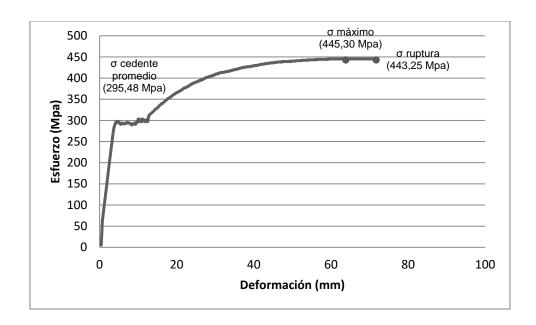
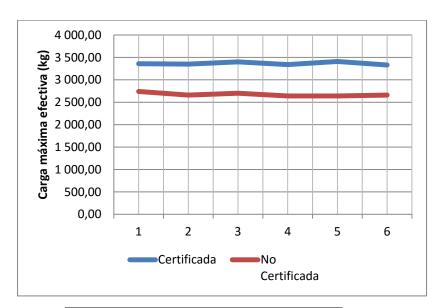


Tabla XXIV. Propiedades mecánicas: barra no certificada (8,5 mm) – fabricante "Y"

	Cargas		E	Sfuerzos	
Cedente promedio (Kg)	Máximo (Kg)	Ruptura (Kg)	Cedente promedio (MPA)	Máximo (MPA)	Ruptura (MPA)
1 767,00	2 860,00	2 850,00	333,73	540,19	538,30
Grado estructural	40				
% elongación 1,00m			7,83 %		

Figura 46. **Gráfica esfuerzo-deformación: barra no certificada** (7,5 mm) – fabricante "Y"




Tabla XXV. Propiedades mecánicas: barra no certificada (7,5 mm) – fabricante "Y"

(Cargas		Е	sfuerzos	
Cedente promedio (Kg)	Máximo (Kg)	Ruptura (Kg)	Cedente promedio (Mpa)	Máximo (Mpa)	Ruptura (Mpa)
1 440,00	2 170,00	2 160,00	295,48	445,30	443,25
Grado estructural	40				
% elongación 1,00m			7,10 %		

4.1.3. Comparación de barras certificadas y barras no certificadas en función de la carga máxima soportada a tensión

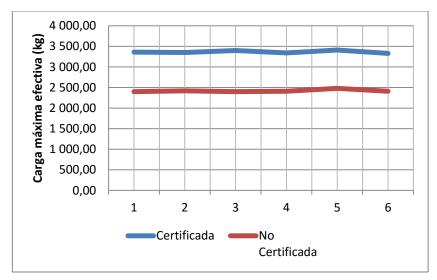

A continuación se presenta la gráfica barra certificada y barra no certificada (8,5 mm) – fabricante "X".

Figura 47. Gráfica barra certificada y barra no certificada (8,5 mm) – fabricante "X"

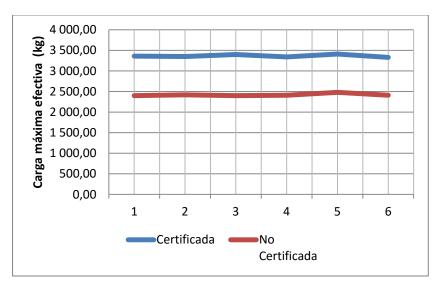

Núm.	Carga Máxima Efectiva (kg)	Carga Máxima Efectiva (kg)	Diferencia Absoluta	Diferencia Relativa	
	Certificada	No Certificada	7 15001dtd	Relativa	
1	3 360	2 740	620,00	18,45 %	
2	3 350	2 660	690,00	20,60 %	
3	3 400	2 700	700,00	20,59 %	
4	3 340	2 640	700,00	20,96 %	
5	3 410	2 640	770,00	22,58 %	
6	3 330	2 660	670,00	20,12 %	

Figura 48. Gráfica barra certificada y barra no certificada (8mm) – fabricante "X"

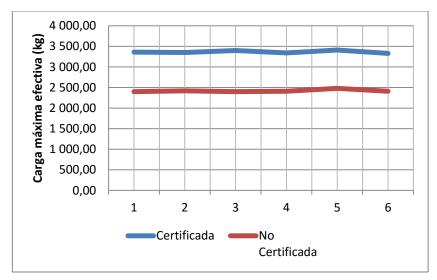

Núm.	Carga Máxima efectiva (kg)	Carga Máxima efectiva (kg)	Diferencia Absoluta	Diferencia Relativa
	Certificada	No Certificada	7.000.00	110.00.10
1	3 360	2 400	960,00	28,57 %
2	3 350	2 420	930,00	27,76 %
3	3 400	2 400	1 000,00	29,41 %
4	3 340	2 410	930,00	27,84 %
5	3 410	2 480	930,00	27,27 %
6	3 330	2 410	920,00	27,63 %

Figura 49. **Gráfica barra certificada y barra no certificada** (7,5 mm) – fabricante "X"

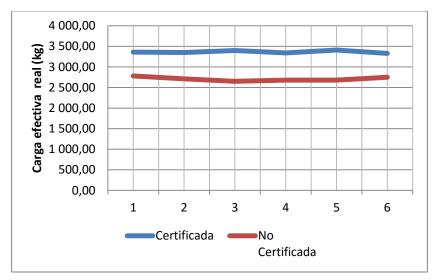

Núm.	Carga Máxima Efectiva (kg)	Carga Máxima Efectiva (kg)	Diferencia Absoluta	Diferencia Relativa	
	Certificada	No Certificada	7 1.000 i di ci	Reidliva	
1	3 360	2 480	880,00	26,19 %	
2	3 350	2 450	900,00	26,87 %	
3	3 400	2 490	910,00	26,76 %	
4	3 340	2 500	840,00	25,15 %	
5	3 410	2 480	930,00	27,27 %	
6	3 330	2 350	980,00	29,43 %	

Figura 50. Gráfica barra certificada y barra no certificada (8,5 mm) – fabricante "Y"

Núm.	Carga Máxima Efectiva (kg)	Carga Máxima Efectiva (kg)	Diferencia Absoluta	Diferencia Relativa	
	Certificada	No Certificada	7 iboolata	Relativa	
1	3 410	2 900	510,00	14,96 %	
2	3 400	3 000	400,00	11,76 %	
3	3 410	3 000	410,00	12,02 %	
4	3 410	2 950	460,00	13,49 %	
5	3 350	2 980	370,00	11,04 %	
6	3 400	2 990	410,00	12,06 %	

Figura 51. **Gráfica barra certificada y barra no certificada** (7,5 mm) – fabricante "Y"

Núm.	Carga Máxima Efectiva (kg)	Carga Máxima Efectiva (kg)	Diferencia Absoluta	Diferencia Relativa	
	Certificada	No Certificada	7 isociata	Reidliva	
1	3 410	2 780	630,00	18,48 %	
2	3 400	2 710	690,00	20,29 %	
3	3 410	2 650	760,00	22,29 %	
4	3 410	2 680	730,00	21,41 %	
5	3 350	2 680	670,00	20,00 %	
6	3 400	2 750	650,00	19,12 %	

4.2. Estudio de mercado con enfoque a precios

A continuación se presenta la tabla de precios de fábrica – fabricante "X".

Tabla XXVI. Precios de fábrica – fabricante "X"

Fabricante "X"				
Tipo de barra	Precio por quintal	Precio Unitario		
Tipo de baira	Precio poi quintai	(por cada barra)		
Certificada	Q 291,88	Q 22,45		
No certificada (8,5 mm)	Q 233,22	Q 17,94		
No certificada (8 mm)	Q 215,02	Q 16,54		
No certificada (7,5 mm)	Q 201,89	Q 15,53		

Precios vigentes en febrero de 2015

Fuente: elaboración propia.

- Longitud de la barra= 6,00 m
- Cantidad de barras por quintal = 13

Tabla XXVII. Precios en ferreterías y ventas de materiales de construcción de barras – fabricante "X"

Fabricante "X"					
Tipo de barra	Precio por quintal	Precio Unitario			
Tipo de baira	Frecio poi quintai	(por cada barra)			
Certificada	Q 290,00	Q 22,31			
No certificada (8,5 mm)	Q 213,25	Q 16,40			
No certificada (8 mm)	Q 202,00	Q 15,54			
No certificada (7,5 mm)	Q 185,00	Q 14,23			

Precios vigentes en febrero de 2015

- Longitud de la barra = 6,00 m
- Cantidad de barras por quintal = 13

Tabla XXVIII. Precios de fábrica-fabricante "Y"

Fabricante "Y"					
Tipo de barra	Precio por quintal	Precio Unitario			
Tipo de barra	Precio poi quintai	(por cada barra)			
Certificada	Q 311,65	Q 22,26			
No certificada (8,5 mm)	Q 229,50	Q 16,39			
No certificada (7,5 mm)	Q 215,53	Q 15,40			

Precios vigentes en febrero de 2015

Fuente: elaboración propia.

- Longitud de la barra = 6,00 m
- Cantidad de barras por quintal = 14

Tabla XXIX. Precios en ferreterías y ventas de materiales de construcción de barras-fabricante "Y"

Fabricante "Y"					
Tipo de barra	Precio por quintal	Precio Unitario (por cada barra)			
Certificada	Q 305,00	Q 23,46			
No certificada (8,5 mm)	Q 230,00	Q 17,69			
No certificada (7,5 mm)	Q 214,00	Q 16,46			

Precios vigentes en febrero de 2015

- Longitud de la barra = 6,00 m
- Cantidad de barras por quintal = 13

4.2.1.1. Comparación de precios entre fabricantes

A continuación se presenta la tabla de comparación entre precios de venta de fábrica por quintal.

Tabla XXX. Comparación entre precios de venta de fábrica por quintal

		Fabricantes		Diferencia	
	Núm.	Х	Y	Diferencia Absoluta	Diferencia Relativa
	AE*	Q 291,88	Q 311,65	Q 19,77	6,34 %
Tipos	BF*	Q 233,22	Q 229,50	Q 3,72	1,60 %
de acero	C*	Q 215,02	Q 0,00	Q 215,02	100,00 %
	DG*	Q 201,89	Q 215,53	Q 13,64	6,33 %

Precios vigentes en febrero de 2015

Fuente: elaboración propia.

- o Equivalencias de barras entre fabricantes
 - AE* = barra certificada fabricante "X" y fabricante "Y"
 - BF*= barra no certificada (8,5 mm) fabricante "X" y fabricante "Y"
 - C*= barra no certificada (8 mm) fabricante "X"
 - DG* = barra no certificada (7,5 mm) fabricante "X" y fabricante "Y"

Tabla XXXI. Comparación entre precios de venta de fábrica por unidad de barra

	Núm.	Fabrio	cantes	Difer	encia
		X	Y	Diferencia Absoluta	Diferencia Relativa
	AE*	Q 22,45	Q 22,26	Q 0,19	0,85 %
Tipos	BF*	Q 17,94	Q 16,39	Q 1,55	8,64 %
de acero	C*	Q 16,54	Q 0,00	Q 16,54	100,00 %
	DG*	Q 15,53	Q 15,40	Q 0,14	0,90 %

Precios vigentes en febrero de 2015

Fuente: elaboración propia.

- o Equivalencias de barras entre fabricantes
 - AE* = barra certificada fabricante "X" y fabricante "Y"
 - BF*= barra no certificada (8,5 mm) fabricante "X" y fabricante "Y"
 - C*= barra no certificada (8 mm) fabricante "X"
 - DG* = barra no certificada (7,5 mm) fabricante "X" y fabricante "Y"

Tabla XXXII. Comparación entre precios de venta en ferreterías y ventas de materiales de construcción por quintal

	Fabricantes		Diferencia		
	Núm.	Х	Y	Diferencia Absoluta	Diferencia Relativa
	AE*	Q 290,00	Q 305,00	Q 15,00	4,92 %
Tipos	BF*	Q 213,25	Q 230,00	Q 16,75	7,28 %
de acero	C*	Q 202,00	Q 0,00	Q 202,00	100,00 %
	DG*	Q 185,00	Q 214,00	Q 29,00	13,55 %

Precios vigentes en febrero de 2015

Fuente: elaboración propia.

- o Equivalencias de barras entre fabricantes
 - AE* = barra certificada fabricante "X" y fabricante "Y"
 - BF*= barra no certificada (8,5 mm) fabricante "X" y fabricante "Y"
 - C*= barra no certificada (8 mm) fabricante "X"
 - DG* = barra no certificada (7,5 mm) fabricante "X" y fabricante "Y"

Tabla XXXIII. Comparación entre precios de venta en ferreterías y ventas de materiales de construcción por unidad de barra

	Núm.	Fabricantes		Difer	Diferencia	
		X	Y	Diferencia Absoluta	Diferencia Relativa	
	AE*	Q 22,31	Q 23,46	Q 1,15	4,90 %	
Tipos	BF*	Q 16,40	Q 17,69	Q 1,29	7,29 %	
de acero	C*	Q 15,54	Q 0,00	Q 15,54	100,00 %	
	DG*	Q 14,23	Q 16,46	Q 2,23	13,55 %	

Precios vigentes en febrero de 2015

Fuente: elaboración propia.

- o Equivalencias de barras entre fabricantes
 - AE* = barra certificada fabricante "X" y fabricante "Y"
 - BF*= barra no certificada (8,5 mm) fabricante "X" y fabricante "Y"
 - C*= barra no certificada (8 mm) fabricante "X"
 - DG* = barra no certificada (7,5 mm) fabricante "X" y fabricante "Y"

4.2.1.2. Precios unitarios en función de la masa unitaria (kg/m)

A continuación se presenta la tabla de precio por metro lineal y precio por kilogramo, según precios de venta de fábrica de las barras para refuerzo.

Tabla XXXIV. Precio por metro lineal y precio por kilogramo, según precios de venta de fábrica de las barras para refuerzo

Tipo	Precio por barra de 6,00 m (Q)	Masa Unitaria en 1,00 m (kg/m)	Masa por barra de 6,00 m (kg)	Precio por metro (Q/m)	Precio por kilogramo (Q/kg)
Α*	Q 22,45	0,536	3,22	Q 3,74	Q 6,98
B*	Q 17,94	0,427	2,56	Q 2,99	Q 7,00
C*	Q 16,54	0,380	2,28	Q 2,76	Q 7,26
D*	Q 15,53	0,380	2,28	Q 2,59	Q 6,81
E*	Q 22,26	0,536	3,22	Q 3,71	Q 6,92
F*	Q 16,39	0,407	2,44	Q 2,73	Q 6,71
G*	Q 15,40	0,374	2,25	Q 2,57	Q 6,86

Precios vigentes en febrero de 2015

Fuente: elaboración propia.

Donde

A* = Barra certificada – fabricante "X"

○ B* = Barra no certificada (8,5 mm) – fabricante "X"

o C* = Barra no certificada (8 mm) – fabricante "X"

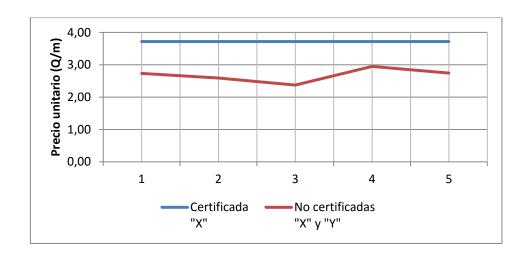
o D* = Barra no certificada (7,5 mm) – fabricante "X"

E* = Barra certificada – fabricante "Y"

F* = Barra no certificada (8,5 mm) – fabricante "Y"

G* = Barra no certificada (7,5 mm) – fabricante "Y"

Tabla XXXV. Precios de venta de ferretería y venta de materiales de construcción


Tipo	Precio por barra de 6,00 m (Q)	Masa Unitaria en 1,00 m (kg/m)	Masa por barra de 6,00 m (kg)	Precio por metro (Q/m)	Precio por kilogramo (Q/kg)
A*	Q 22,31	0,536	3,22	Q 3,72	Q 6,94
В*	Q 16,40	0,427	2,56	Q 2,73	Q 6,40
C*	Q 15,54	0,380	2,28	Q 2,59	Q 6,82
D*	Q 14,23	0,380	2,28	Q 2,37	Q 6,24
E*	Q 23,46	0,536	3,22	Q 3,91	Q 7,30
F*	Q 17,69	0,407	2,44	Q 2,95	Q 7,24
G*	Q 16,46	0,374	2,25	Q 2,74	Q 7,33

Precios vigentes en febrero de 2015

Fuente: elaboración propia.

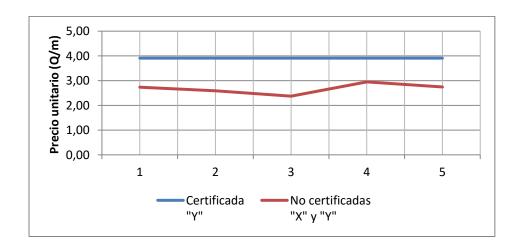

- A* = Barra certificada fabricante "X"
- B* = Barra no certificada (8,5 mm) fabricante "X"
- o C* = Barra no certificada (8 mm) fabricante "X"
- o D* = Barra no certificada (7,5 mm) fabricante "X"
- E* = Barra certificada fabricante "Y"
- F* = Barra no certificada (8,5 mm) fabricante "Y"
- o G* = Barra no certificada (7,5 mm) fabricante "Y"

Figura 52. Comparación de precios unitarios entre la barra certificada del fabricante "X" y las barras no certificadas de los fabricantes "X" y "Y"

Fuente: elaboración propia, con base en datos de la tabla XXXIV.

Figura 53. Comparación de precios unitarios entre la barra certificada del fabricante "Y" y las barras no certificadas de los fabricantes "X" y "Y"

Fuente: elaboración propia, con base en datos de la tabla XXXIV.

4.3. Tipo y forma de la falla obtenida en la prueba mecánica

A continuación se presenta la figura de la falla irregular fibrosa.

Figura 54. Falla irregular fibrosa

Fuente:

Sección de Metales y Productos Manufacturados del Centro de Investigación de Ingeniería -CII- de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

5. ANÁLISIS DE RESULTADOS

No se encontraron investigaciones previas de las características físicas y propiedades mecánicas de las barras para refuerzo, no certificadas, equivalentes al diámetro de 10 mm (3/8").

El resumen de las características físicas obtenidas, indica que las barras certificadas y las barras no certificadas, tanto del fabricante "X" como el fabricante "Y" pueden ser analizadas de forma cuantitativa. Los resultados son valores promedio, obtenidos en el laboratorio del CII, de cada uno de los tipos de barras ensayadas. El valor cuantitativo de cada característica física, entonces, puede considerase un valor representativo (ver tabla XII).

La masa unitaria de cada una de las muestras incluye el ribete, las corrugas y el área efectiva. Por lo cual es complejo realizar un análisis exacto de la densidad de las muestras, debido a la irregularidad del volumen que se presenta. Pero si se hace un análisis con respecto a solamente el área efectiva, que brinda un volumen regular, puede decirse que las barras no certificadas presentan un leve incremento en densidad con respecto a las barras certificadas.

El valor del área efectiva de las barras no certificadas va disminuyendo según va decreciendo la calidad del acero, con respecto a las barras certificadas, en ambos fabricantes.

Las medidas de dispersión estadística muestran que todos los valores obtenidos de las características físicas son cercanos al valor de la media muestral (ver tabla XII).

Al analizar las gráficas de dispersión de la masa unitaria *versus* el área efectiva, puede observarse que para los siete tipos de barras analizados, el valor del coeficiente de determinación es igual a uno. Por ende el coeficiente de correlación es también igual a uno, lo cual quiere decir que la correlación es perfecta y positiva. Entonces puede analizarse que entre más cercano sea el valor de la variable independiente (masa unitaria) al valor de la masa unitaria establecida en la Norma Coguanor NTG 36 011 (ASTM A615/AST A615M-12), tercera revisión, año 2013, más se acercará también el valor de la variable dependiente (área efectiva) al valor que establece la norma (ver figuras de la 33 a la 39), lo que da certeza en el cálculo estructural.

Para analizar el valor promedio las propiedades mecánicas, consideradas en este trabajo de graduación, de las barras para refuerzo (esfuerzo cedente, esfuerzo máximo y elongación) se presentan dos alternativas. La primera está en función de la carga efectiva y del área efectiva (esfuerzo efectivo) y la segunda está en función de la carga efectiva y del área nominal (esfuerzo nominal). Esto con la finalidad de obtener valores diferentes en los esfuerzos (ver tabla XV).

En la primera alternativa, el comportamiento del esfuerzo cedente y esfuerzo máximo de las barras no certificadas del fabricante "X", las tres muestras presentan un incremento respecto al valor del esfuerzo cedente y esfuerzo máximo de la barra certificada del fabricante. "X", exceptuando la barra no certificada (8 mm) de este mismo fabricante. Esta que presenta un decremento en ambos esfuerzos. En el caso del comportamiento del esfuerzo cedente y esfuerzo máximo de las barras no certificadas del fabricante "Y",

ambos presentan un incremento respecto al valor del esfuerzo cedente y esfuerzo máximo de la barra certificada del fabricante "Y".

En la segunda alternativa, el comportamiento del esfuerzo cedente y esfuerzo máximo de las barras no certificadas del fabricante "X", las tres muestras presentan un incremento respecto al valor del esfuerzo cedente y esfuerzo máximo de la barra certificada del fabricante "X". En el caso del comportamiento del esfuerzo cedente y esfuerzo máximo de las barras no certificadas del fabricante "Y", ambos presentan un incremento respecto al valor del esfuerzo cedente y esfuerzo máximo de la barra certificada del fabricante "Y".

En el caso de la elongación para las barras no certificadas del fabricante "X", estas presentan incremento en el valor, respecto a la elongación de la barra certificada del fabricante "X". Para la elongación de las barras no certificadas del fabricante "Y", estas presentan también incremento en el valor, respecto a la elongación de la barra certificada del fabricante "Y".

El grado estructural de las barras no certificadas y de las barras certificadas para ambos fabricantes (X y Y) se analiza según los valores mínimos de esfuerzo cedente y esfuerzo máximo que estable la Norma Coguanor 36 011 (ASTM A615/ASTM A615M-12), tercera revisión, año 2013, contra el valor del esfuerzo cedente y el valor del esfuerzo máximo, obtenidos en el ensayo de tensión.

Entonces el grado estructural asignado es grado 40 para todas las barras, ya que todos los valores se encuentran dentro del rango de valores mínimos establecidos por la Norma. La diferencia absoluta y la diferencia relativa son negativas, indicando que el esfuerzo cedente y el esfuerzo máximo son

mayores al esfuerzo cedente y al esfuerzo máximo establecidos por la norma. Ya que para este caso se toma como valor patrón el valor de esfuerzo que considera dicha norma (ver tabla XVI).

El ensayo de doblado a 180° todas las muestras certificadas y no certificadas de ambos fabricantes pasaron la prueba. Esto indica que ninguna de las muestras presenta fisuras en el exterior (ver tabla XVII).

Al analizar la comparación de los resultados obtenidos de las características físicas y las propiedades mecánicas de las barras para refuerzo, no certificadas, equivalentes al diámetro de 10 mm (3/8") con los valores establecidos en la Norma Coguanor 36 011 (ASTM A615/ASTM A615M-12), tercera revisión, año 2013, (ver tabla XVIII) indica que:

- Para la barra certificada del fabricante "X", todos los valores son menores a los establecidos por la Norma, excepto el espaciamiento y el ancho de ribete que presenta un valor mayor.
- Para la barra no certificada (8,5 mm) del fabricante "X", todos los valores son mayores a los establecidos por la norma.
- Para la barra no certificada (8 mm) del fabricante "X", todos los valores son menores a los establecidos por la Norma, excepto el espaciamiento, la altura y el perímetro que presentan un valor mayor.
- Para la barra no certificada (7,5 mm) del fabricante "X", todos los valores son menores a los establecidos por la Norma, excepto el espaciamiento y la altura que presentan un valor mayor.

- Para la barra certificada del fabricante "Y", todos los valores son menores a los establecidos por la Norma, excepto el espaciamiento y la altura que presentan un valor mayor.
- Para la barra no certificada (8,5 mm) del fabricante "Y", todos los valores son mayores a los establecidos por la norma, excepto el espaciamiento y el ancho que presentan un valor menor.
- Para la no certificada (7,5 mm) del fabricante "Y", todos los valores son menores a los establecidos por la norma, excepto el espaciamiento que presentan un valor mayor.

Los gráficos esfuerzo y deformación que se obtuvieron con base en los datos proporcionados del ensayo de tensión en la máquina universal JBA, presentan los tres esfuerzos que describe la teoría bibliográfica, esfuerzo cedente, esfuerzo máximo o de tracción y esfuerzo de ruptura (ver figura 6).

Estos datos proporcionan originalmente la carga cedente, carga máxima, carga de ruptura y la deformación, para que posteriormente se obtenga el diagrama esfuerzo - deformación. El esfuerzo cedente presenta varios valores, por lo cual, se muestra un valor promedio del mismo. El valor de la carga máxima es mayor para las barras certificadas que las barras no certificadas. Se analiza que existen diferencias entre los valores de esfuerzos para los encontrados con la máquina universal JBA y la máquina universal Baldwin Lima Hamilton (ver figuras de la 40 a la 46).

La carga cedente y carga máxima obtenida en la máquina universal JBA, presenta mayores valores que los obtenidos en la máquina universal Baldwin Lima Hamilton, tanto en las barras certificadas como en la barras no

certificadas. La mayor diferencia relativa que se presenta es de 22,75 % para la carga cedente y de 20,47 % para la carga máxima. Ambos valores se presentan en las barras no certificadas (7,5 mm) del fabricante "X".

Otra forma de analizar la calidad de las barras para refuerzo es mediante la carga máxima a tensión que soporta cada barra certificadas como la barra no certificada. Entonces al graficar los resultados de los fabricantes puede establecerse que para este caso soporta más carga máxima a tensión la barra certificada que la barra no certificada (ver figuras de la 47 a la 51).

Los resultados del estudio de mercado demuestran que para las barras no certificadas y barras certificadas del fabricante "X", poseen mayor precio de adquisición en la fábrica que en las ferreterías y ventas de materiales de construcción tanto por quintal como por unidad de barra. Las barras no certificadas y barras certificas del fabricante "Y", poseen menor precio de adquisición en la fábrica que en las ferreterías y ventas de materiales de construcción (ver tablas de la XXVI a la XXIX).

La comparación de precios entre fabricantes para precios de venta de fábrica por quintal (ver tabla XXX), determina que:

- Las barras certificadas poseen un menor precio de adquisición en 6,34 % en la fábrica "X".
- Las barras equivalentes a 8,5 mm poseen un menor precio de adquisición en 1,60% en la fábrica "Y".
- Las barras no certificadas (7,5 mm) poseen un menor precio de adquisición en 6,33 % en la fábrica "X".

La comparación de precios entre fabricantes para precios de venta de fábrica por unidad de barra (ver tabla XXXI), determina que:

- Las barras certificadas poseen un menor precio de adquisición en 0,85 % en la fábrica "Y".
- Las barras equivalentes a 8,5 mm poseen un menor precio de adquisición en 8,64 % en la fábrica "Y".
- Las barras no certificadas (7,5 mm) poseen un menor precio de adquisición en 0,90 % en la fábrica "Y".

La comparación de precios de venta en ferreterías y venta de materiales de construcción por quintal (ver tabla XXXII), determina que:

- Las barras certificadas poseen un menor precio de adquisición en 4,92 % en la fábrica "X".
- Las barras no certificadas equivalentes a 8.5 mm poseen un menor precio de adquisición en 7,28 % en la fábrica "X".
- Las barras no certificadas (7,5 mm) poseen un menor precio de adquisición en 13,55 % en la fábrica "X".

La comparación de precios de venta en ferreterías y/o venta de materiales de construcción por unidad de barra (ver tabla XXXIII), determina que:

 Las barras certificadas poseen un menor precio de adquisición en 4,90 % en la fábrica "X".

- Las barras no certificadas equivalentes a 8,5 mm poseen un menor precio de adquisición en 7,29 % en la fábrica "X".
- Las barras no certificadas (7,5 mm) poseen un menor precio de adquisición en 13,55 % en la fábrica "X".

Puede establecerse también un análisis del precio por kilogramo, según precios de venta de fábrica y según precios de venta de ferretería y venta de materiales de construcción. Esto con la finalidad de no tener únicamente el precio por metro lineal. Ya que de esta manera puede adquirirse otro criterio a la hora de la compra de las barras para refuerzo como material de construcción.

Según los precios de venta de fábrica (ver tabla XXXIV), indican que:

- Para el fabricante "X", las barras certificadas y no certificadas (7,5 mm)
 poseen menor precio de adquisición por kilogramo.
- Para el fabricante "Y" las barras certificadas poseen mayor precio de adquisición por kilogramo que las barras no certificadas.

Según los precios de venta de ferretería y venta de materiales de construcción (ver tabla XXXV), indican que:

- Para el fabricante "X", las barras certificadas poseen mayor precio de adquisición por kilogramo que las barras no certificadas.
- Para el fabricante "Y", las barras certificadas y barras no certificadas (8,5 mm) poseen menor precio de adquisición por kilogramo que las barras milimétricas.

Las gráficas de comparación de precios unitarios entre barras certificadas y barras no certificadas, para ambos fabricantes, demuestran que las barras certificadas poseen un mayor precios de adquisición por metro lineal que las barras no certificadas (ver figura 52 y figura 53).

La falla que se presenta tanto en las barras certificadas y barras no certificadas fue de tipo irregular fibrosa (ver figura 54).

CONCLUSIONES

La norma a la cual se hace referencia en el apartado de conclusiones es la Norma Coguanor 36 011 (ASTM A615/A615M-12), tercera revisión, año 2013. Para, de esta manera, tomar en consideración sus especificaciones y aplicarlas únicamente a las barras para refuerzo, no certificadas, equivalentes al diámetro de 10 mm (3/8"), barras que son objeto de estudio en este trabajo de graduación.

- 1. Los valores encontrados para las mediciones de corrugas en barras de acero certificadas y barras de acero no certificadas no cumplen con las especificaciones de la Norma. El espaciamiento entre corrugas supera el 70 % del diámetro nominal que establece la Norma, el valor de ancho de corruga está en su mayoría bajo 12,5 % del perímetro nominal y el valor de altura de corrugas están sobre el valor, pero a pesar de ello, la Norma sugiere que no es motivo para rechazar las barras para refuerzo, aunque los valores excedan lo establecido.
- El valor de la masa unitaria está arriba del valor mínimo de 94 % de la masa unitaria establecida por la Norma, lo cual hace aceptable a las barras de acero para refuerzo no certificadas, específicamente para estos parámetros.
- 3. El área efectiva de las barras no certificadas no cumplen con el valor que estable la Norma. Por ello debe tomarse en consideración, ya que este dato es de suma importancia para el ingeniero civil, en el diseño estructural, debido a que el área efectiva no es la que se utiliza en la

ecuación del área de acero al calcular el refuerzo para los elementos estructurales requeridos. En caso de utilizar barras para refuerzo equivalentes a 10 mm (3/8"). Por consiguiente el perímetro y diámetro poseen valores diferentes a los establecidos también por la Norma, ya que estos están en función del área efectiva.

- 4. Existe una relación estrecha entre la masa unitaria y el área efectiva, ya que esta última depende de la primera. Entonces una forma sencilla de chequear el área efectiva es comparar el valor de la masa unitaria obtenida en la balanza con el valor que especifica la Norma, ya que entre más se acerque el valor de la masa unitaria al valor normado, más se acercara también al valor del área efectiva que especifica dicha Norma. Debido, a que estos valores son directamente proporcionales.
- 5. De acuerdo a los resultados obtenidos relacionadas con el estudio de las barras no certificadas correspondientes a este trabajo de graduación, proporcionan resultados adecuados que cumplen con cierto grado estructural. Esto no implica que dicho material pueda recomendarse para el uso en elementos estructurales ya que se desconoce la procedencia de las mismas.
- 6. Las barras para refuerzo no certificadas ensayadas están dentro de los parámetros mínimos del esfuerzo cedente y esfuerzo máximo que estable la norma, para este parámetro.
- 7. Todas las barras para refuerzo evaluadas pasaron la prueba de doblado a 180°, lo cual indica que el material es dúctil y que probablemente posee la cantidad de carbono necesaria para brindarle esta propiedad a las barras de refuerzo.

- 8. La falla obtenida después de realizado el ensayo de tensión fue de tipo irregular y fibrosa. Esto pertenece a las fallas o fracturas típicas por tensión de los metales, denotando entonces de esta manera ductilidad en el material.
- 9. Las barras para refuerzo certificadas en cualquiera de los casos estudiados poseen mayores precios de adquisición que las barras para refuerzo no certificadas.

RECOMENDACIONES

Con base en los resultados obtenidos en los ensayos de laboratorio y las conclusiones de este trabajo de graduación, se recomienda:

- Analizar los incrementos en los valores de las mediciones de corrugas obtenidas en este estudio, ya que los incrementos exagerados, en sus valores, podrían afectar la adherencia que debe de existir entre el concreto y las barras para refuerzo.
- 2. Un control estricto de parte del fabricante en cuanto al valor de la masa unitaria en las barras para refuerzo, podría garantizar que se obtenga un valor más cercano al área nominal, debido a que el área efectiva esta en función de la masa unitaria y la densidad del acero.
- 3. Al diseñador estructural o al ingeniero constructor tomar las debidas precauciones en cuanto al uso de las barras no certificadas, ya que los resultados obtenidos en el laboratorio indican que el área efectiva posee en la mayoría de los casos valores menores al área nominal que establece la Norma. En caso de utilizarse, pueda hacerse en elementos estructurales secundarios, para de esta forma garantizar la seguridad estructural.
- 4. Efectuar estudios posteriores que establezcan la cantidad de carbono que poseen las barras para refuerzo no certificadas, para verificar de mejor manera la ductilidad del material, y dar más confiablidad a los valores obtenidos con este reciente estudio para el esfuerzo cedente y el

esfuerzo máximo. Según la Norma están dentro de los paramentos establecidos, para considerar que pueden utilizarse en los diseños sismo resistentes.

- Tener precaución al momento de decidir la utilización de barras no certificadas, privilegiando el precio sobre la seguridad estructural, dejando así como punto secundario el salvaguardar la vida humana.
- 6. Realizar estudios posteriores a las barras para refuerzo no certificadas de diferentes diámetros que se comercializan en Guatemala. Obtener las características físicas, propiedades mecánicas, la dureza e inclusive las propiedades químicas, ya que en la actualidad en el área de la construcción no se utilizan únicamente barras para refuerzo no certificadas equivalentes a 10 mm (3/8").
- 7. Utilizar barras certificadas en todo proceso constructivo, de tal manera que se garanticen las características físicas y las propiedades mecánicas de las mismas, a efecto de garantizar la seguridad estructural.

BIBLIOGRAFÍA

- ARRESIS LOPEZ, Jorge Vinicio. Verificación de las características físicas y propiedades mecánicas de barras de acero para refuerzo, utilizadas en las construcciones de uso comercial y vivienda unifamiliar en el municipio de Mixco. Trabajo de graduación de Ing. Civil. Universidad de San Carlos de Guatemala. Facultad de Ingeniería, 2011. 141 p.
- 2. CHIAVERINI, Vicente. *Aceros y fundiciones de hierro*. Santiago de Chile: ILAFA, 1985. 383 p.
- COGUANOR (Comisión Guatemalteca de Normas). Norma técnica guatemalteca NTG 36 011 (ASTM A615/A615M-12), tercera revisión. Guatemala: Ministerio de Economía, 2013. 17 p.
- Constructor Civil. Adherencia entre el hormigón y el acero. [en línea].
 http://www.elconstructorcivil.com/2012/02/adherencia-entre-el-hormigon-y-el-acero.html. [Consulta: mayo de 2015].
- 5. DEGUATE. *Historia.* [en línea]. http://www.deguate.com/artman/publish/hist_colonial/trasladosciudad-guatemala.shtml#.Vh2Mi_mqqkr. [Consulta: junio de 2015].

- 6. Dirección General de Caminos. Plan operativo anual 2014. [en línea]. http://www.caminos.gob.gt/ley_accesoinformacionpublica/docs/2014/LAI/03Marzo/Art10Num05-Plan_Operativo_Anual_2014.pdf. [Consulta: agosto de 2015].
- 7. Facultad de Ingeniería. *Estadística*. [en línea]. http://destadistica.ingenieria.usac.edu.gt/index.php?option=com_content&view=article&id=48&Itemid=66. [Consulta: mayo de 2015].
- 8. GÉNESIS MEGAPROGRAMAS, S.A. *Historia y cultura de Guatemala*. [CD-ROOM]. Guatemala: 1999. [Consulta: mayo de 2015].
- 9. GUATECAD. *Todas las zonas de la ciudad de Guatemala*. [en línea]. https://guatecad.wordpress.com/2011/06/28/todas-las-zonas-de-la-ciudad-de-guatemala/. [Consulta: junio de 2015].
- 10. Ingemecánica. Valores de pesos específicos y densidades de materiales. [en línea]. http://ingemecanica.com/tutoriales/pesos.html#metales. [Consulta: mayo de 2015].
- MCCORMAC, Jack C. Diseño de concreto reforzado. 5a ed. México: Alfaomega, 2005. 796 p.
- 12. _____. Diseño de estructuras metálicas. 3a ed. México: Representaciones y servicios de ingeniería, 1983. 789 p.

- MERRIT, Frederick S; RICKETTS, Jonathan T. Manual integral para diseño y construction. Bogotá, Colombia: McGraw Hill, 1997. p. irregular.
- 14. MORALES RAMIREZ, Evelyn Maribel. Manual de apoyo docente para desarrollar ensayos de laboratorio, relacionados con materiales de construcción. Trabajo de graduación de Ing. Civil. Universidad de San Carlos de Guatemala, Facultad de Ingeniería. 2006. 136 p.
- 15. Municipalidad de Guatemala. *Cultura*. [en línea]. http://cultura.muniguate.com/index.php/component/content/article/114-zonasciudad/678-zonasciudad. [Consulta: junio de 2015].
- 16. NOVELO PECH, Arcadia Amabel. Análisis comparativo de los ensayos de las barras de acero de construcción entre los laboratorios de Aceros de Guatemala y el Centro de Investigaciones de Ingeniería, según norma COGUANOR NGO 36 011 2005. Trabajo de graduación de Ing. Civil. Universidad de San Carlos de Guatemala, Facultad de Ingeniería. 2010. 74 p.
- 17. *Plaza Pública*. [en línea]. http://www.plazapublica.com.gt/content/zona-roja-o-zona-crema-o-naranja. [Consulta: junio de 2015].
- 18. Propiedades de los materiales de construcción. Las propiedades mecánicas. [en línea]. http://propiedadesmaterialesdeconstruccin.blogspot.com/2013/04/propiedades-mecanicas-de-los-materiales.html. [Consulta: mayo de 2015].

- 19. WADDELL, Joseph. J; DOBROWOLSI, Joseph A. *Manual de la construcción con concreto.* 3a ed. México: McGraw Hill, 1997. p. irr.
- 20. ZECEÑA GIRON, Carlos Efraín. *Prácticas de laboratorio de resistencia de materiales 1, compendio del libro "Ensayo e inspección de los Materiales"* Guatemala.
- 21. _____. Prácticas de laboratorio de resistencia de materiales 1. Guatemala. 44 p.

APÉNDICES

Apéndice 1. Listado de centros poblados,

Municipio de Guatemala,

Unidad de nomenclatura.

ZONA 1		
No.	Nombre	Descripción
1	05 de Octubre	Asentamiento
2	10 de Mayo	Colonia
3	Candelaria	Barrio
4	Colina I	Asentamiento
5	Colina II	Asentamiento
6	Colón	Barrio
7	El Administrador	Barrio
8	El Cerro del Carmen	Barrio
9	El Roble	Colonia
10	El Tuerto	Colonia
11	Gerona	Barrio
12	Juan Chapín	Barrio
13	La Barranquilla	Colonia
14	La Limonada	Asentamiento
15	La Recolección	Barrio
16	Las Victorias	Colonia
17	Matamoros	Barrio
18	San Sebastián	Barrio
19	San José	Barrio
20	Santo Domingo el Tuerto	Asentamiento

ZONA 2		
No.	Nombre	Descripción
1	El Zapote	Finca
2	San Ángel I	Residenciales
3	San Ángel II	Residenciales
4	San Ángel III	Condominio
5	La Floresta	Condominio
6	Bosques del Zapote	Residenciales
7	Valle Escondido	Condominio
8	Colinas del Zapote	Condominio
9	Montelimar	Condominio
10	Cañada del Zapote	Condominio
11	Filadelfia	Condominio
12	Villas del Zapote	Condominio
13	Jardines del Zapote	Condominio
14	Jardines de Santa Defina	Condominio
15	Alegría	Condominio
16	San Antonio	Colonia
17	Floresta	Colonia
18	El Sauce	Colonia
19	Jocotenango	Colonia
20	Moderno	Barrio
21	Ciudad Nueva	Colonia
22	El Roble	Colonia
23	Melgar Díaz	Colonia
24	Argueta	Colonia
25	Alamedas de San Gabriel	Condominio
26	Villas de Arcángel	Condominio
27	Villas de San Ángel	Condominio
28	San Ángel IV	Condominio
29	Altos de San Ángel	Condominio
30	San Ángel IV, La Isla	Condominio
31	Rincones del Zapote	Condominio

	ZONA 3		
No.	Nombre	Descripción	
1	La Ruedita	Colonia	
2	Elena	Colonia	
3	Buena Vista	Colonia	
4	La Paz	Colonia	
5	Barrillas	Colonia	
6	Barrios	Colonia	
7	Cervantes	Colonia	
8	El Gallito (Cantón Elena)	Barrio	
9	Santa Isabel	Colonia	
10	Elena	Colonia	
11	Lo de Carrio	Barrio	
12	Lo de Bran	Colonia	

ZONA 5		
No.	Nombre	Descripción
1	15 de Agosto	Asentamiento
2	Lourdes 1	Asentamiento
3	El esfuerzo	Asentamiento
4	Monja Blanca	Colonia
5	Ferrocarrilera	Colonia
6	Santo Domingo La Chácara	Colonia
7	San José La Chácara	Colonia
8	20 de Octubre	Colonia
9	Santa Ana	Colonia
10	Covias	Colonia
11	Saravia	Colonia
12	Vivibien	Colonia
13	San Pedrito	Colonia
14	25 de Junio	Colonia
15	La Palmita	Colonia
16	Abril	Colonia
17	Lomas del Edén	Colonia
18	Edén	Colonia
19	Labor	Colonia
20	Arrivillaga	Colonia
21	Jardines de la Asunción	Colonia

ZONA 6		
No.	Nombre	Descripción
1	Los Cipresales	Colonia
2	La Franja	Colonia
3	Proyecto 4-4	
4	Los Cipresales	Residenciales
5	30 de Junio	Colonia
6	La Pedrera	Finca
7	San Juan de Dios	Colonia
8	San Antonio	Barrio
9	El Quintanal	
10	El Martinico II	Colonia
11	El Martinico I	Colonia
12	Nuevo San Antonio	Colonia
13	Jesús de la Buena Esperanza	Asentamiento
14	El Carmen	Colonia
15	Los Ángeles	Colonia
16	La Ermita	Barrio
17	Policía Nacional Civil	Academia
18	Bienestar Social	Colonia
19	La Reynita	Colonia
20	Proyecto 4-10	
21	Las Alondras	Colonia
22	Divina Pastora	Asentamiento
23	Luz de La Mañana	Asentamiento
24	Jordán	Asentamiento
25	Noruega	Colonia
26	Proyectos 4-3	Colonia

	ZONA 7		
No.	Nombre	Descripción	
1	14 de Julio	Asentamiento	
2	22 de Diciembre	Asentamiento	
3	26 de Julio	Asentamiento	
4	28 de Julio	Asentamiento	
5	4 de Agosto	Asentamiento	
6	4 de Febrero	Colonia	
7	6 de Octubre	Colonia	
8	7 de Mayo	Asentamiento	
9	Alfa Nueva Generación	Asentamiento	
10	Alida España de Arana	Colonia	
11	Altamira	Colonia	
12	Altamira	Colonia	
13	Amparo I, II, III	Colonia	
14	Anexo 4 de Febrero	Asentamiento	
15	Anexo Ranchería	Asentamiento	
16	Betania II	Colonia	
17	Betania	Colonia	
18	Bosques de Linda Villa	Colonia	
19	Bosques de Villa Linda	Colonia	
20	Brisas del Campo	Asentamiento	
21	Campo Verde II	Asentamiento	
22	Castillo Lara	Colonia	
23	Centro América	Colonia	
24	Ciudad de Plata I	Colonia	
25	Ciudad de Plata II	Colonia	
26	De León Carpio	Asentamiento	
27	El cerrito	Colonia	
28	El Prado I	Colonia	
29	El Renacer	Asentamiento	
30	El Rodeo	Colonia	
31	El Universo	Colonia	
32	Granizos I, II, III	Colonia	
33	Incienso	Asentamiento	
34	Jardines de Tikal I	Colonia	

35 Jardines de Tikal III Colonia 36 Jardines de Tikal III Colonia 37 Jardines de Utatlán Colonia 38 Joya II Anexo Asentamiento 39 Kaminal Juyú I Colonia 40 Kaminal Juyú II Colonia 41 La Arboleda Asentamiento 42 La Democracia Colonia 43 La Esperanza Asentamiento 44 La Floresta Colonia 45 Verbena) Colonia 46 La Lucema Asentamiento 47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal 68 Wendy Berger Colonia	No.	Nombre	Descripción
36 Jardines de Tikal III Colonia 37 Jardines de Utatlán Colonia 38 Joya II Anexo Asentamiento 39 Kaminal Juyú I Colonia 40 Kaminal Juyú II Colonia 41 La Arboleda Asentamiento 42 La Democracia Colonia 43 La Esperanza Asentamiento 44 La Floresta Colonia 45 La Joyita I, II, III, IV y V (La Verbena) 46 La Lucema Asentamiento 47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 66 Villa Linda III Colonia 66 Villas de San Juan Colonia	_		
37 Jardines de Utatlán 38 Joya II Anexo 39 Kaminal Juyú I 40 Kaminal Juyú II 41 La Arboleda 42 La Democracia 43 La Esperanza 44 La Floresta 45 La Joyita I, II, III, IV y V (La Verbena) 46 La Lucema 47 La Verbena 48 Landívar 49 Las Bougambilias 50 Las Margaritas 51 Las Torres 52 Madre Dormida 53 Mario Julio Salazar 54 Martínez de Lejarza 55 Niño Dormido 56 Nuevo Amanecer 57 Oscar Berger 58 Quinta Samayoa 59 San Francisco de Asís 60 San Martin 61 San Vicente 62 Toledo 63 Villa Linda II 65 Villa Linda II 66 Villas del Pedregal 60 Colonia 61 Colonia 61 Villas del Pedregal 60 Colonia 60 Colonia 60 Villas del Pedregal 60 Colonia 60 Colonia 60 Villas del Pedregal			
38Joya II AnexoAsentamiento39Kaminal Juyú IIColonia40Kaminal Juyú IIColonia41La ArboledaAsentamiento42La DemocraciaColonia43La EsperanzaAsentamiento44La FlorestaColonia45La Joyita I, II, III, IV y V (La Verbena)Colonia46La LucemaAsentamiento47La VerbenaColonia48LandívarColonia49Las BougambiliasAsentamiento50Las MargaritasColonia51Las TorresColonia52Madre DormidaAsentamiento53Mario Julio SalazarColonia54Martínez de LejarzaColonia55Niño DormidoColonia56Nuevo AmanecerAsentamiento57Oscar BergerColonia58Quinta SamayoaColonia59San Francisco de AsísAsentamiento60San MartinColonia61San VicenteColonia62ToledoColonia63Villa Linda IIColonia64Villa Linda IIIColonia65Villa Linda IIIColonia66Villas del PedregalColonia	-		
Xaminal Juyú I	-		
40 Kaminal Juyú II 41 La Arboleda Asentamiento 42 La Democracia Colonia 43 La Esperanza Asentamiento 44 La Floresta Colonia 45 La Joyita I, II, III, IV y V (La Verbena) Colonia 46 La Lucema Asentamiento 47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia	-	•	
41 La Arboleda Asentamiento 42 La Democracia Colonia 43 La Esperanza Asentamiento 44 La Floresta Colonia 45 La Joyita I, II, III, IV y V (La Verbena) Asentamiento 46 La Lucema Asentamiento 47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 64 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia		•	
42 La Democracia Colonia 43 La Esperanza Asentamiento 44 La Floresta Colonia 45 La Joyita I, II, III, IV y V (La Verbena) 46 La Lucema Asentamiento 47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 64 Villa Linda III Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia		•	
43 La Esperanza Asentamiento 44 La Floresta Colonia 45 La Joyita I, II, III, IV y V (La Verbena) 46 La Lucema Asentamiento 47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 64 Villa Linda III Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia			
44 La Floresta 45 La Joyita I, II, III, IV y V (La Verbena) 46 La Lucema Asentamiento 47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia			
45 La Joyita I, II, III, IV y V (La Verbena) 46 La Lucema Asentamiento 47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia	-	·	
Verbena) 46 La Lucema 47 La Verbena 48 Landívar 49 Las Bougambilias 50 Las Margaritas 51 Las Torres 52 Madre Dormida 53 Mario Julio Salazar 54 Martínez de Lejarza 55 Niño Dormido 56 Nuevo Amanecer 57 Oscar Berger 58 Quinta Samayoa 59 San Francisco de Asís 60 San Martin 61 San Vicente 62 Toledo 63 Villa Linda II 65 Villas del Pedregal Colonia	44		Colonia
47 La Verbena Colonia 48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 64 Villa Linda III Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia	45	Verbena)	
48 Landívar Colonia 49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 64 Villa Linda III Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia	46	La Lucema	Asentamiento
49 Las Bougambilias Asentamiento 50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia	47	La Verbena	Colonia
50 Las Margaritas Colonia 51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda II Colonia 64 Villa Linda III Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia	48	Landívar	Colonia
51 Las Torres Colonia 52 Madre Dormida Asentamiento 53 Mario Julio Salazar Colonia 54 Martínez de Lejarza Colonia 55 Niño Dormido Colonia 56 Nuevo Amanecer Asentamiento 57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	49	Las Bougambilias	Asentamiento
52Madre DormidaAsentamiento53Mario Julio SalazarColonia54Martínez de LejarzaColonia55Niño DormidoColonia56Nuevo AmanecerAsentamiento57Oscar BergerColonia58Quinta SamayoaColonia59San Francisco de AsísAsentamiento60San MartinColonia61San VicenteColonia62ToledoColonia63Villa Linda IColonia64Villa Linda IIColonia65Villa Linda IIIColonia66Villas de San JuanColonia67Villas del PedregalColonia	50	Las Margaritas	Colonia
53Mario Julio SalazarColonia54Martínez de LejarzaColonia55Niño DormidoColonia56Nuevo AmanecerAsentamiento57Oscar BergerColonia58Quinta SamayoaColonia59San Francisco de AsísAsentamiento60San MartinColonia61San VicenteColonia62ToledoColonia63Villa Linda IColonia64Villa Linda IIColonia65Villa Linda IIIColonia66Villas de San JuanColonia67Villas del PedregalColonia	51	Las Torres	Colonia
54Martínez de LejarzaColonia55Niño DormidoColonia56Nuevo AmanecerAsentamiento57Oscar BergerColonia58Quinta SamayoaColonia59San Francisco de AsísAsentamiento60San MartinColonia61San VicenteColonia62ToledoColonia63Villa Linda IColonia64Villa Linda IIColonia65Villa Linda IIIColonia66Villas de San JuanColonia67Villas del PedregalColonia	52	Madre Dormida	Asentamiento
55Niño DormidoColonia56Nuevo AmanecerAsentamiento57Oscar BergerColonia58Quinta SamayoaColonia59San Francisco de AsísAsentamiento60San MartinColonia61San VicenteColonia62ToledoColonia63Villa Linda IColonia64Villa Linda IIColonia65Villa Linda IIIColonia66Villas de San JuanColonia67Villas del PedregalColonia	53	Mario Julio Salazar	Colonia
56Nuevo AmanecerAsentamiento57Oscar BergerColonia58Quinta SamayoaColonia59San Francisco de AsísAsentamiento60San MartinColonia61San VicenteColonia62ToledoColonia63Villa Linda IColonia64Villa Linda IIColonia65Villa Linda IIIColonia66Villas de San JuanColonia67Villas del PedregalColonia	54	Martínez de Lejarza	Colonia
57 Oscar Berger Colonia 58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	55	Niño Dormido	Colonia
58 Quinta Samayoa Colonia 59 San Francisco de Asís Asentamiento 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	56	Nuevo Amanecer	Asentamiento
59 San Francisco de Asís 60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia Colonia Colonia Colonia	57	Oscar Berger	Colonia
60 San Martin Colonia 61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	58	Quinta Samayoa	Colonia
61 San Vicente Colonia 62 Toledo Colonia 63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	59	San Francisco de Asís	Asentamiento
62 Toledo Colonia 63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	60	San Martin	Colonia
63 Villa Linda I Colonia 64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	61	San Vicente	Colonia
64 Villa Linda II Colonia 65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	62	Toledo	Colonia
65 Villa Linda III Colonia 66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	63	Villa Linda I	Colonia
66 Villas de San Juan Colonia 67 Villas del Pedregal Colonia	64	Villa Linda II	Colonia
67 Villas del Pedregal Colonia	65	Villa Linda III	Colonia
	66	Villas de San Juan	Colonia
68 Wendy Berger Colonia	67	Villas del Pedregal	Colonia
	68	_	Colonia

No.	Nombre	Descripción
69	La Jacaranda	Condominio
70	Campo Alegre	Condominio
71	El Sauzal	Condominio
72	Camino Verde	Condominio
73	Lucerna	Colonia
74	Las Brisas	Condominio
75	Torre Vega	Condominio
76	Torremolinos	Residenciales
77	El Cerrito	Asentamiento
78	14 de Junio	Asentamiento
79	Las Jacarandas	Asentamiento
80	El Tanque	Asentamiento
81	Las Margaritas	Colonia
82	Santa Elena	Colonia
83	Kjell Laugerund	Colonia
84	Villas de San Martín	Residenciales

	ZONA 10		
No.	Nombre	Descripción	
1	Alcázar	Condominio	
2	Broken Sound Portal del Cortijo	Condominio	
3	Ciudad Vieja	Barrio	
4	Concepción	Colonia	
5	El Acueducto	Condominio	
6	La Villa	Colonia	
7	Las Margaritas	Barrio	
8	Los Eucaliptos	Condominio	
9	Oakland	Colonia	
10	San Mateo	Colonia	

	ZONA 11		
No.	Nombre	Descripción	
1	Almendros II	Condominio	
2	Angelandia	Colonia	
3	Buena Vista	Colonia	
4	Carabanchel	Colonia	
5	Country Club	Colonia	
6	El Progreso	Colonia	
7	El Zompopero	Colonia	
8	Exclusivos Mariscal	Residencial	
9	Granai y Towson I	Colonia	
10	Granai y Towson II	Colonia	
11	Granai y Towson III	Colonia	
12	Granai y Towson IV	Colonia	
13	Hogares de Mariscal	Colonia	
14	Las Charcas	Colonia	
15	Loma Linda	Colonia	
16	Los Almendros	Residencial	
17	Mariscal	Colonia	
18	Mirador	Colonia	
19	Miraflores	Colonia	
20	Miralbosque	Condominio	

No.	Nombre	Descripción
21	Res. Fontana	Colonia
22	Res. San Gil I, II, III y IV	Colonia
23	Residenciales 5	Colonia
24	Roosevelt	Colonia
25	San Carlos	Condominio
26	San Fernando I	Condominio
27	San Fernando II	Condominio
28	San Jorge	Colonia
29	Sevilla	Residencial
30	Toledo	Colonia
31	Utatlán II	Colonia
32	Valles de Almeria	Residencial
33	Valles de Almeria I	Residencial
34	Valles de Almeria II	Residencial
35	Victorias	Residencial
36	Villas de Mariscal	Colonia
37	Villas de Miraflores	Colonia
38	Villas de San Carlos	Condominio
39	Villas del Mirador	Colonia
40	Villas de la Joya	Colonia

	ZONA 12		
No.	Nombre	Descripción	
1	Residenciales del Sur	Colonia	
2	Guajitos	Condominio	
3	Paraíso	Colonia	
4	Santiaguito	Colonia	
5	San Antonio	Colonia	
6	Los Cedros I	Colonia	
7	Nuestra Señora del Carmen	Colonia	
8	El Cortijo	Colonia	
9	El Cortijo II	Colonia	
10	Vientos del Valle II	Colonia	
11	Vientos del Valle III	Colonia	
12	Vientos del Valle IV	Colonia	
13	El Rosario	Condominio	
14	Jardines de Villa Sol	Condominio	
15	Villa Sol	Condominio	
16	Villa Sol	Condominio	
17	San Carlos de Guatemala	Condominio	
18	Santa Rosa II	Condominio	
19	El Bosque	Condominio	
20	El Carmen	Condominio	
21	Villa Sol II	Colonia	
22	María Beatriz	Colonia	
23	San Rafael	Colonia	
24	Las Ilusiones	Colonia	
25	Quebrada de las Rosas	Condominio	
26	Santa Rosa	Colonia	
27	Vientos del Valle V	Condominio	
28	Los Cedros II	Condominio	
29	De Apartamentos	Apartamentos	
30	Vivienda Familiar	Condominio	
31	Las Fuentes de Santa Luisa	Condominio	
32	San Calos	Condominio	
33	Villa Florencia	Colonia	

No.	Nombre	Descripción
34	Altos de la Colina	Edificio
35	Eureka	Edificio
36	3 de Julio	Residenciales
37	Milles Rock	Condominio
38	El Caminero	Condominio
39	Villas de la Colina	Condominio
40	Guajitos	colonia
41	Tamarindo I	Colonia
42	Tamarindo II	Colonia
43	La Oportunidad	Colonia
44	13 de Febrero	Condominio
45	13 de Febrero	Colonia
46	13 de Febrero	Colonia
47	13 de Febrero	Colonia
48	La Colina	Asentamiento
49	Santa Rosa I	Asentamiento
50	Santa Elisa	Asentamiento
51	La Reformita	Asentamiento
52	Primero de Septiembre	Asentamiento
53	Industrial Santa Elisa	Colonia
54	El Rosario	Colonia
55	Línea Férrea	Colonia

	ZONA 13		
No.	Nombre	Descripción	
1	La Isla	Colonia	
2	Los Eucaliptos	Asentamiento	
3	Elgin I	Residencial	
4	Vistas del Elgin	Condominio	
5	Villas de la Aurora II	Condominio	
6	Villas de la Aurora	Condominio	
7	Cañadas de Elgin I	Condominio	
8	Cañadas de Elgin II	Condominio	
9	Cañadas de Elgin III	Condominio	
10	Cañadas de Elgin IV	Condominio	
11	Monte Azul	Condominio	
12	Monte Azul III	Condominio	
13	Forestal	Colonia	
14	Plaza de Toros	Asentamiento	
15	Viveros de la Paz	Asentamiento	
16	Lomas de Plamplona	Condominio	
17	San Angel	Condominio	
18	Aurora I	Colonia	
19	Reyna Barrios	Colonia	
20	Aurora II	Colonia	

No.	Nombre	Descripción
21	La Libertad	Colonia
22	Plaza Elgin Sincorsa	Condominio
23	Suites Casa Blanca	Condominio
24	Century Plaza	Condominio
25	Las Américas I	Condominio
26	Las Américas II	Condominio
27	Coloniales	Condominio
28	Cantabria	Condominio
29	Carmel	Residencial
30	Hincapié II	Condominio
31	Covadonga	Condominio
32	San José de los Arcos	Condominio
33	Pamplona	Colonia
34	La Libertad II	Colonia
35	Panorámica	Condominio
36	Santa Fe	Colonia
37	Fuerza Área	Condominio
38	Cobira	Apartamentos
39	Argueda	Colonia
40	Elgin I	Residencial

ZONA 14		
No.	Nombre	Descripción
1	Cantón 21	Barrio
2	Cantón Victoria (La Redentora)	Barrio
3	Darue	Colonia
4	El Cambray I, Y II	Colonia
5	El Campo I	Colonia
6	El Campo II	Colonia
7	Elgin	Colonia
8	La Cañada	Colonia
9	La Montaña	Colonia
10	Las Azaleas	Colonia
11	Las Conchas	Colonia
12	Las Victorias	Colonia
13	Los Cedros	Condominio
14	Victoria	Colonia

ZONA 15		
No.	Nombre	Descripción
1	Vista al Bosque	Condominio
2	Monte Bello II	Condominio
3	San Rafael II	Condominio
4	Vista Valle	Condominio
5	Las Nubes	Condominio
6	San Rafaelito	Condominio
7	Alta Vista	Condominio
8	Pasadena	Condominio
9	El Prado	Residenciales
10	San Rafael Los Geranios	Condominio
11	San Rafael I	Condominio
12	Altos de Torreliana I y II	Condominio
13	Lomas Altas II	Condominio
14	Lomas de San Rafael	Condominio
15	Cañadas del Castor	Condominio

No.	Nombre	Descripción
16	La Escalada	Condominio
17	Jardín de San Lorenzo	Condominio
18	Lafayette	Condominio
19	Valles de Vista Hermosa	Condominio
20	El Valle	Residenciales
21	Trinidad	Colonia
22	Jardines de Doña Victoria	Condominio
23	Del Bosque	Residenciales
24	El Valle	Residenciales
25	Lo De Contreras	Condominio
26	San Miguelito	Residenciales
27	Tecún Umán	Condominio
28	Villa Verde	Condominio
29	El Maestro	Colonia
30	Bouganvilias de Cayalá	Residenciales
31	Jacarandas de Cayalá	Condominio
32	Vista Hermosa III	Condominio
33	Lomas de Vista Hermosa	Condominio
34	Belvedere	Condominio
35	Lomas de Vista Hermosa	Condominio
36	Jardines de Minerva	Condominio
37	El Maestro II	Colonia
38	Ciudad Vieja I	Condominio
39	Las Terrazas	Condominio
40	El Ferrol	Condominio
41	Rembrandt	Condominio
42	Malaga	Residenciales
43	Bella Vista	Asentamiento
44	Villa Vicenzo	Condominio
45	La Casa de mi Abuela	Condominio
46	Independencia	Colonia
47	Bouganvilias de Cayalá	Condominio
48	Vista Hermosa	Condominio
49	Vista Hermosa II	Condominio
50	Del Este	Condominio

No.	Nombre	Descripción
51	Americano	Condominio
52	Portobello	Residenciales
53	Navarro	Condominio
54	Alta Loma	Condominio
55	El Cafetal	Condominio
56	El Colibrí	Residenciales
57	Mediterráneo	Residenciales
58	Jardines de Vista Hermosa	Condominio
59	La Residence	Condominio
60	El Ferrol	Condominio
61	Mallorca	Condominio
62	Buenos Aires	Condominio
63	Utrille	Condominio
64	Zona 15	Centro Comercial
65	Villas de Vista Hermosa	Condominio
66	Le Chapelet II	Condominio
67	Le Chapelet	Condominio
68	El Monte I	Condominio
69	Dos Valles	Apartamentos
70	El Parque	Residenciales
71	La Vista	Condominio
72	Edificio	Condominio
73	El Roble	Condominio
74	San Martín	Condominio
75	Los Andes	Condominio
76	El Monte II	Residenciales
77	Villa Florentina	Condominio
78	Virreyes	Condominio
79	mar-24	Residenciales
80	Metro 15	Centro Comercial
81	Bolulevard	Condominio
82	Biarritz	Apartamentos
83	Real Victoria	Condominio

No.	Nombre	Descripción
84	Entre Pinos	Condominio
85	Torre Alta	Condominio
86	Santa Bárbara	Condominio
87	Vista Hermosa II	Condominio
88	Lomas del Refugio Alto	Condominio
89	Los Encinos	Condominio
90	Sa Le Ja	Condominio
91	Jardín de Vista Hermosa	
92	Santa Sofía	Condominio
93	Marfil	Apartamentos
94	Exclusivas de Vista Hermosa	Residenciales
95	Jardines de Vista Hermosa	
96	Jacarandas	Condominio
97	Maderos III	Condominio
98	Maderos I	Condominio
99	Maderos II	Condominio
100	Jardines de San Rafael	Condominio
101	Pérgolas de San Rafael	Condominio
102	Jardines de Monte Bello	Condominio
103	Peña del Sol	Condominio
104	Campo Alto	Condominio
105	Monte Bello I	Condominio
106	Maderos IV	Condominio
107	Los Eucaliptos	Condominio
108	Las Delicias	Condominio
109	Lomas del Bosque	Condominio
110	Lomas Altas I	Condominio
111	Vista Hermosa I	Condominio
112	San Lázaro	Condominio
113	El Refugio	Condominio
114	Lomas Del Refugio	Condominio
115	El Refugio de Doña Victoria	Condominio
116	La Solana	Condominio
117	La Cuenca	Condominio
118	La Mirada	Condominio

No.	Nombre	Descripción
119	Cañadas de San Lázaro	Condominio
120	Las Pilas	Condominio
121	Las Hadas de Vista Hermosa 1	Condominio
122	Santa Mónica	Condominio
123	Cambrai	Condominio
124	San Remo	Condominio
125	Nueva Concepción	Condominio

ZONA 16		
No.	Nombre	Descripción
1	Acatan	Colonia
2	Alameda de San Isidro	Condominio
3	Alta Bosque	Condominio
4	Altos de San Gaspar	Condominio
5	Altos de Vista Hermosa IV	Condominio
6	Berenice	Residenciales
7	Bosques de Alcalá I	Condominio
8	Bosques de Alcalá II	Condominio
9	Bosques de Kanajuyu	Condominio
10	Bosques de San Gaspar II	Condominio
11	Bosques de San Isidro	Condominio
12	Bouganvilias	Residenciales
13	Campos de San Isidro	Condominio
14	Camposeco	Colonia
15	Cascadas de la Montaña	Condominio
16	Cascadas de Vista Hermosa IV	Condominio
17	Ciudad Vieja II	Condominio
18	Concepción Las Lomas	Condominio
19	Cumbres de Montesano	Condominio
20	Cumbres de San Gaspar	Condominio

No.	Nombre	Descripción
21	El Cafetal	Condominio
22	El Rincón de los Abuelos	Condominio
23	Encinos de Cayalá	Condominio
24	Encinos de Cayalá III	Condominio
25	Encinos de Cayalá V	Condominio
26	Encinos de Cayalá VI	Condominio
27	Fátima	Residenciales
28	Foresta de Cayalá	Condominio
29	Hacienda Real	Colonia
30	Jardines de Maribel	Condominio
31	Jardines de San Isidro	Condominio
32	Jardines Rosario de San Isidro	Condominio
33	Kanajuyu	Colonia
34	La Alborada	Condominio
35	La Arboleda	Condominio
36	La Arboleda	Condominio
37	La Ensenada de San Isidro	Condominio
38	La Explanada	Condominio
39	La Loma de los Pinos	Condominio
40	La Montaña	Residenciales
41	La Pinda	Condominio
42	La Rotonda, La Montaña	Condominio
43	Las Acacias	Condominio
44	Las Cascadas	Condominio
45	Las Cumbres	Condominio
46	Las Fuentes I	Condominio
47	Las Fuentes II	Condominio
48	Las Mercedes	Condominio
49	Las Terrazas	Condominio
50	Las Vacas	Aldea
51	Las Villas	Condominio
52	Lomas de San Nicolás	Condominio
53	Los Cedros, Santa Amelia IV	Condominio
54	Los Encinos, Santa Amelia IV	Condominio
55	Los Eucaliptos, Santa Amelia IV	Condominio

No.	Nombre	Descripción
56	Lourdes	Colonia
57	Matilisguate	Condominio
58	Montesano	Colonia
59	Montesolar	Residenciales
60	Paseo El Pedregal	Condominio
61	Peña Dorada	Condominio
62	Pinares de San Sebastián	Condominio
63	Portal de Cayalá	Condominio
64	Portal de la Montaña	Condominio
65	Portal de Isidro	Condominio
66	Portales de San Gaspar	Condominio
67	Portogrande I	Condominio
68	Portogrande II	Condominio
69	Portogrande III	Condominio
70	Puerta de Hierro	Condominio
71	Rafael Lanvidar	Universidad
72	Refugio Lourdes	Condominio
73	Rotonda de Kanajuyu	Condominio
74	San Carlos	Residenciales
75	San Gaspar	Condominio
76	San Gaspar	Residenciales
77	San Gaspar II	Condominio
78	San Isidro	Club Campestre
79	Santa Amelia I	Condominio
80	Santa Amelia II	Condominio
81	Santa Amelia III	Condominio
82	Santa Amelia IV	Condominio
83	Santa Amelia V	Condominio
84	Santa Rosita	Colonia
85	Santa Teresa	Condominio
86	Valles de Acatan	Residenciales
87	Villa Ensenada	Condominio
88	Villas de Cantabria I	Condominio
89	Villas de Cantabria II	Condominio

No.	Nombre	Descripción
90	Villas de Cantabria II	Condominio
91	Villas de La Montaña	Condominio
92	Villas de Lourdes	Condominio
93	Villas de Montesano	Condominio
94	Villas de San Isidro	Condominio
95	Villas del Bosque	Condominio
96	Vista Hermosa IV	Condominio
97	Vistas de Kanajuyu	Condominio
98	Vistas de la Montaña II	Condominio

	ZONA 17		
No.	Nombre	Descripción	
1	Bounalbergo	Residenciales	
2	Casa Bella	Residenciales	
3	Casatenango	Colonia	
4	Colegio de Maestros	Colonia	
5	Covitigs	Colonia	
6	El Bebedero	Colonia	
7	El Carmen	Colonia	
8	Especialista	Colonia	
9	Iruña	Colonia	
10	Lomas del Norte	Colonia	
11	Los Pinos	Colonia	
12	Meyer	Colonia	
13	Residenciales del Norte	Residencial	
14	Sábana Arriba	Colonia	
15	Salud Pública	Colonia	
16	San Fernando	Colonia	
17	Vistalsur	Colonia	

No. Nombre Descripción 1 Alameda 2B Colonia 2 Alameda II Colonia 3 Alameda III Colonia 4 Alameda Norte Colonia 5 Alameda Norte Colonia 6 Altos de Atlántida Colonia 7 Altos de Casa Grande Residencial 8 Altos de Rosario Anexo II Colonia 9 Barrio Comombia Barrio 10 Bosques de Miravalles Residenciales 11 Buenos Aires Colonia 12 Cambio 96 Asentamiento 13 Camio de Luz Colonia 14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22<		ZONA 18		
2 Alameda I Colonia 3 Alameda II Colonia 4 Alameda III Colonia 5 Alameda Norte Colonia 6 Altos de Atlántida Colonia 7 Altos de Casa Grande Residencial 8 Altos del Rosario Anexo II Colonia 9 Barrio Comombia Barrio 10 Bosques de Miravalles Residenciales 11 Buenos Aires Colonia 12 Cambio 96 Asentamiento 13 Camino de Luz Colonia 14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodríguez 34 El Paraiso II Colonia	No.			
Alameda II Colonia Alameda III Colonia Alameda Norte Colonia Altos de Atlántida Colonia Altos de Casa Grande Residencial Barrio Comombia Barrio Bosques de Miravalles Residenciales Colonia Cambio 96 Asentamiento Canaán Colonia Canaán Colonia Caráveral Asentamiento Casa Grande Residenciales Cerritos Colonia Cerritos Colonia Comunidad de Arzú Asentamiento Colonia Canace Residenciales Colonia Colonia Cerritos Colonia Colonia Colonia Colonia Cerritos Colonia	1	Alameda 2B	Colonia	
4 Alameda III Colonia 5 Alameda Norte Colonia 6 Altos de Atlántida Colonia 7 Altos de Casa Grande Residencial 8 Altos del Rosario Anexo II Colonia 9 Barrio Comombia Barrio 10 Bosques de Miravalles Residenciales 11 Buenos Aires Colonia 12 Cambio 96 Asentamiento 13 Camino de Luz Colonia 14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Rediquez 34 El Paraiso II Colonia	2	Alameda I	Colonia	
Alameda Norte Altos de Atlántida Colonia Altos de Casa Grande Barrio Comombia Barrio Bosques de Miravalles Cambio 96 Asentamiento Cania Caritos Caritos Caritos Colonia Carritos Carritos Colonia Carritos Carritos Colonia Carrito	3	Alameda II	Colonia	
6 Altos de Atlántida Colonia 7 Altos de Casa Grande Residencial 8 Altos del Rosario Anexo II Colonia 9 Barrio Comombia Barrio 10 Bosques de Miravalles Residenciales 11 Buenos Aires Colonia 12 Cambio 96 Asentamiento 13 Camino de Luz Colonia 14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia	4	Alameda III	Colonia	
Altos de Casa Grande Residencial Altos del Rosario Anexo II Barrio Barrio Barrio Comombia Barrio Bosques de Miravalles Residenciales Colonia Cambio 96 Asentamiento Colonia Canán Colonia Canán Colonia Canán Colonia Canán Colonia Canáveral Asentamiento Colonia Residenciales Colonia Canáveral Asentamiento Colonia Residenciales Colonia Corritos Colonia Comunidad de Arzú Asentamiento Colonia Residenciales Colonia Asentamiento Colonia Comunidad de Arzú Asentamiento Colonia	5	Alameda Norte	Colonia	
8 Altos del Rosario Anexo II Colonia 9 Barrio Comombia Barrio 10 Bosques de Miravalles Residenciales 11 Buenos Aires Colonia 12 Cambio 96 Asentamiento 13 Camino de Luz Colonia 14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Recidencial 34 El Paraiso I Colonia	6	Altos de Atlántida	Colonia	
9 Barrio Comombia Barrio 10 Bosques de Miravalles Residenciales 11 Buenos Aires Colonia 12 Cambio 96 Asentamiento 13 Camino de Luz Colonia 14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 20 El Limón Colonia 21 El Manantial Residencial 22 El Manantial Residencial 23 El Mirador Colonia 24 El Manantial Residencial 25 El Mirador Colonia 26 El Mirador Colonia 27 El Manantial Residencial 28 El Mirador Colonia 29 El Limón Colonia 30 El Divido Sector de lo de Rodriguez 31 El Paraiso I Colonia	7	Altos de Casa Grande	Residencial	
10 Bosques de Miravalles Colonia 11 Buenos Aires Colonia 12 Cambio 96 Asentamiento 13 Camino de Luz Colonia 14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia	8	Altos del Rosario Anexo II	Colonia	
11 Buenos Aires Colonia 12 Cambio 96 Asentamiento 13 Camino de Luz Colonia 14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	9	Barrio Comombia	Barrio	
12 Cambio 96 Asentamiento Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Asentamiento Cañaveral Asentamiento Residenciales Cerritos Colonia Comunidad de Arzú Asentamiento Colonia Colonia Asentamiento Colonia	10	Bosques de Miravalles	Residenciales	
13 Camino de Luz Colonia Conoia Colonia Colonia Condelaria Asentamiento Asentamiento Residenciales Residenciales Colonia Comunidad de Arzú Asentamiento Colonia Colonia Asentamiento Colonia Asentamiento Colonia El Renacimiento Colonia Colonia El Caracol Colonia	11	Buenos Aires	Colonia	
14 Canaán Colonia 15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia	12	Cambio 96	Asentamiento	
15 Candelaria Asentamiento 16 Cañaveral Asentamiento 17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia	13	Camino de Luz	Colonia	
Asentamiento 17 Casa Grande 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento Colonia 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia Colonia 27 El Eden Colonia 28 El Guayabaso Colonia	14	Canaán	Colonia	
17 Casa Grande Residenciales 18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	15	Candelaria	Asentamiento	
18 Cerritos Colonia 19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Residencial 34 El Paraiso I Colonia	16	Cañaveral	Asentamiento	
19 Comunidad de Arzú Asentamiento 20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Rodriguez 34 El Paraiso I Colonia	17	Casa Grande	Residenciales	
20 Dios y Colina Asentamiento 21 El Renacimiento Colonia 22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Rodriguez 34 El Paraiso II Colonia	18	Cerritos	Colonia	
21El RenacimientoColonia22El AguacateColonia23El AtlánticoResidenciales24El CaracolColonia25El ChatioColonia26El ChatoColonia (Aldea)27El EdenColonia28El GuayabasoColonia29El LimónColonia30El Limón IIColonia31El ManantialResidencial32El MiradorColonia33El OlvidoSector de lo de Rodriguez34El Paraiso IColonia35El Paraiso IIColonia	19	Comunidad de Arzú	Asentamiento	
22 El Aguacate Colonia 23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia (Aldea) 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Rodriguez 34 El Paraiso II Colonia	20	Dios y Colina	Asentamiento	
23 El Atlántico Residenciales 24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia (Aldea) 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Rodriguez 34 El Paraiso II Colonia	21	El Renacimiento	Colonia	
24 El Caracol Colonia 25 El Chatio Colonia 26 El Chato Colonia (Aldea) 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Rodriguez 34 El Paraiso I Colonia	22	El Aguacate	Colonia	
25 El Chatio Colonia 26 El Chato Colonia (Aldea) 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia	23	El Atlántico	Residenciales	
26 El Chato Colonia (Aldea) 27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia	24	El Caracol	Colonia	
27 El Eden Colonia 28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	25	El Chatio	Colonia	
28 El Guayabaso Colonia 29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	26	El Chato	Colonia (Aldea)	
29 El Limón Colonia 30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	27	El Eden	Colonia	
30 El Limón II Colonia 31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	28	El Guayabaso	Colonia	
31 El Manantial Residencial 32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	29	El Limón	Colonia	
32 El Mirador Colonia 33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	30	El Limón II	Colonia	
33 El Olvido Sector de lo de Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia				
33 El Olvido Rodriguez 34 El Paraiso I Colonia 35 El Paraiso II Colonia	32	El Mirador		
34 El Paraiso I Colonia 35 El Paraiso II Colonia	33	El Olvido		
	34	El Paraiso I		
36 El Paraiso III Colonia	35	El Paraiso II	Colonia	
Olonia Olonia	36	El Paraiso III	Colonia	

No.	Nombre	Descripción
37	El Purgatorio	Colonia
		(Caserío) Colonia
38	El Renacimiento Municipal	
39	El Rinconcito	Colonia
40	El Rosario	Colonia
41	El Rosario Anexo I	Colonia
42	El Rosario Anexo II	Colonia
43	El Valle	Colonia
44	Emmanuel	Asentamiento
45	Esquipulitas	Asentamiento
46	Fátima	Colonia
47	Galilea	Colonia
48	Gracias a Dios	Finca
49	Greystone	Colonia
50	Holanda	Colonia
51	Jardines del Rosario	Colonia
52	Juana de Arco	Colonia
53	Kennedy	Colonia
54	La Atlántida	Colonia
55	La Aventura	Colonia
56	La Bomba	Asentamiento
57	La Ceiba	Asentamiento
58	La Esperanza	Colonia
59	La Estancia	Colonia (Finca)
60	La Laguneta	Colonia
61	La Lavarreda	Colonia
62	La Maya	Colonia
63	La Pascua	Colonia
64	La Piedrona	Colonia
65	La Rotonda	Colonia
66	La Ruedita	Colonia
67	Las Champas	Asentamiento
68	Las Colinas	Colonia
69	Las Ilusiones	Colonia
70	Las Lumbres	Colonia

No.	Nombre	Descripción
71	Las Perlas	Colonias
72	Las Tapias	Colonia (Aldea)
73	Lo de Rodríguez	Colonia (Aldea)
74	Lomas de Lavarreda	Colonia
75	Lomas de Santa Faz	Colonia
76	Los Caracoles	Colonia
77	Los Cipresales	Colonia
78	Los Diamantes	Colonia
79	Los Encinos	Asentamiento
80	Los Olivos	Residencial
81	Los Pinos	Colonia
82	Los Pinos	Colonia
83	Militar	Colonia
84	Mirador de la Cruz	Residenciales
85	Miral Norte	Colonia
86	Monja Blanca	Colonia
87	Nazareth	Asentamiento
88	Nueva Jerusalén	Asentamiento
89	Panorámicas del Atlántico	Colonia
90	Pinares del Norte	Colonia
91	Portal del Bosque	Colonia
92	Proyecto Italia	Asentamiento
93	Quinta Ruiz	Colonia
94	San Antonio	Residencial
95	San Gabriel	Colonia
96	San José Lavarreda	Colonia
97	San Pascual II	Colonia
98	San Pascual I	Colonia
99	San Rafael Buena Vista	Colonia
100	San Rafael Buena VIsta	Colonia
101	San Rafael El Prado	Colonia
102	San Rafael La Laguna I	Colonia
103	San Rafael La Laguna II	Colonia
104	San Rafael La Laguna III	Colonia
105	San Rafael Los Vados	Colonia

No.	Nombre	Descripción
106	Santa Bárbara	Colonia
107	Santa Clara	Colonia
108	Santa Clara	Colonia
109	Santa Elena	Colonia
110	Santa Elena I, II, III	Colonia
111	Santa Faz	Colonia
112	Santa Genoveva	Colonia
113	Santa Lucía	Colonia
114	Santa Luisa	Colonia
115	Santa Mónica	Colonia
116	Sector I. Lo de Rodríguez	Colonia
117	Sector II. Lo de Rodríguez	Colonia
118	Sector III. Lo de Rodríguez	Colonia
119	Sector Soto, Lo de Rodríguez	Colonia
120	Sector Vuelta Grande, Lo de Rodríguez	Colonia
121	Tierra Prometida o Jardines del Norte	Colonia
122	Valle del Encino	Colonia
123	Valle del Norte	Colonia
124	Valles de Jesús I y II	Colonia
125	Villa Adela	Colonia
126	Villa de San Marcos	Colonia
127	Villas de la Alameda	Residencial
128	Villas de San Rafael	Colonia
129	Altos de la Atlántida	Residencial
130	La Bendición	Colonia
131	Ladera del Paraíso	Colonia

	ZONA 19		
No. Nombre		Descripción	
1	La Florida	Colonia	

	ZONA 21		
No.	Nombre	Descripción	
1	Loma Blanca	Colonia	
2	Villa Esperanza	Colonia	
3	San Rafael, Loma Blanca	Colonia	
4	La Paz	Cantón	
5	Jacarandas	Colonia	
6	Loma Blanca	Colonia	
7	Vásquez	Colonia	
8	Los Olivos, Loma Blanca	Colonia	
9	Las Marías	Colonia	
10	Covi Hode	Colonia	
11	Renacer	Condominio	
12	Villas de las Vásquez	Condominio	
13	San Rafael Las Lomas	Colonia	
14	Vistas de Loma Blanca	Condominio	
15	Jardines de Loma Blanca	Condominio	
16	Residencial Girasol II	Colonia	
17	Girasol I	Residenciales	
18	Residencial Esmeralda II	Residenciales	
19	Prados de Nimajuyú	Colonia	
20	Santa María de la Paz I	Residenciales	
21	Santa María de la Paz II	Residenciales	
22	Santa María de la Paz III	Residenciales	
23	El Periodista	Colonia	
24	Loma Blanca	Residenciales	
25	Nimajuyú II	Condominio	
26	Nimajuyú I	Condominio	
27	Cerro Gordo	Colonia	
28	Esmeralda IV	Residenciales	
29	Esmeralda III	Residenciales	
30	Girasol III	Residenciales	
31	San Pablo	Colonia	
32	Las Macadamias	Colonia	
33	La Arena	Asentamiento	
34	Nuevo Amanecer	Asentamiento	
35	Los Periodistas	Colonia	

No.	Nombre	Descripción
36	4 de Febrero	Asentamiento
37	Bello Horizonte	Condominio
38	Venezuela	Colonia
39	Eureka	Residenciales
40	Lomas de San Fermín	Condominio
41	San Fermín	Colonia
42	Justo Rufino Barrios	Colonia
43	Guajitos	Colonia
44	Villas del Sur	Colonia
45	Letrán	Colonia
46	San Nicolás de Bari	Condominio
47	Nuevo Amanecer	Colonia
48	Castillo	Colonia
49	El Mirador	Colonia
50	La Paz	Colonia
51	Santa Inés	Colonia
52	Tamarindo	Colonia
53	Morse	Colonia
54	La Isla	Colonia
55	Esquipulas	Asentamiento
56	Esmeralda I	Residenciales
57	San José Loma Blanca	Colonia
58	Melgar	Colonia
59	La Esperanza	Colonia
60	Los Barbereños	Colonia
61	Prados de Nimajuyu II	Colonia
62	San Juan de los Encinos	Residenciales
63	Los Cipreses	Colonia

	ZONA 24	
No.	Nombre	Descripción
1	Central (Canalitos)	Cantón
2	El Jaguey (Canalitos)	Cantón
3	El Porvenir (Canalitos)	Cantón
4	El Pulte	Residencial
5	Las Delicias (Canalitos)	Cantón
6	Las Huertas (Canalitos)	Cantón
7	Las Pilas (Canalitos)	Cantón
8	Los Encuentros	Cantón

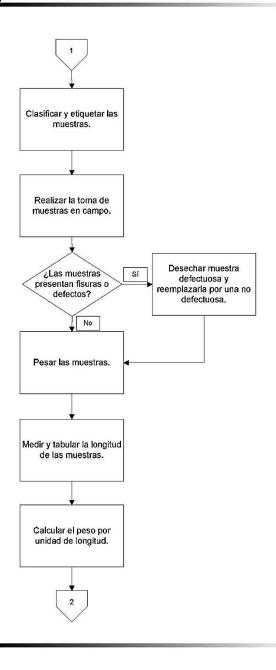
	ZONA	. 25
No.	Nombre	Descripción
1	El Bergel	Colonia
2	El Buen Pastor	Colonia
3	El Carmen	Colonia
4	El Sintul	Finca
5	Fátima	Colonia
6	Hermano Pedro	Colonia
7	La Cebadilla	Colonia
8	La Cebadilla	Colonia (Aldea)
9	La Sábana	Colonia (Caserío)
10	Las Canoas	Colonia

No.	Nombre	Descripción
11	Las Canoítas	Colonia (Aldea)
12	Las Conchas	Colonia
13	Llano Largo I	Colonia
14	Llano Largo II	Colonia
15	Los Ángeles	Colonia
16	Pinares de Llano Largo	Colonia
17	Rafael Castro	Asentamiento
18	San Agustín	Colonia
19	San José El Amate	Colonia
20	San Pascual III	Colonia
21	Santa Anita	Colonia
22	Santa Delfina	Colonia
23	Santa Lucía Los Ocotes	Colonia (Aldea)
24	Virgen de la Montaña	Colonia

Fuente: elaboración propia, con base en datos proporcionados por La Municipalidad de Guatemala. Dirección de Catastro y Administración del IUSI.

Apéndice 2. Flujograma del desarrollo experimental

Flujograma 1 del Desarrollo Experimental. Elaborado por : Antonio Gramajo.

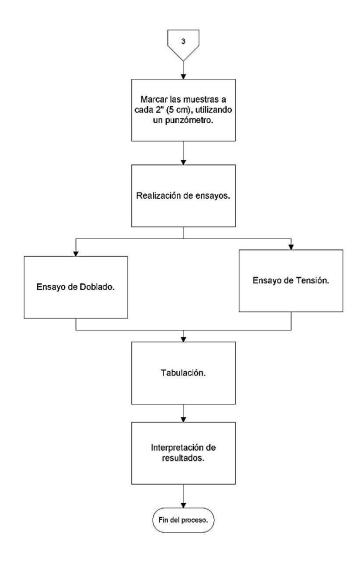

Página 1 de 4 Fecha: 16 de marzo de 2015.

Page 1

Flujograma 1 del Desarrollo Experimental. Elaborado por : Antonio Gramajo. Página 2 de 4 Fecha: 16 de marzo de 2015.

Page 2

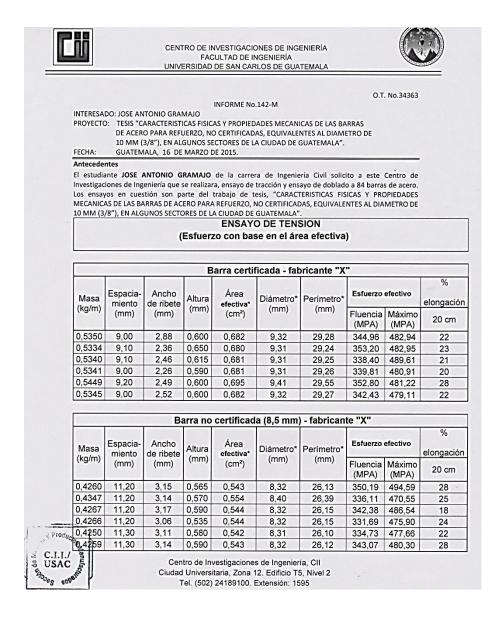
Flujograma 1 del Desarrollo Experimental. Elaborado por : Antonio Gramajo.


Página 3 de 4 Fecha: 16 de marzo de 2015.

Page 3

Flujograma 1 del Desarrollo Experimental. Elaborado por : Antonio Gramajo.

Página 4 de 4 Fecha: 16 de marzo de 2015.



Page 4

Fuente: elaboración propia.

ANEXOS

Anexo 1. Informe de resultados obtenidos en los ensayos

Anexo 2. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M

INTERESADO: JOSE ANTONIO GRAMAJO

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE 10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

FECHA: GUATEMALA, 16 DE MARZO DE 2015.

		Barr	a no ce	ertificada ((8 mm) - fa	bricante ">	("		
Masa	Espacia- miento	Ancho de ribete	Altura	Área efectiva*	Diámetro*	Perímetro*	Esfuerzo efectivo		% elongación
(kg/m) (mm)	(mm)	(mm)	(cm²)	(mm)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm	
0,3790	10,90	2,68	0,440	0,483	7,84	24,65	344,92	486,95	24
0,3787	10,80	2,79	0,512	0,483	7,84	24,64	355,32	491,36	25
0,3791	10,70	2,64	0,675	0,483	7,85	24,65	346,85	486,81	23
0,3786	10,70	2,82	0,505	0,483	7,84	24,63	349,33	489,46	26
0,3790	10,60	2,69	0,465	0,483	7,84	24,65	361,15	503,18	19 -
0,3828	10,60	2,65	0,495	0,488	7,88	24,77	339,46	484,08	24

		Bar	ra no c	ertificada	(7,5 mm) -	fabricante	"X"		
Masa	Espacia- miento	Ancho de ribete	Altura	Área efectiva*	Diámetro*	Perímetro*	Esfuerzo efectivo		% elongación
	(mm)	(mm)	(mm)	(cm²)	(mm)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm
0,3806	8,20	2,75	0,485	0,485	7,86	24,70	353,55	501,04	26
0,3780	8,20	2,67	0,480	0,482	7,83	24,61	356,00	498,41	25
0,3792	8,10	2,67	0,465	0,484	7,85	24,65	362,95	504,88	25
0,3802	8,20	2,67	0,465	0,485	7,86	24,69	345,82	505,58	26
0,3812	8,10	2,72	0,452	0,486	7,87	24,72	363,07	500,22	26
0,3790	8,10	2,74	0,450	0,483	7,84	24,65	324,63	476,80	27

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 3. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M

INTERESADO: JOSE ANTONIO GRAMAJO.

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE 10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

FECHA: GUATEMALA, 16 DE MARZO DE 2015.

	Barra certificada - fabricante "Y"												
Masa	Espacia- miento	Ancho de ribete	Altura	Área efectiva*	Diámetro*	Perímetro*	Esfuerzo efectivo		% elongación				
(kg/m) (mm)	(mm)	(mm)	(cm²)	(mm)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm					
0,5349	11,45	2,03	0,600	0,682	9,32	29,28	327,75	490,19	20				
0,5339	11,50	2,00	0,660	0,681	9,31	29,25	313,96	489,67	28				
0,5380	11,40	2,03	0,645	0,686	9,35	29,36	321,59	487,39	25				
0,5354	11,60	2,00	0,540	0,683	9,32	29,29	315,98	489,77	19				
0,5335	11,40	2,06	0,645	0,680	9,31	29,24	309,91	482,89	28				
0,5355	11,50	1,98	0,635	0,683	9,32	29,29	366,20	488,27	26				

	Barra no certificada (8,5 mm) - fabricante "Y"												
Masa	Espacia- miento	Ancho de ribete	Altura	Área efectiva*	Diámetro*	Perímetro*	Esfuerzo efectivo		% elongación				
(kg/m)	(mm)	(mm)	(mm)	(cm²)	(mm)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm				
0,4062	12,00	2,01	0,760	0,518	8,12	25,51	340,76	549,01	19				
0,4082	11,98	1,99	0,875	0,521	8,14	25,58	357,94	565,16	20				
0,4068	12,20	1,94	0,740	0,519	8,13	25,53	359,17	567,11	12				
0,4077	12,10	2,12	0,900	0,520	8,14	25,56	339,47	556,35	21				
0,4088	12,20	1,98	0,835	0,521	8,15	25,59	348,01	560,59	12				
0,4051	12,00	2,13	0,805	0,517	8,11	25,48	345,50	567,60	17				

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 4. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M

INTERESADO: JOSE ANTONIO GRAMAJO,

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE 10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

FECHA: GUATEMALA, 16 DE MARZO DE 2015.

aces and a		В	arra no	certificada	(7,5 mm) -	fabricante '	"Υ"		
Masa	(kg/m) miento ribet	Ancho de	Altura	Área efectiva*	Diámetro*	Perímetro*	Esfuerzo	% elongación	
(kg/m)		(mm)	(mm) (cm²)		(mm)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm
0,3736	10,00	1,32	0,395	0,476	7,79	24,47	409,57	572,16	17
0,3747	9,90	1,37	0,320	0,478	7,80	24,51	391,93	556,09	16
0,3746	10,00	1,37	0,345	0,478	7,80	24,50	379,74	543,95	21
0,3752	9,95	1,47	0,380	0,479	7,81	24,52	379,11	549,19	26
0,3745	9,90	1,72	0,195	0,478	7,80	24,50	371,65	550,29	20
0,3756	9,95	1,42	0,295	0,479	7,81	24,54	391,01	562,97	19

^{*}Datos calculados sobre el peso por unidad de longitud

ENSAYO DE TENSION (Esfuerzo con base en el área nominal según NORMA COGUANOR 36011-3ra. Revisión)

			E	arra certi	ficada - fa	bricante "X	("		
Masa	Espacia- miento	Ancho de	Altura	Área Nominal*	Diámetro*		Esfuerzo		% elongación
(kg/m)	(mm) ribete (mm) (cm²) (mm)	(mm)	Fluencia (MPA)	Máximo (MPA)					
0,5350	9,00	2,88	0,600	0,710	9,5	29,9	331,49	464,09	22
0,5334	9,10	2,36	0,650	0,710	9,5	29,9	338,40	462,71	23
0,5340	9,10	2,46	0,615	0,710	9,5	29,9	324,59	469,61	21
0,5341	9,00	2,26	0,590	0,710	9,5	29,9	325,97	461,33	20
0,5449	9,20	2,49	0,600	0,710	9,5	29,9	345,30	471,00	28
0,5345	9,00	2,52	0,600	0,710	9,5	29,9	328,73	459,95	22

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 5. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M

INTERESADO: JOSE ANTONIO GRAMAJO

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS
DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE
10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

FECHA: GUATEMALA, 16 DE MARZO DE 2015.

men-man	Barra no certificada (8,5 mm) - fabricante "X"													
(kg/m)	Espacia- miento (mm)	Ancho de ribete (mm)	Altura	Área Nominal*	Diámetro*	Perímetro*	Esfuerzo		% elongación					
			(mm)	(cm²)	(mm)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm					
0,4260	11,20	3,15	0,565	0,500	8,0	25,1	380,50	537,40	28					
0,4347	11,20	3,14	0,570	0,500	8,0	25,1	372,65	521,71	25					
0,4267	11,20	3,17	0,590	0,500	8,0	25,1	372,65	529,56	18					
0,4266	11,20	3,06	0,535	0,500	8,0	25,1	360,88	517,79	24					
0,4250	11,30	3,11	0,580	0,500	8,0	25,1	362,85	517,79	22					
0,4259	11,30	3,14	0,590	0,500	8,0	25,1	372,65	521,71	28					

	Barra no certificada (8 mm) - fabricante "X"													
(kg/m) mie	Espacia-	Espacia- miento (mm) Ancho de ribete (mm)	Altura	Área Nominal*	Diámetro*	Perímetro*	Esfuerzo		% elongación					
			(mm) (cm²)		(mm)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm					
0,3790	10,90	2,68	0,440	0,500	8,0	25,1	333,43	470,72	24					
0,3787	10,80	2,79	0,512	0,500	8,0	25,1	343,23	474,64	25					
0,3791	10,70	2,64	0,675	0,500	8,0	25,1	335,39	470,72	23					
0,3786	10,70	2,82	0,505	0,500	8,0	25,1	337,35	472,68	26					
0,3790	10,60	2,69	0,465	0,500	8,0	25,1	349,12	486,41	19					
0,3828	10,60	2,65	0,495	0,500	8,0	25,1	331,46	472,68	24					

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 6. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M INTERESADO: JOSE ANTONIO GRAMAJO

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE

10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

FECHA: GUATEMALA, 16 DE MARZO DE 2015.

	Barra no certificada (7,5 mm) - fabricante "X"									
Masa	Espacia- miento	Ancho de ribete	Altura	Área Nominal*	Diámetro*	Perímetro*	Esfuerzo		% elongación	
(kg/m)	(mm)	(mm)	(mm)	(mm)	(cm²)	(mm) (mm)	Fluencia (MPA)	Máximo (MPA)	20 cm	
0,3806	8,20	2,75	0,485	0,500	8,0	25,1	343,23	486,41	26	
0,3780	8,20	2,67	0,480	0,500	8,0	25,1	343,23	480,53	25	
0,3792	8,10	2,67	0,465	0,500	8,0	25,1	351,08	488,37	25	
0,3802	8,20	2,67	0,465	0,500	8,0	25,1	335,39	490,33	26	
0,3812	8,10	2,72	0,452	0,500	8,0	25,1	353,04	486,41	26	
0,3790	8,10	2,74	0,450	0,500	8,0	25,1	313,81	460,91	27	

	Barra certificada - fabricante "Y"											
Masa	Espacia- miento	Ancho de ribete	Altura	Área Nominal*	I* Diámetro* Perímetro		Esfu	erzo	% elongación			
(kg/m)	(mm)	(mm)	(mm)	(cm²)	(mm)	(mm)	(mm)	(mm)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm
0,5349	11,45	2,03	0,600	0,710	9,5	29,9	314,92	471,00	20			
0,5339	11,50	2,00	0,660	0,710	9,5	29,9	301,11	469,61	28			
0,5380	11,40	2,03	0,645	0,710	9,5	29,9	310,77	471,00	25			
0,5354	11,60	2,00	0,540	0,710	9,5	29,9	303,87	471,00	19			
0,5335	11,40	2,06	0,645	0,710	9,5	29,9	296,96	462,71	28			
0,5355	11,50	1,98	0,635	0,710	9,5	29,9	352,21	469,61	26			

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 7. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M

INTERESADO: JOSE ANTONIO GRAMAJO

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS
DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE
10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

FECHA: GUATEMALA, 16 DE MARZO DE 2015.

	Barra no cetificada (8,5 mm) - fabricante "Y"									
Masa	Espacia- miento	Ancho de ribete	Altura	Área Nominal*	Diámetro*	Perímetro*	Esfuerzo		% elongación	
(kg/m)	(mm)	(mm)	(mm) (mm) (cm²) (mm) (mi	(cm²)	(min) (cm²)	(11111) (11111)	(mm)	Fluencia (MPA)	Máximo (MPA)	20 cm
0,4062	12,00	2,01	0,760	0,500	8,0	25,1	353,04	568,79	19	
0,4082	11,98	1,99	0,875	0,500	8,0	25,1	372,65	588,40	20	
0,4068	12,20	1,94	0,740	0,500	8,0	25,1	372,65	588,40	12	
0,4077	12,10	2,12	0,900	0,500	8,0	25,1	353,04	578,59	21	
0,4088	12,20	1,98	0,835	0,500	8,0	25,1	362,85	584,48	12	
0,4051	12,00	2,13	0,805	0,500	8,0	25,1	356,96	586,44	17	

	Barra no certificada (7,5 mm) - fabricante "Y"										
Masa	Espacia- miento	Ancho de ribete	Altura	Área Nominal*		Perímetro*	Esfu	erzo	% elongación		
(kg/m)	(mm)	(mm)	(mm)	(cm²)		(mm) (n	(mm) (mm)		(mm)	Fluencia (MPA)	Máximo (MPA)
0,3736	10,00	1,32	0,395	0,500	8,0	25,1	390,30	545,25	17		
0,3747	9,90	1,37	0,320	0,500	8,0	25,1	374,61	531,52	16		
0,3746	10,00	1,37	0,345	0,500	8,0	25,1	362,85	519,75	21		
0,3752	9,95	1,47	0,380	0,500	8,0	25,1	362,85	525,64	26		
0,3745	9,90	1,72	0,195	0,500	8,0	25,1	355,00	525,64	20		
0,3756	9,95	1,42	0,295	0,500	8,0	25,1	374,61	539,37	19		

^{*}Datos calculados sobre el peso por unidad de longitud

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 8. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M

INTERESADO: JOSE ANTONIO GRAMAJO,

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE 10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

FECHA: GUATEMALA, 16 DE MARZO DE 2015.

Comparación de Esfuerzos

STATE IN S	Certifica	ada - "X"	
Esfuer: área		Esfuer área n	
Fluencia Máximo (MPA) (MPA)		Fluencia (MPA)	Máximo (MPA)
344,96	482,94	331,49	464,09
353,20	482,95	338,40	462,71
338,40	489,61	324,59	469,61
339,81	480,91	325,97	461,33
352,80	481,22	345,30	471,00
342,43	479,11	328,73	459,95

No cert	No certificada (8,5 mm) - "X"						
Esfuer: área		Esfuerzo con área nominal					
Fluencia (MPA)			Máximo (MPA)				
350,19	494,59	380,50	537,40				
336,11	470,55	372,65	521,71				
342,38	486,54	372,65	529,56				
331,69	331,69 475,90		517,79				
334,73 477,66		362,85	517,79				
343,07			521,71				

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 9. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M

INTERESADO: JOSE ANTONIO GRAMAJO, PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS

DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE

10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

FECHA: GUATEMALA, 16 DE MARZO DE 2015.

No ce	No certificada (8 m) - "X"							
	Esfuerzo con área real		zo con ominal					
Fluencia (MPA)			Máximo (MPA)					
344,92	486,95	333,43	470,72					
355,32	491,36	343,23	474,64					
346,85	486,81	335,39	470,72					
349,33	489,46	337,35	472,68					
361,15	503,18	349,12	486,41					
339,46	484,08	331,46	472,68					

No ce	ertificada	a (7,5 m)	- "X"	
Esfuer: área		Esfuerzo con área nominal		
Fluencia Máximo (MPA) (MPA)		Fluencia (MPA)	Máximo (MPA)	
353,55	501,04	343,23	486,41	
356,00	498,41	343,23	480,53	
362,95	504,88	351,08	488,37	
345,82	345,82 505,58		490,33	
363,07 500,22		353,04	486,41	
324,63	324,63 476,80		460,91	

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 10. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

O.T. No.34363

INFORME No.142-M

INTERESADO: JOSE ANTONIO GRAMAJO

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE

10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA". FECHA: GUATEMALA, 16 DE MARZO DE 2015.

	Certificada - "Y"						
Esfuer área		Esfuerzo con área nominal					
Fluencia Máximo (MPA) (MPA)		Fluencia (MPA)	Máximo (MPA)				
327,75	490,19	314,92	471,00				
313,96	489,67	301,11	469,61				
321,59	487,39	310,77	471,00				
315,98	489,77	303,87	471,00				
309,91	482,89	296,96	462,71				
366,20	488,27	352,21	469,61				

No certificada (8,5 mm) - "Y"						
Esfuer: área		Esfuerzo con área nominal				
Fluencia (MPA)			Máximo (MPA)			
340,76	549,01	353,04	568,79			
357,94	565,16	372,65	588,40			
359,17	567,11	372,65	588,40			
339,47	556,35	353,04	578,59			
348,01 560,59		362,85	584,48			
345,50	567,60	356,96	586,44			

Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595

Anexo 11. Informe de resultados obtenidos en los ensayos

CENTRO DE INVESTIGACIONES DE INGENIERÍA FACULTAD DE INGENIERÍA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

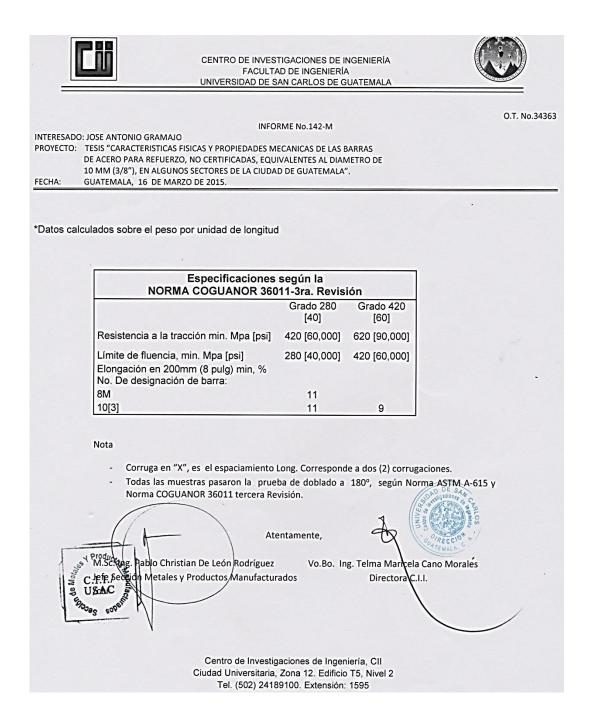
O.T. No.34363

INFORME No.142-M

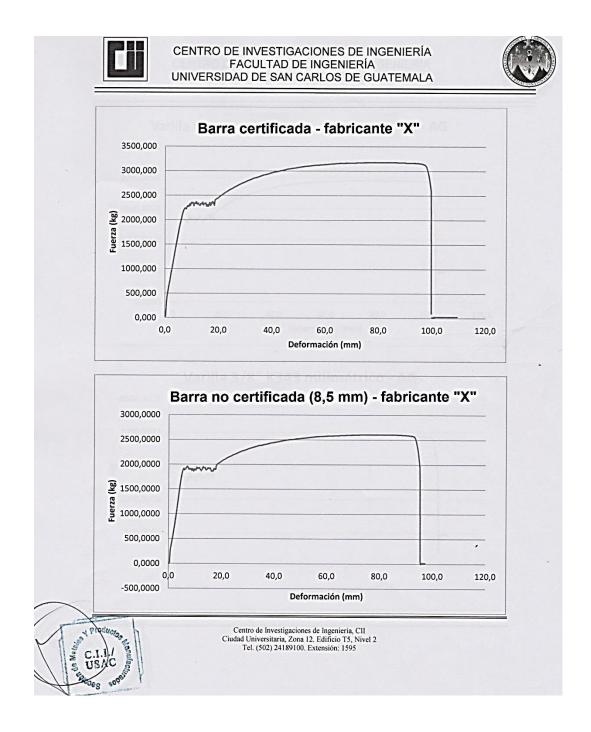
INTERESADO: JOSE ANTONIO GRAMAJO

PROYECTO: TESIS "CARACTERISTICAS FISICAS Y PROPIEDADES MECANICAS DE LAS BARRAS DE ACERO PARA REFUERZO, NO CERTIFICADAS, EQUIVALENTES AL DIAMETRO DE 10 MM (3/8"), EN ALGUNOS SECTORES DE LA CIUDAD DE GUATEMALA".

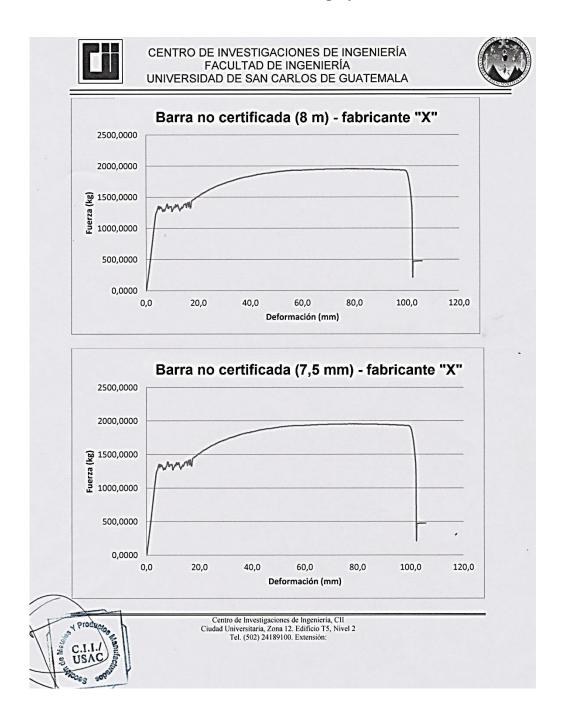
FECHA: GUATEMALA, 16 DE MARZO DE 2015.

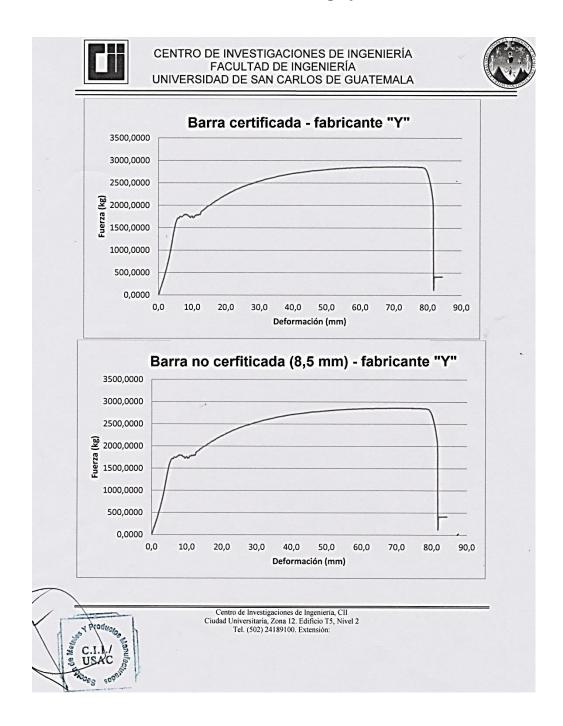

No cer	tificada	(7,5 mm)	- "Y"	
Esfuerzo con área real		Esfuerzo con área nominal		
Fluencia (MPA)	Máximo (MPA)	Fluencia (MPA)	Máximo (MPA)	
409,57	572,16	390,30	545,25	
391,93	556,09	374,61	531,52	
379,74	543,95	362,85	519,75	
379,11	549,19	362,85	525,64	
371,65	550,29	355,00	525,64	
391,01	562,97	374,61	539.37	

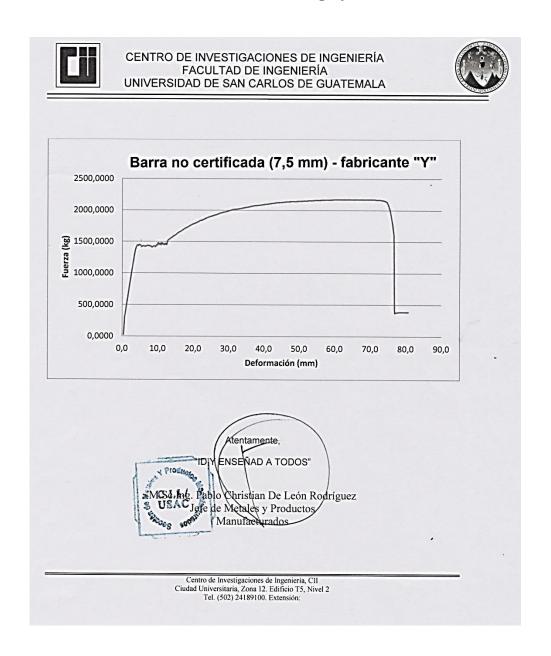
	Especificaciones según la NORMA COGUANOR 36011 3raRevisión							
		Dime	Dimensiones nominales			Requerimientos de corrugaciones mm (pulg)		
No. De designación de barra	Masa nominal kg/m (lb/pie)	*Diámetro mm (pulg)	*Área de la sección transversal mm² (pulg²)	*Perímetro mm (Pulg)	Espaciamiento máximo promedio	Altura mínima promedio	Ancho máximo sin corrugaciones (cordón de 12.5% del perímetro nominal)	
8M	0.395(0.265)	8.0(0.315)	50(0.08)	25.1(0.990)	5.6(0.220)	0.38(0.015)	3.1(0.124)	
10 (3)	0.560(0.376)	9.5(0.375)	71(0.11)	29.9(1.178)	6.7(0.262)	0.38(0.015)	3.6(0.143)	



Centro de Investigaciones de Ingeniería, CII Ciudad Universitaria, Zona 12. Edificio T5, Nivel 2 Tel. (502) 24189100. Extensión: 1595


Anexo 12. Informe de resultados obtenidos en los ensayos


Anexo 12. Gráficas carga - deformación


Anexo 13. Gráficas carga y deformación

Anexo 14. Gráficas carga y deformación

Anexo 15. Gráficas carga y deformación

